
Chapter 3 
 

Analyzing motion of systems of particles 
 
In this chapter, we shall discuss 

1. The concept of a particle 
2. Position/velocity/acceleration relations for a particle 
3. Newton’s laws of motion for a particle 
4. How to use Newton’s laws to calculate the forces needed to make a particle move in a particular 

way 
5. How to use Newton’s laws to derive `equations of motion’ for a system of particles 
6. How to solve equations of motion for particles by hand or using a computer. 

 
The focus of this chapter is on setting up and solving equations of motion – we will not discuss in detail 
the behavior of the various examples that are solved.   
 
 
3.1 Equations of motion for a particle 

 
We start with some basic definitions and physical laws. 

 
3.1.1 Definition of a particle 
 
A `Particle’ is a point mass at some position in space. It can move about, but has no characteristic 
orientation or rotational inertia.  It is characterized by its mass. 
 
Examples of applications where you might choose to idealize part of a system as a particle include: 

1. Calculating the orbit of a satellite – for this application, you don’t need to know the orientation of 
the satellite, and you know that the satellite is very small compared with the dimensions of its 
orbit. 

2. A molecular dynamic simulation, where you wish to calculate the motion of individual atoms in a 
material.  Most of the mass of an atom is usually concentrated in a very small region (the nucleus) 
in comparison to inter-atomic spacing. It has negligible rotational inertia.   This approach is also 
sometimes used to model entire molecules, but rotational inertia can be important in this case. 

 
Obviously, if you choose to idealize an object as a particle, you will only be able to calculate its position.  
Its orientation or rotation cannot be computed.  
 
 
3.1.2 Position, velocity, acceleration relations for a particle (Cartesian coordinates) 
 
In most practical applications we are interested in the position or the 
velocity (or speed) of the particle as a function of time.   But Newton’s 
laws will only tell us its acceleration.   We therefore need equations 
that relate the position, velocity and acceleration. 
 
Position vector: In Newtonian physics we have to measure position 
and motion in a so-called ‘Inertial Frame’.  This concept will be 
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discussed in more detail in Section 3.2.  For now, suppose that we can identify 
1. Three, mutually perpendicular, fixed directions in space: the three directions are described by unit 

vectors { }, ,i j k  
2. We choose a convenient stationary (or non-accelerating) point to use as origin. 

 
The position vector (relative to the origin) is then specified by the three distances (x,y,z) shown in the 
figure.  

( ) ( ) ( )x t y t z t= + +r i j k  
 
In dynamics problems, x,y,z can all be functions of time, but { }, ,i j k are fixed.  
 
 
Velocity vector: By definition, the velocity is the derivative of the position vector with respect to time 
(following the usual machinery of calculus) 
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Velocity is a vector, and can therefore be expressed in terms of its Cartesian components 
x y zv v v= + +v i j k  

You can visualize a velocity vector as follows  
• The direction of the vector is parallel to the direction of motion 

• The magnitude of the vector 2 2 2
x y zv v v v= = + +v  is the speed of the particle (in meters/sec, for 

example).   
 
When both position and velocity vectors are expressed in terms Cartesian components, it is simple to 
calculate the velocity from the position vector.   For this case, the basis vectors { }, ,i j k  are constant 
(independent of time) and so 

( )( ) ( ) ( )x y z
d dx dy dzv v v x t y t z t
dt dt dt dt

+ + = + + = + +i j k i j k i j k  

This is really three equations – one for each velocity component, i.e. 

x y z
dx dy dzv v v
dt dt dt

= = =  

 
 
Acceleration vector: The acceleration is the derivative of the velocity vector with respect to time; or, 
equivalently, the second derivative of the position vector with respect to time. 
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The acceleration is a vector, with Cartesian representation x y za a a= + +a i j k . 
 
Like velocity, acceleration has magnitude and direction. Sometimes it may be possible to visualize an 
acceleration vector – for example, if you know your particle is moving in a straight line, the acceleration 
vector must be parallel to the direction of motion; or if the particle moves around a circle at constant 
speed, its acceleration is towards the center of the circle.  But sometimes you can’t trust your intuition 
regarding the magnitude and direction of acceleration, and it can be best to simply work through the math. 
 



The relations between Cartesian components of position, velocity and acceleration are 
2 2 2
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3.1.3 Review of some ideas from calculus 
 
To analyze motion, we often have to calculate accelerations given position vectors as a function of time, 
or (more commonly) calculate velocity and position by integrating accelerations. 
 
You should have been beaten into submission with this sort of problem in calculus courses (and maybe 
some physics courses as well) so we’ll just review the most important procedures here as a reminder.   We 
will focus on the generic one-dimensional problem: given a , calculate v and x; or vice-versa. 
 
Calculating positions, velocities and accelerations graphically 
 
You will remember that: 

• Speed is the slope of the distance-v-time curve 
• Distance is the area under the speed-v-time curve 

Or alternatively 
• Acceleration is the slope of the speed-v-time curve 
• Speed is the area under the acceleration-v-time curve 

 
These ideas are illustrated in the figure below: if you can sketch a graph of acceleration, velocity or 
position, you can often use geometry to calculate all the other quantities of interest. 



 
 
Rules for integrating accelerations and speeds 
 

• Acceleration given as a function of time 
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• Acceleration given as a function of speed 
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• Acceleration given as a function of distance 
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• Velocity given as a function of time 
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• Velocity given as a separable function of position and time 

0 0
( ) ( ) ( )

( )

v t

v

dx dxg t f x g t dt
dt f x

= ⇒ =∫ ∫  

Example 

0

2 2
0 2 2

00

1 1 0

0 0

10 0

0

1 sin sin

sin sin

x t

x

dx dxv kx dt
dt v kx

k xk x t
v vk

v k xx kt
vk

− −

−

= − ⇒ =
−

    ⇒ − =           
  

⇒ = +      

∫ ∫

 

 
 
 
 



3.1.4 Examples using position-velocity-acceleration relations 
 
It is important for you to be comfortable with calculating velocity and acceleration from the position 
vector of a particle.   You will need to do this in nearly every problem we solve.  In this section we 
provide a few examples.  Each example gives a set of formulas that will be useful in practical 
applications. 
 
 
Example 1: Constant acceleration along a straight line.  There are many examples where an object 
moves along a straight line, with constant acceleration.   
Examples include free fall near the surface of a planet (without 
air resistance), the initial stages of the acceleration of a car, or 
and aircraft during takeoff roll, or a spacecraft during blastoff. 
 
Suppose that 

The particle moves parallel to a unit vector i  
The particle has constant acceleration, with magnitude 
a 
At time 0t t=  the particle has speed 0v  
At time 0t t=  the particle has position vector 

0x=r i  
The position, velocity acceleration vectors are then 
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Verify for yourself that the position, velocity and acceleration (i) have the correct values at t=0 and (ii) 
are related by the correct expressions (i.e. differentiate the position and show that you get the correct 
expression for the velocity, and differentiate the velocity to show that you get the correct expression for 
the acceleration). 
 
HEALTH WARNING: These results can only be used if the acceleration is constant.  In many 
problems acceleration is a function of time, or position – in this case these formulas cannot be used. 
People who have taken high school physics classes have used these formulas to solve so many problems 
that they automatically apply them to everything – this works for high school 
problems but not always in real life! 
 
Example 2: Simple Harmonic Motion:  The vibration of a very simple spring-
mass system is an example of simple harmonic motion.  
 
In simple harmonic motion (i) the particle moves along a straight line; and (ii) 
the position, velocity and acceleration are all trigonometric functions of time. 
 
For example, the position vector of the mass might be given by  

( )0( ) sin(2 / )x t X X t Tπ= = + ∆r i i  
Here 0X  is the average length of the spring, 0X X+ ∆  is the maximum length of the spring, and T is the 
time for the mass to complete one complete cycle of oscillation (this is called the `period’ of oscillation).   
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Harmonic vibrations are also often characterized by the frequency of vibration: 

• The frequency in cycles per second (or Hertz) is related to the period by f=1/T 
• The angular frequency is related to the period by 2 / Tω π=  

 
The motion is plotted in the figure on the right. 
 
The velocity and acceleration can be calculated by differentiating the position, as follows 

2 2
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dx t X t T
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Note that: 

• The velocity and acceleration are also harmonic, and have the same period and frequency as the 
displacement. 

• If you know the frequency, and amplitude and of either the displacement, velocity, or 
acceleration, you can immediately calculate the amplitudes of the other two.  For example, if 

X∆ , V∆ , A∆  denote the amplitudes of the displacement, velocity and acceleration, we 
have that 

22 2 2V X A X V
T T T
π π π ∆ = ∆ ∆ = ∆ = ∆ 

 
 

 
 
Example 3: Motion at constant speed around a circular path  
Circular motion is also very common – examples include any 
rotating machinery, vehicles traveling around a circular path, and 
so on. 
 
The simplest way to make an object move at constant speed along 
a circular path is to attach it to the end of a shaft (see the figure), 
and then rotate the shaft at a constant angular rate.  Then, notice 
that 

• The angle θ  increases at constant rate.  We can write 
tθ ω= , where ω  is the (constant) angular speed of the 

shaft, in radians/seconds.   
• The speed of the particle is related to ω  by V Rω= .   To 

see this, notice that the circumferential distance traveled by the particle is s Rθ= .  Therefore, 
/ /V ds dt Rd dt Rθ ω= = = . 

 
For this example the position vector is 

cos sinR Rθ θ= +r i j  
The velocity can be calculated by differentiating the position vector.   

sin cos ( sin cos )d d dR R R
dt dt dt

θ θθ θ ω θ θ= = − + = − +
rv i j i j  

Here, we have used the chain rule of differentiation, and noted that /d dtθ ω= . 
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The acceleration vector follows as 
2( cos sin ) (cos sin )d d dR R

dt dt dt
θ θω θ θ ω θ θ= = − − = − +

va i j i j  

Note that 
 (i) The magnitude of the velocity is V Rω= , and its direction is (obviously!) tangent to the path 
(to see this, visualize (using trig) the direction of the unit vector ( sin cos )θ θ= − +t i j  

(ii) The magnitude of the acceleration is 2Rω  and its direction is towards the center of the circle. 
To see this, visualize (using trig) the direction of the unit vector (cos sin )θ θ= − +n i j   

 
We can write these mathematically as 

2
2d d VR V R

dt dt R
ω ω= = = = = =

r vv t t a n n  

 
Example 4: More general motion around a circular path   
 
We next look at more general circular motion, where the particle 
still moves around a circular path, but does not move at constant 
speed.  The angle θ  is now a general function of time.   
 
We can write down some useful scalar relations: 

• Angular rate: d
dt
θω =  

• Angular acceleration 
2

2
d d
dt dt
ω θα = =  

• Speed dV R R
dt
θ ω= =  

• Rate of change of speed 
2

2
dV d dR R R
dt dtdt

θ ω α= = =  

 
We can now calculate vector velocities and accelerations 

cos sinR Rθ θ= +r i j  
The velocity can be calculated by differentiating the position vector.   

sin cos ( sin cos )d d dR R R
dt dt dt

θ θθ θ ω θ θ= = − + = − +
rv i j i j  

The acceleration vector follows as 

2

( sin cos ) ( cos sin )

( sin cos ) (cos sin )

d d d dR R
dt dt dt dt
R R

ω θ θθ θ ω θ θ

α θ θ ω θ θ

= = − + + − −

= − + − +

va i j i j

i j i j
 

 
It is often more convenient to re-write these in terms of the unit vectors n and t normal and tangent to the 
circular path, noting that ( sin cos )θ θ= − +t i j , (cos sin )θ θ= − +n i j .  Then 

2
2 dV VR V R R

dt R
ω α ω= = = + = +v t t a t n t n  

 
These are the famous circular motion formulas that you might have seen in physics class.   

θ

R

i

j

Rcosθ

Rsin θ

t
sin

cosθ

n

θ



Using MATLAB ‘live scripts’ 
 
If you find that your calculus is a bit rusty you can use MATLAB to do the tedious work for you.  For 
example, to differentiate the vector  

( ) ( ) ( )x t y t z t= + +r i j k  
you would type 

syms x(t) y(t) z(t) r(t) v(t) a(t) 
r(t) = [x(t),y(t),z(t)] 
v(t) = diff(r(t),t) 
a(t) = diff(v(t),t) 

  
It is essential to type in the (t) after x,y,and z – if you don’t do this, MAPLE assumes that these variables 
are constants, and takes their derivative to be zero.  You must enter (t) after _any_ variable that changes 
with time. 
 
Here’s how you would do the circular motion calculation if you only know that the angle θ  is some 
arbitrary function of time, but don’t know what the function is 

syms R theta(t) r(t) v(t) a(t) 
r(t) = [R*cos(theta(t)),R*sin(theta(t))] 
v(t) = simplify(diff(r(t),t)) 
a(t) = simplify(diff(v(t),t)) 

 
 
MATLAB can make very long and complicated calculations fairly painless.  It is a godsend to engineers, 
who generally find that every real-world problem they need to solve is long and complicated.  But of 
course it’s important to know what the program is doing – so keep taking those math classes… 
 
 
 
 



3.1.5 Velocity and acceleration in normal-tangential coordinates. 
 
In some cases it is helpful to use special basis vectors to write down velocity and acceleration vectors, 
instead of a fixed {i,j,k} basis.  If you see that this approach can be used to quickly solve a problem – go 
ahead and use it.  If not, just use Cartesian coordinates – this will always work, and with MAPLE is not 
very hard.  The only benefit of using the special coordinate systems is to save a couple of lines of rather 
tedious trigonometric algebra – which can be extremely helpful when solving an exam question, but is 
generally insignificant when solving a real problem. 
 
Normal-tangential coordinates for particles moving along a prescribed planar path 
  
In some problems, the formulas for velocity and acceleration look very 
complicated in (i,j) coordinates but become much simpler if they are 
expressed as components using a basis oriented parallel and 
perpendicular to the path.  These basis vectors are called ‘normal-
tangential’ coordinates. 
 
For example, normal-tangential coordinates are nearly always used in 
vehicle dynamics problems, because the { , , }t n k  directions point 
‘forwards’ ‘sideways’ and ‘vertically’, so it is easy to understand the 
significance of accelerations along { , , }t n k , while {i,j,k} components 
are generally very difficult to interpret.  
 
To use normal-tangential coordinates we 

• Specify the path by writing down the position vector of a point on the path in terms of the 
distance s travelled along the path.   For a 2D curve: 

( ) ( ) ( )s x s y s= +r i j  
• Introduce two unit vectors n and t, with t pointing tangent to the path and n pointing normal to 

the path, towards the center of curvature (this sounds a bit scary, but n is just perpendicular to t, 
and if the path curves to the right n points to the right; if it curves to the left, it points to the left). 

• Introduce the radius of curvature of the path R (in most problems we solve R is given, but 
we’ll give some formulas later).  

• Denote the speed of the particle by V.    The speed can vary with time. 
 
We then use the following formulas to calculate speed, velocity and acceleration 
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dV V
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We can also use the formula /V ds dt=  to write velocity and acceleration in terms of distance traveled 
along the path and its time derivatives 
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In words, these equations tell us: 

(1) The direction of the velocity vector of a particle is tangent to its path.   
(2) The magnitude of the velocity vector is equal to the speed.  
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(3) The speed is the derivative of distance traveled with respect to time 
(4) The acceleration vector can be constructed by adding two components: 
• the component of acceleration tangent to the particle’s path is equal to /dV dt .  We call this the 

‘tangential component’ of acceleration. 
• The component of acceleration perpendicular to the path (towards the center of curvature) is 

equal to 2 /V R .   We call this the ‘normal component’ of acceleration. 
 
 
Deriving the normal-tangential formulas 
 
In Newtonian physics, we have to start by defining an ‘inertial frame’, 
which (mathematically) is always a non-accelerating and non-rotating 
Cartesian {i,j,k} basis.   The x,y,z coordinates of a particle and their 
derivatives tell us the Newtonian definitions of position, velocity and 
acceleration.  
 
As we will see with specific examples below, some problems can be 
simplified by replacing the x,y,z coordinates with some simpler set of 
coordinates (these might be angles, or distances, or some combination 
of both that describe our system).  Whenever we use new coordinated, 
we proceed by writing down the x,y,z coordinates in terms of our 
new ones.  We usually also replace the {i,j,k} basis with a new set 
of directions that are defined by our new coordinate system.  As we make small changes to our 
new coordinates, we will move around in space – the directions we move usually have some 
special significance, so it is helpful to write down all vector quantities of interest as components 
in the basis defined by these new directions. 
 
This sounds very abstract, so let’s see how it works for normal-tangential coordinates. 
 
For problems where a particle moves along a known path, we can always write down the 
position of a point on the path in terms of the distance travelled along the path.   For a 2D curve: 

( ) ( ) ( )s x s y s= +r i j  
Here s is the arc-length traveled along the path.   Since the path is known (x,y are given functions) we 
only need one coordinate (s) to specify where we are. 
 
We now generate some basis vectors by working out how position vector changes if we make small 
changes to our new coordinate s.  It is convenient to define 

2 22 2
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The vectors { , , }t n k  have unit length, are mutually perpendicular, and therefore define a new Cartesian 
basis.   We can define any vector in this basis in the usual way.    
 
With these definitions we are now ready to derive our formulas for velocity and acceleration: 
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dt ds dt

d dV d dV d ds dV dV VV V V V
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These are all just repeated applications of the chain rule…. 
 
 
Examples using normal-tangential coordinates 
 
We’ll work through a few examples below that show how to work with normal-tangential coordinates.   
These are all quite hard: you need to be able to use lots of basic ideas from vectors and calculus to be able 
to answer them. 
 
Example: Circular motion in normal-tangential coordinates 
 
We already analyzed circular motion as a special case.  We’ll 
revisit that example as an example of motion along a general 
curved path.    
 
The distance traveled around the circle is the arc length s.    
 
The arc-length formula gives /s Rθ =   
 

Therefore cos sins sR R
R R

= +r i j   (just use trig) 

 

The tangent vector is sin cosd s s
ds R R

= = − +
rt i j   (this agrees with our earlier formula) 

 

The normal vector is cos sind s sR
ds R R

= = − −
tn i j  (also the same as our earlier formula) 

 

The formula says velocity vector is ds
dt

=v t   (the same as our earlier formula) 

The formula for acceleration vector is 
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a t n   (also agrees with the earlier result) 

 
 
Example (a simple exam problem):  
 
A vehicle starts at rest at A and travels with constant tangential 
acceleration ta  around a circular path.   To avoid skidding, the magnitude 
of the acceleration must not exceed gµ  , where µ  is the friction 
coefficient between tires and road, and g is the gravitational acceleration.   
Find a formula for the shortest possible time to reach B. 
 
We can use the formula: in normal-tangential coordinates 
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2 2
t

dV V Va
dt R R

= + = +a t n t n  

Since we are told ta  is constant and the car is at rest at t=0 we can use the constant acceleration formula 
to find V 

t t
dV a V a t
dt

= ⇒ =  

Furthermore 
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2t t
ds a t s a t
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The arc-length from A to B is Rπ  so the time to travel from A to B follows as 
2 / tT R aπ=  

We can find ta  from the condition that gµ≤a   

( )42 4
2 2

2 2
t

t t t
a tV Va a a g

R R R
µ= + = + = + ≤a t n  

(notice that we just used the usual Cartesian formula to find the magnitude of the vector). The 
maximum acceleration occurs at B, so we can substitute for t and solve for ta   
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Finally remember 2 / tT R aπ=  so 

( )1/422 1 4RT
g

π π
µ

≥ +  

 
 
Example: Design speed limit for a curvy road:  As a consulting firm 
specializing in highway design, we have been asked to develop a 
design formula that can be used to calculate the speed limit for cars 
that travel along a curvy road. 
 
The following procedure will be used: 

• The curvy road will be approximated as a sine wave 
sin(2 / )y A x Lπ=  as shown in the figure – for a given road, 

engineers will measure values of A and L that fit the path. 
• Vehicles will be assumed to travel at constant speed V around 

the path – your mission is to calculate the maximum allowable 
value of V 

• For safety, the magnitude of the acceleration of the car at any point along the path must be less 
than 0.2g, where g is the gravitational acceleration. (Again, note that constant speed does not 
mean constant acceleration, because the car’s direction is changing with time). 

 
Our goal, then, is to calculate a formula for the magnitude of the acceleration in terms of V, A and L.  The 
result can be used to deduce a formula for the speed limit. 
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Calculation: 
 
We can solve this problem quickly using normal-tangential coordinates.  Since the speed is constant, the 
acceleration vector is 

2V
R

=a n  

Our only problem is that we don’t know R – but we can use what we know about vectors and normal-
tangential coordinates to figure it out. 
 
The position vector is  

sin(2 / )x A x Lπ= +r i j , 
where x is some unknown function of distance s traveled along the path.  We can calculate the tangent 
from the formula for the tangent (and the chain rule) 

( )2 cos 2 /d d dx dxA x L
ds dx ds L ds

π π = = = + 
 

r rt i j  

We know that t must be a unit vector, therefore 
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( )
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We could separate variables and integrate this to calculate x(s) if we need it – but in practice we don’t 
need to bother. 
 
So now we know that  
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The normal vector n must be perpendicular to both t and k, so we can create it using  
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(the ±  is because there are two vectors normal to both t and k). Finally we know that  
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Since n is a unit vector, we can take the dot product of both sides of this expression with n (from above) 
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Therefore (using our earlier expression for /dx ds , and noting that R is positive by definition)  
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So now we know the acceleration vector is 
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We are interested in the magnitude of the acceleration…   
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We see from this that the car has the biggest acceleration when / 2x L= . The maximum acceleration 
follows as 

2
max (2 / )a A V Lπ=  

The formula for the speed limit is therefore ( / 2 ) 0.2 /V L g Aπ<  
 
Now we send in a bill for a big consulting fee… 
 
 
3.1.6 Position, Velocity and Acceleration in cylindrical-polar coordinates. 
 
When solving problems involving central forces (forces that 
attract particles towards a fixed point) it is often convenient to 
describe motion using polar coordinates. 
 
Polar coordinate formulas 
 
Polar coordinates are related to x,y coordinates through 

2 2 1tan ( / )
cos sin

r x y y x
x r y r

θ
θ θ

−= + =

= =
 

We can also specify height out of the plane of the picture using 
the usual z coordinate. 
 

θ

r
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Suppose that the position of a particle is specified by its ‘polar coordinates’ ( , )r θ relative to a fixed 
origin, as shown in the figure. Let re  be a unit vector pointing in the radial direction, and let θe be a unit 
vector pointing in the tangential direction, i.e 
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The position, velocity and acceleration of the particle can then be expressed as 
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In most problems we solve, we just substitute known information about ( , )r θ  into these formulas. 
 
Deriving the polar coordinate formulas 
 
The formulas for polar coordinate can be derived using the same ideas we used to set up normal-
tangential coordinates.   The general procedure to set up any new coordinate system in Newtonian physics 
is: 

(1) Choose an inertial frame – this defines a stationary Cartesian { , , }i j k  basis 
(2) Choose some new coordinates – here we use ( , , )r zθ  and write down position vector in the 

inertial frame in terms of these new coordinates.   For the cylindrical-polar system 
cos sinr r zθ θ= + +r i j k  

(3) We now think about making very small changes to each of , ,r zθ  .  As we do so, r will change.   
We define unit vectors that point in each of the direction associated with making changes to 

, ,r zθ : mathematically this operation is 
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For the polar coordinate system it turns out that { , , }r θe e k  are mutually perpendicular and so are 
a Cartesian basis.   But note that the directions { , , }r θe e k are functions of , ,r zθ .   Regardless, we 
can express any vectors as components in our new basis using the usual ideas – the vector will be 
made up of contributions parallel to each of the new basis vectors. 
 

The polar coordinate formulas now follow by simple calculus.  Since we have chosen to work with , ,r zθ  
instead of x,y,z , and { , , }r θe e k  instead of  { , , }i j k , we would like to write down position, velocity and 
acceleration in the { , , }r θe e k basis, terms of time derivatives of  , ,r zθ .  Before we work through the 
details we have to do some busy-work.   Since { , , }r θe e k are functions of , ,r zθ  we will need to know 
how to differentiate them with respect to , ,r zθ .  To do this we go back to their original definitions: 
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The rest is just a tedious exercise in using the chain rule.  The position vector can be written down by 
inspection as rr z= +r e k  .  Then 
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Examples using polar coordinates 
 
Example The robotic manipulator shown in the 
figure rotates with constant angular speed ω  
about the k axis.   Find a formula for the 
maximum allowable (constant) rate of extension 

/dL dt  if the acceleration of the gripper may not 
exceed g. 
 
We can simply write down the acceleration 
vector, using polar coordinates.  We identify 

/d dtω θ=  and r=L, so that 

( )
2

22 2 4 2 2 2 2 212 4 /
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Example: The position of a particle in polar 
coordinates is given by 2 /t r tθ π= =  
(meters).  At the instant when θ π=  , calculate 
the following quantities: 
 

• The position vector in ,i j  components and 
in ,r θe e  components 
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• The velocity vector in ,r θe e and ,i j  

 

The polar coordinate formula is 1 12 2r r r
dr dr t
dt dt θ θ θ

θ π
π π

= + = + = +v e e e e e e  m/s 

By inspection we see that ,r θ= − = −i e j e   at the instant of interest, so 1 2 π
π

= − −v i j  

 
 

• The acceleration vector in ,r θe e  components 
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• Unit vectors ,t n  tangent and normal to the path, in ,r θe e .   (Choose n to point towards 

the center of curvature) 
 

We know t is parallel to v so  

( )
2
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We can find n in three ways: first, we know n must be perpendicular to t and must lie in 
the i,j plane (and hence is perpendicular to k).   Remember that you can create a vector 
perpendicular to two others using a cross product, so = ± ×n k t  .   The positive choice 
points towards the center of curvature (by inspection), and note r rθ θ× = × = −k e e k e e   

so  ( )
2

1 2
4 1

r θπ
π

= − +
+

n e e  

 
You can also use the condition 0⋅ =t n   - if we assume r rn nθ θ= +n e e   then 
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Any ,rn nθ  that satisfies this (eg 2 , 1rn nθπ= − =  ) is perpendicular to t.  But n must be a 
unit vector, and we know we want the vector to point towards the origin (because the 
center of curvature of the path is inside the turn).   So we have to choose  
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r θπ
π
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+

n e e  



 
The last (cumbersome, but general) way to do the calculation is to note that ( )− ⋅a a t t  
must be parallel to n.   

( ) ( ) ( )

( )

2 2

2 2

2 2 2

1 14 6 4 6 2 2
4 1 4 1

8 4 (3 4 ) 2(3 4 )4 6 2
4 1 4 1 4 1

r r r r

r r r

θ θ θ θ

θ θ θ

π π π π
π π

π π π ππ π
π π π

 
− + − − + ⋅ + + 

 + + 

+ +
= − + − + = − +

+ + +

e e e e e e e e

e e e e e e

 

Dividing by the magnitude of this vector (to create a unit vector) gives the same answer 
as before. 

 
• Tangential and normal components of acceleration ,t na a  : we know (from ENGN30) that 

we can find the component of a vector in a basis by dotting it with the basis vectors, so 
2

2 2

8 8 6

1 4 1 4
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= ⋅ = = ⋅ =

+ +
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You can also do this problem using the formula 
2dV V

dt R
= +a t n  .   This shows t

dVa
dt

=  , which is not too hard to calculate (but is a pain so I 

can’t be bothered).   To find 2 /na V R=   we would either have to use our MA0200 super-powers 

to find the radius of curvature of the path, or else use 
2

n
dV V a
dt R

− = + =a t n n  and then take the 

magnitude of the vector on the left to get na  .    
 

 
3.1.7 Measuring position, velocity and acceleration 
 
If you are designing a control system, you will need some way to detect the 
motion of the system you are trying to control.  A vast array of different 
sensors is available for you to choose from: see for example the list at 
http://www.sensorland.com/HowPage001.html .  A very short list of 
common sensors is given below 
1. GPS – determines position on the earth’s surface by measuring the 

time for electromagnetic waves to travel from satellites in known 
positions in space to the sensor.   Can be accurate down to cm 
distances, but the sensor needs to be left in position for a long time for 
this kind of accuracy.  A few m is more common. 

2. Optical or radio frequency position sensing – measure position by (a) 
monitoring deflection of laser beams off a target; or measuring the time 
for signals to travel from a set of radio emitters with known positions to 
the sensor.  Precision can vary from cm accuracy down to light 
wavelengths. 

3. Capacitative displacement sensing – determine position by measuring 
the capacitance between two parallel plates.  The device needs to be 
physically connected to the object you are tracking and a reference 
point. Can only measure distances of mm or less, but precision can be 
down to micron accuracy. 

http://www.sensorland.com/HowPage001.html


4. Electromagnetic displacement sensing – measures position by detecting electromagnetic fields 
between conducting coils, or coil/magnet combinations within the sensor.  Needs to be physically 
connected to the object you are tracking and a reference point.  Measures displacements of order cm 
down to microns. 

5. Radar velocity sensing – measures velocity by detecting the change in frequency of electromagnetic 
waves reflected off the traveling object. 

6. Inertial accelerometers: measure accelerations by detecting the deflection of a spring acting on a 
mass.  

 
Accelerometers are also often used to construct an ‘inertial platform,’ which uses gyroscopes to maintain 
a fixed orientation in space, and has three accelerometers that can detect motion in three mutually 
perpendicular directions.  These accelerations can then be integrated to determine the position.  They are 
used in aircraft, marine applications, and space vehicles where GPS cannot be used or where a backup is 
needed for GPS.   They are often combined with GPS receivers as well: accelerometers are very good for 
measuring changes in velocity and position over a short time interval, and GPS is very good over long 
time intervals, so you can use ‘sensor fusion’ to make a sensor that uses both signals to get the best 
possible measurement. 
 
 
 
 
3.2 Calculating forces required to cause prescribed motion of a particle 
 
3.2.1 The Newtonian Inertial Frame.  
 
Newton’s laws are very familiar, and it is easy to write them down without much thought.  They do have 
a flaw, however. 
 
When we use Newton’s laws, we assume that: 
(1) We can identify some point in the universe that is not accelerating 
(2) We can identify three mutually perpendicular directions that are ‘fixed’ in the sense that they do not 

rotate.    
Together, these define a so-called ‘inertial frame’ – a Cartesian coordinate system in which motion obeys 
Newton’s laws. 
 
For engineering calculations, identifying a suitable origin and fixed directions usually poses no difficulty.  
If we are solving problems involving terrestrial motion over short distances compared with the earth’s 
radius, we simply take a point on the earth’s surface as fixed, and take three directions relative to the 
earth’s surface to be fixed.  If we are solving problems involving motion in space near the earth, or 
modeling weather, we take the center of the earth as a fixed point, (or for more complex calculations the 
center of the sun); and choose axes to have a fixed direction relative to nearby stars.    Experiments show 
that Newton’s laws predict motion sufficiently accurately for our needs.   But there will always be some 
very small error.    
 
In reality, an unambiguous inertial frame does not exist.  We can only describe the relative motion of the 
mass in the universe, not its absolute motion.  The general theory of relativity gives us a framework that 
avoids having to choose an inertial frame.  More elaborate calculations show that Newton’s laws are 
rigorous approximations to the general equations (in the sense of a Taylor expansion of the more general 
equations for low particle speeds compared with the speed of light), and would also (in principle) tell us 
the best choice of directions to set up a Newtonian frame at any point in space. 



 
3.2.2 Newton’s laws of motion for a particle 
 
If we ignore these conceptual difficulties, Newton’s laws for a particle are very simple.  Let 

1. m denote the mass of the particle 
2. F denote the resultant force acting on the particle (as a vector, in the inertial frame) 
3. a denote the acceleration of the particle (again, as a vector in the inertial frame).  Then 
 

m=F a  
 
Occasionally, we use a particle idealization to model systems which, strictly speaking, are not particles.  
These are: 

1. A large mass, which moves without rotation (e.g. a car moving along a straight line) 
2. A single particle which is attached to a rigid frame with negligible mass (e.g. a person on a 

bicycle) 
 
In these cases it may be necessary to consider the moments acting on the mass (or frame) in order to 
calculate unknown reaction forces.   

1. For a large mass which moves without rotation, the resultant moment of external forces about the 
center of mass must vanish. 

2. For a particle attached to a massless frame, the resultant moment of external forces acting on the 
frame about the particle must vanish. 

C =M 0  
We will see where this equation comes from when we analyze rigid body dynamics, and we’ll also 
understand when it is no longer correct. 
 
It is very important to take moments about the correct point in dynamics problems! Forgetting this is 
the most common reason to screw up a dynamics problem… 
 
If you need to solve a problem where more than one particle is attached to a massless frame, you have to 
draw a separate free body diagram for each particle, and for the frame.   The particles must obey 
Newton’s laws m=F a .   The forces acting on the frame must obey =F 0  and C =M 0 , (because the 
frame has no mass).   
 
Newton’s laws of motion can be used to calculate the forces required to make a particle move in a 
particular way.    
 
We use the following general procedure to solve problems like this 

(1) Decide how to idealize the system (what are the particles?) 
(2) Draw a free body diagram showing the forces acting on each particle 
(3) Consider the kinematics of the problem. The goal is to calculate the acceleration of each 
particle in the system – you may be able to start by writing down the position vector and 
differentiating it, or you may be able to relate the accelerations of two particles (eg if two 
particles move together, their accelerations must be equal). 
(4) Write down F=ma for each particle. 
(5) If you are solving a problem involving a massless frames (see, e.g. Example 3, involving a 
bicycle with negligible mass) you also need to write down C =M 0  about the particle. 
(5) Solve the resulting equations for any unknown components of force or acceleration (this is 
just like a statics problem, except the right hand side is not zero). 



 
It is best to show how this is done by means of examples.   
 
 
Example 1: Estimate the minimum thrust that must be produced 
by the engines of an aircraft in order to take off from the deck of 
an aircraft carrier (the figure is from 
www.lakehurst.navy.mil/NLWeb/media-library.asp) 
 
We will estimate the acceleration required to reach takeoff speed, 
assuming the aircraft accelerates from zero speed to takeoff speed 
along the deck of the carrier, and then use Newton’s laws to 
deduce the force. 
 
Data/ Assumptions:  

1. The flight deck of a Nimitz class aircraft carrier is about 300m long (http://www.naval-
technology.com/projects/nimitz/) but only a fraction of this is used for takeoff (the angled runway 
is used for landing).   We will take the length of the runway to be d=200m 

2. We will assume that the acceleration during takeoff roll is constant. 
3. We will assume that the aircraft carrier is not moving (this is wrong – actually the aircraft carrier 

always moves at high speed during takeoff.  We neglect motion to make the calculation simpler) 
4. The FA18 Super Hornet is a typical aircraft used on a carrier – it has max catapult weight of 

m=15000kg  http://www.boeing.com/defense-space/military/fa18ef/docs/EF_overview.pdf  
5. The manufacturers are somewhat reticent about performance specifications for the Hornet but 

tv = 150 knots (77 m/s) is a reasonable guess for a minimum controllable airspeed for this 
aircraft. 

 
Calculations:  

1. Idealization: We will idealize the aircraft as a particle.  We 
can do this because the aircraft is not rotating during takeoff. 

 
2. FBD: The figure shows a free body diagram.  TF  represents 

the (unknown) force exerted on the aircraft due to its engines. 
 

3. Kinematics: We must calculate the acceleration required to reach takeoff speed.  We are given (i) 
the distance to takeoff d, (ii) the takeoff speed tv  and (iii) the aircraft is at rest at the start of the 
takeoff roll. We can therefore write down the position vector r and velocity v of the aircraft at 
takeoff, and use the straight line motion formulas for r and v to calculate the time t to reach 
takeoff speed and the acceleration a.  Taking the origin at the initial position of the aircraft, we 
have that, at the instant of takeoff 

21
2 td at v at= = = =r i i v i i  

This gives two scalar equations which can be solved for a and t  
2

21 2
2 2
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d v
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4. EOM: The vector equation of motion for this problem is 
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2

2
t

T
vF ma m
d

= =i i i  

 
5. Solution: The i component of the equation of motion gives an equation for the unknown force in 

terms of known quantities 
2

2
t

T
vF m
d

=  

Substituting numbers gives the magnitude of the force as F=222 kN.  This is very close, but 
slightly greater than, the 200kN (44000lb) thrust quoted on the spec sheet for the Hornet.  Using a 
catapult to accelerate the aircraft, speeding up the aircraft carrier, and increasing thrust using an 
afterburner buys a margin of safety.   

 
 
 
Example 2: Mechanics of Magic! You have no doubt seen the 
simple `tablecloth trick’ in which a tablecloth is whipped out 
from underneath a fully set table (if not, you can watch it at 
http://wm.kusa.gannett.edgestreams.net/news/1132187192333-
11-16-05-spangler-2p.wmv) 
 
In this problem we shall estimate the critical acceleration that 
must be imposed on the tablecloth to pull it from underneath the objects placed upon it. 
 
We wish to determine conditions for the tablecloth to slip out from under the glass. We can do this by 
calculating the reaction forces acting between the glass and the tablecloth, and see whether or not slip will 
occur.   It is best to calculate the forces required to make the glass move with the tablecloth (i.e. to 
prevent slip), and see if these forces are big enough to cause slip. 
 

1. Idealization: We will assume that the glass behaves like a particle (again, we can do this because 
the glass does not rotate) 

 
2. FBD. The figure shows a free body diagram for the glass.  The forces 

include (i) the weight; and (ii) the normal and tangential components 
of reaction at the contact between the tablecloth and the glass.   The 
normal and tangential forces must act somewhere inside the contact 
area, but their position is unknown.   For a more detailed discussion of 
contact forces see Sects 2.4 and 2.5. 

 
3. Kinematics We are assuming that the glass has the same acceleration 

as the tablecloth. The table cloth is moving in the i direction, and has magnitude a. The 
acceleration vector is therefore a=a i . 

4. EOM. Newton’s laws of motion yield 
( )m T N mg ma= ⇒ + − =F a i j i  

5. Solution: The i and j components of the vector equation must each be satisfied (just as when you 
solve a statics problem), so that 

0T ma N mg N mg= − = ⇒ =  
Finally, we must use the friction law to decide whether or not the tablecloth will slip from under 
the glass.   Recall that, for no slip, the friction force must satisfy 
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T Nµ<  
where µ  is the friction coefficient.  Substituting for T and N from (5) shows that for no slip 

a gµ<  
To do the trick, therefore, the acceleration must exceed gµ .  For a friction coefficient of order 
0.1, this gives an acceleration of order 21 /m s .   There is a special trick to pulling the tablecloth 
with a large acceleration – but that’s a secret. 

 
 
Example 3: Bicycle Safety.  If a bike rider brakes too hard on the 
front wheel, his or her bike will tip over (the figure is from 
http://www.thosefunnypictures.com/picture/7658/bike-flip.html).  In 
this example we investigate the conditions that will lead the bike to 
capsize, and identify design variables that can influence these 
conditions. 
 
If the bike tips over, the rear wheel leaves the ground.  If this happens, 
the reaction force acting on the wheel must be zero – so we can detect 
the point where the bike is just on the verge of tipping over by calculating the reaction forces, and finding 
the conditions where the reaction force on the rear wheel is zero. 
 
1. Idealization:  

a. We will idealize the rider as a particle 
(apologies to bike racers – but that’s how 
we think of you…). The particle is located 
at the center of mass of the rider.  The 
figure shows the most important design 
parameters- these are the height of the 
rider’s COM, the wheelbase L and the 
distance of the COM from the rear wheel. 

b. We assume that the bike is a massless 
frame.   The wheels are also assumed to 
have no mass.  This means that the forces 
acting on the wheels must satisfy =F 0  
and =M 0  - and can be analyzed using 
methods of statics.  If you’ve forgotten how to think about statics of wheels, you should re-
read the notes on this topic – in particular, make sure you understand the nature of the forces 
acting on a freely rotating wheel (Section 2.4.6 of the reference notes). 

c. We assume that the rider brakes so hard that the front wheel is prevented from rotating.  It 
must therefore skid over the ground.  Friction will resist this sliding. We denote the friction 
coefficient at the contact point B by µ . 

d. The rear wheel is assumed to rotate freely. 
e. We neglect air resistance. 
 

2. FBD. The figure shows a free body diagram for the 
rider and for the bike together.  Note that 

a. A normal and tangential force acts at the 
contact point on the front wheel (in general, 
both normal and tangential forces always 
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act at contact points, unless the contact happens to be frictionless).  Because the contact is 
slipping it is essential to draw the friction force in the correct direction – the force must resist 
the motion of the bike;  

b. Only a normal force acts at the contact point on the rear wheel because it is freely rotating, 
and behaves like a 2-force member. 

 
3. Kinematics The bike is moving in the i direction. As a vector, its acceleration is therefore a=a i , 

where a is unknown.   
 
4. EOM: Because this problem includes a massless frame, we must use two equations of motion 

( m=F a  and C =M 0 ).  It is essential to take moments about the particle (i.e. the rider’s COM). 
 

m=F a  gives ( )B A BT N N W ma− + + − =i j i  

C =M 0 gives ( )B A BN L d N d T h− − − =k k k 0   
 
The two nonzero components of m=F a  and the one nonzero component of C =M 0  give us three 
scalar equations  

( ) 0
( ) 0

B

A B

B A B

T ma
N N W

N L d N d T h

− =
+ − =

− − − =
 

We have four unknowns – the reaction components , ,A B BN N T  and the acceleration a so we need 
another equation.   The missing equation is the friction law 

B BT Nµ=  
 

5. Solution: (tedious algebra – you could avoid this by using Matlab) 
 
The third equation and the friction law show that 

( ) 0B AN L d h N dµ− − − =  
Multiply ( ) 0A BN N W+ − = by ( )L d hµ− −  and subtract it from this equation: 

( )( ) 0A A

A

N d L d h N W
L d hN W

L h

µ
µ

µ

− − − − − =
− −

⇒ =
−

 

 
We are interested in finding what makes the reaction force at A go to zero (that’s when the bike is about 
to tip).  So 

0 ( ) /A
L d hN W L d h

L h
µ µ

µ
− −

= ≤ ⇒ ≤ −
−

 

 
 
 
 
 
 



This tells us that the bike will tip if the friction 
coefficient exceeds a critical magnitude, which 
depends on the geometry of the bike.  The simplest 
way to design a tip-resistant bike is to make the 
height of the center of mass h small, and the distance 
(L-d) between the front wheel and the COM  as large 
as possible.   
 
A `recumbent’ bike is one way to achieve this – the 
figure (from 
http://en.wikipedia.org/wiki/Recumbent_bicycle) 
shows an example. The recumbent design offers 
many other significant advantages over the classic 
bicycle besides tipping resistance. 
 
 
 
Example 4: A stupid problem that you might find in the FE professional 
engineering exam.  The purpose of this problem is to show what you need to 
do to solve problems involving more than one particle. 
 
Two weights of mass Am  and Bm  are connected by a cable passing over two 
freely rotating pulleys as shown.  They are released, and the system begins to 
move.  Find an expression for the tension in the cable connecting the two 
weights. 
 
 

1. Idealization – The masses will be idealized as particles; the cable is inextensible and the mass of 
the pulleys is neglected.  This means the internal forces in the cable, and the forces acting 
between cables/pulleys must satisfy  =F 0  and =M 0 , and we can 
treat them as though they were in static equilibrium.   

 
2. FBD – we have to draw a separate FBD for each particle.  Since the 

pulleys and cable are massless, the tension T in the cable is constant. 
 
3. Kinematics  We know that both masses must move in the j direction.  

We also know that the masses always move at the same speed but in 
opposite directions.  Therefore, their accelerations must be equal and 
opposite.  We can express this mathematically as 

A Ba a= −j j  
 

4. EOM: We must write down two equations of motion, as there are two masses 
( )
( )

A A A

B B B

T m g m a
T m g m a

− =
− =

j j
j j

 

We now have three equations for three unknowns (the unknowns are ,A Ba a  and T). 
 

5. Solution:  More algebra.   We can eliminate Ba  so that the last two equations are: 

mA mB

i
j

mA mB

i
jT T

mAg mBg

http://en.wikipedia.org/wiki/Recumbent_bicycle


( )
( )

A A A

B B A

T m g m a
T m g m a

− =
− = −

 

Now we can multiply the first equation by Bm and the second by Am and add them 
( 2 ) 0A B A BTm Tm m m g+ − =  

So 
2 A B

A B

m mT g
m m

=
+

 

We pass! 
 

 
Example 5: Another stupid FE exam problem: The 
figure shows a small block on a rotating bar.  The contact 
between the block and the bar has friction coefficient µ .  
The bar rotates at constant angular speed ω .  Find the 
critical angular velocity that will just make the block start 
to slip when 0θ = .  Which way does the block slide? 
 
The general approach to this problem is the same as for the 
Magic trick example – we will calculate the reaction force 
exerted by the bar on the block, and see when the forces are large enough to cause slip at the contact.  We 
analyze the motion assuming the slip does not occur, and then find out the conditions where this can no 
longer be the case. 
 

1. Idealization – We will idealize the block as a particle.  This is dangerous, because the block is 
clearly rotating.  We hope that because it rotates at constant rate, the rotation will not have a 
significant effect – but we can only check this once we know how to 
deal with rotational motion. 

2. FBD: The figure shows a free body diagram for the block.  The block is 
subjected to a vertical gravitational force, and reaction forces at the 
contact with the bar.  Since we have assumed that the contact is not 
slipping, we can choose the direction of the tangential component of the 
reaction force arbitrarily.  The resultant force on the block is 

( )cos sin ( cos sin )T N N T mgθ θ θ θ= − + + −F i j  
3. Kinematics  We can use the circular motion formula to write down the acceleration of tbe block 

(see section 3.1.3) 
2 (cos sin )rω θ θ= − +a i j  

4. EOM: The equation of motion is 
( ) 2cos sin ( cos ) (cos sin )T N N mg mrθ θ θ ω θ θ− + − = − +i j i j  

5. Solution: The i and j components of the equation of motion can be solved for N and T .  Doing 
this by hand is a pain, but Matlab makes it painless 

syms T N theta m r omega g real 
eq1 = T*cos(theta)-N*sin(theta) == -m*r*omega^2*cos(theta); 
eq2 = N*cos(theta)+T*sin(theta)-m*g == -m*r*omega^2*sin(theta); 
[N,T] = (solve([eq1,eq2],[N,T])); 
N = simplify(N) 
T = simplify(T) 
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To find the point where the block just starts to slip, we use the friction law.  Recall that, at the 
point of slip 

T Nµ=  
For the block to slip with 0θ =  

2r gω µ− =  

so the critical angular velocity is /g rω µ= .  Since the tangential traction T is negative, and the 
friction force must oppose sliding, the block must slide outwards, i.e. r is increasing during slip. 

 
 
Alternative method of solution using normal-tangential 
coordinates 
 
We will solve this problem again, but this time we’ll use 
the short-cuts described in Section 3.1.4 to write down the 
acceleration vector, and we’ll write down the vectors in 
Newton’s laws of motion in terms of the unit vectors n and 
t normal and tangent to the object’s path. 

(i) Acceleration vector  If the block does not slip, it moves 
with speed V rω= around a circular arc with radius r.   Its acceleration vector has magnitude 2 /V r  and 
direction parallel to the unit vector n.    

(ii) The force vector can be resolved into components parallel to n and t.  Simple 
trig on the free body diagram shows that 

( ) ( )cos sinN mg mg Tθ θ= − + −F t n  

(iii) Newton’s laws then give 
( ) ( ) 2cos sinm N mg mg T m rθ θ ω= = − + − =F a t n n  

The components of this vector equation parallel to t and n yield two equations, with solution 
2cos sinN mg T mg m rθ θ ω= = −  

This is the same solution as before.   Normal-tangential coordinates makes the equations and algebra 
much simpler, however.    
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Example 6: Window blinds.  Have you ever wondered how 
window shades work?  You give the shade a little downward 
jerk, let it go, and it winds itself up.  If you pull the shade down 
slowly, it stays down.  
 
The figure shows the mechanism (which probably only costs a 
few cents to manufacture) that achieves this remarkable feat of 
engineering.  It’s called an `inertial latch’ – the same principle 
is used in the inertia reels on the seatbelts in your car. 
 
The picture shows an enlarged end view of the window shade.  
The hub, shown in brown, is fixed to the bracket supporting the 
shade and cannot rotate.  The drum, shown in peach, rotates as 
the shade is pulled up or down.  The drum is attached to a 
torsional spring, which tends to cause the drum to rotate 
counterclockwise, so winding up the shade.  The rotation is 
prevented by the small dogs, shown in red, which engage with 
the teeth on the hub.  You can pull the shade downwards freely, 
since the dogs allow the drum to rotate counterclockwise. 
 
To raise the shade, you need to give the end of the shade a jerk 
downwards, and then release it.  When the drum rotates 
sufficiently quickly (we will calculate how quickly shortly) the 
dogs open up, as shown on the right.  They remain open until 
the drum slows down, at which point the topmost dog drops and engages with the teeth on the hub, 
thereby locking up the shade once more. 
 
We will estimate the critical rotation rate required to free the rotating drum. 
 
1. Idealization – We will idealize the topmost dog as a particle on the 

end of a massless, inextensible rod, as shown in the figure. 
a.   We will assume that the drum rotates at constant angular 

rate ω .  Our goal is to calculate the critical speed where the 
dog is just on the point of dropping down to engage with 
the hub. 

b. When the drum spins fast, the particle is contacts the outer 
rim of the drum – a normal force acts at the contact.  When 
the dog is on the point of dropping this contact force goes to 
zero.  So our goal is to calculate the contact force, and then 
to find the critical rotation rate where the force will drop to 
zero. 

c. We neglect friction. 
 

2. FBD. The figure shows a free body diagram for the particle. The 
particle is subjected to: (i) a reaction force N where it contacts the rim; 
(ii) a tension T in the link, and (iii) gravity.  The resultant force is 

( )cos( ) cos ( sin sin( ) )T N N T mgφ θ θ θ φ θ= − − − + − + − −F i j  
 

3. Kinematics  We can use the circular motion formula to write down the 
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acceleration of the particle(see section 3.1.3) 
2 (cos sin )Rω θ θ= − +a i j  

4. EOM: The equation of motion is 
( ) 2cos( ) cos ( sin sin( ) ) (cos sin )T N N T mg Rφ θ θ θ φ θ ω θ θ− − − + − + − − = = − +i j a i j  

5. Solution: The i and j components of the equation of motion can be solved for N and T – MAPLE 
makes this painless 

syms T N theta m R omega g phi real 
eq1 = -T*cos(phi-theta) - N*cos(theta) == -R*omega^2*cos(theta); 
eq2 = -N*sin(theta)+T*sin(phi-theta)-m*g == -R*omega^2*sin(theta); 
[T,N] = solve([eq1,eq2],[T,N]); 
T = simplify(T) 
N = simplify(N) 

 

 The normal reaction force is therefore 
2cos( ) / sinN mg mRθ φ φ ω= − − +  

We are looking for the point where this can first become zero or negative.  Note that  
max{cos( )} 1θ φ− =  at the point where θ φ− =0.  The smallest value of N therefore occurs at this 
point, and has magnitude 

2
min / sinN mg mRφ ω= − +  

The critical speed where N=0 follows as 
/ ( sin )g Rω φ=  

Changing the angle φ  and the radius R gives a convenient way to control the critical speed in 
designing an inertial latch. 

 
 
Alternative solution using polar coordinates 

 
We’ll work through the same problem again, but this time 
handle the vectors using polar coordinates. 

 
1. FBD. The figure shows a free body diagram for the particle. 

The particle is subjected to: (i) a reaction force N where it 
contacts the rim; (ii) a tension T in the link, and (iii) gravity.  
The resultant force is 

( cos sin ) ( sin cos )rN T mg T mg θφ θ φ θ= − + + + −F e e  θ

φ
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2. Kinematics  The acceleration vector is now 

2
rRω= −a e  

3. EOM: The equation of motion is 
2( cos sin ) ( sin cos )r rN T mg T mg Rθφ θ φ θ ω− + + + − = −e e e  

4. Solution: The ,r θe e components of the equation of motion can be solved for N and T .  If we use 
polar coordinates we can do this by hand – the θe  component shows that 

cos / sinT mg θ θ=  
We can substitute this back into the re  component to get 

2cos( ) / sinN mg mRθ φ φ ω= − − +  

We are looking for the point where this can first become zero or negative.  Note that  
max{cos( )} 1θ φ− =  at the point where θ φ− =0.  The smallest value of N therefore occurs at this 
point, and has magnitude 

2
min / sinN mg mRφ ω= − +  

The critical speed where N=0 follows as 
/ ( sin )g Rω φ=  

Changing the angle φ  and the radius R gives a convenient way to control the critical speed in 
designing an inertial latch. 

 
 
Example 7: Aircraft Dynamics Aircraft performing certain 
instrument approach procedures (such as holding patterns or 
procedure turns) are required to make all turns at a standard 
rate, so that a complete 360 degree turn takes 2 minutes.  All 
turns must be made at constant altitude and constant speed, V.   
 
People who design instrument approach procedures need to 
know the radius of the resulting turn, to make sure the aircraft 
won’t hit anything.   Engineers designing the aircraft are interested in the forces needed to complete the 
turn – specifically, the load factor, which is the ratio of the lift force on the aircraft to its weight. 
 
In this problem we will calculate the radius of the turn R and the bank angle required, as well as the load 
factor caused by the maneuver, as a function of the aircraft speed V. 
 
Before starting the calculation, it is helpful to understand what makes an aircraft travel in a circular path. 
Recall that 

1. If an object travels at constant speed around a circle, its acceleration vector has constant 
magnitude, and has direction towards the center of the circle 

2. A force must act on the aircraft to produce this acceleration – i.e. the resultant force on the 
aircraft must act towards the center of the circle.  The necessary force comes from the horizontal 
component of the lift force – the pilot banks the wings, so that the lift acts at an angle to the 
vertical. 

 
With this insight, we expect to be able to use the equations of motion to calculate the forces. 
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1. Idealization – The aircraft is idealized as a particle – it’s 
not obvious that this is accurate, because the aircraft 
clearly rotates as it travels around the curve.  However, the 
forces we wish to calculate turn out to be fully determined 
by F=ma and are not influenced by the rotational motion. 

 
2. FBD. The figure shows a free body diagram for the 

aircraft.  It is subjected to (i) a gravitational force (mg); (ii) a thrust from the engines TF , (iii) a drag 
force DF , acting perpendicular to the direction of motion, and (iv) a lift force LF , acting 
perpendicular to the plane of the wings. 
 
The resultant force is 

[ ] [ ] ( )( )cos sin sin ( )sin sin cos cosT D L D T L LF F F F F F F mgθ α θ θ α θ α− − + − − + −i j k  
(you may find the components of the lift force difficult to visualize – to see where these come from, 
note that the lift force can be projected onto components along OR and the k direction as 

sin cosL L LF RO Fα α= +F k


.  Then note that  sin cosRO θ θ= − −i j


.)   
 

3. Kinematics   
a. The aircraft moves at constant speed around a circle, so the angle tθ ω= , where ω  is the 

(constant) angular speed of the line OP.   Since the aircraft completes a turn in two minutes, 
we know that  2 / (2 60) / 60ω π π= × =  rad/sec 

b. The position vector of the plane is 
sin cosR t R tω ω= +r i j  

We can differentiate this expression with respect to time to find the velocity 
(cos sin )R t tω ω ω= −v i j  

c. The magnitude of the velocity is V Rω= , so if the aircraft flies at speed V, the radius of the 
turn must be /R V ω=  

d. Differentiating the velocity gives the acceleration 
2 (sin cos )R t tω ω ω= − +a i j  

 
4. EOM: The equation of motion is 

[ ] [ ] ( )
2

( )cos sin sin ( )sin sin cos cos

(sin cos )
(sin cos )

T D L D T L LF F F F F F F mg

mR
mV

θ α θ θ α θ α

ω θ θ
ω θ θ

− − + − − + −

= − +
= − +

i j k

i j
i j

 

 
5. Solution: The i j and k components of the equation of motion give three equations that can be solved 

for TF , LF  and α .  We assume that the drag force is known, since this is a function of the aircraft’s 
speed. 

syms FT FD FL alpha theta R m omega g V real 
eq1 = (FT-FD)*cos(theta)-FL*sin(alpha)*sin(theta)==-m*V*omega*sin(theta); 
eq2 = (FT-FD)*cos(theta)-FL*sin(alpha)*cos(theta)==-m*V*omega*cos(theta); 
eq3 = FL*cos(alpha)-m*g ==0; 
[FL,alpha,FT] = solve([eq1,eq2,eq3],[FL,alpha,FT]); 
FL = simplify(FL) 
alpha = simplify(alpha) 
FT = simplify(FT) 

R

α

θ

i

j
k FT

FDmg

FL

O



 
 

(The two solutions are a bit weird, but to a mathematician having the airplane fly upside down and 
generate negative lift is a perfectly acceptable solution) 

1 2 2 2 2 2 22 tan (( ) / ) 1 /L T Dg V g V F mg V g F Fα ω ω ω−= − − + = + =  
 
We can calculate values of α , /R V ω=  and the load factor /LF mg  for a few aircraft 

a. Cessna 150 – V=70knots (36 m/s) : 011α =  R=690m, / 1.02LF mg =  

b. Boeing 747: V=200 knots (102 m/s) 028α =  R=1950m, / 1.14LF mg =  

c. F111  V=300 knots (154 m/s) 039α =  R=2950m, / 1.3LF mg =  
 
 
Alternative solution using normal-tangential coordinates 
 
This problem can also be solved rather more quickly using 
normal and tangential basis vectors. 
 
(i) Acceleration vector.  The aircraft travels around a circular 
path at constant speed, so its acceleration is 

2V V
R

ω= =a n n  

where n is a unit vector pointing towards the center of the circle. 
 
(ii) Force vector. The force vector can be written in terms of the unit vectors n,t,k as 

( ) sin ( cos )T D L LF F F F mgα α= − + + −F t n k  
 

(iii) Newton’s law ( ) sin ( cos )T D L LF F F F mg mVα α ω= − + + − =F t n k n  
 
The n, t and k components of this equation give three equations that can be solved for TF , LF  and α .  
We can easily do this by hand 

1 2 2 2tan ( / ) 1 /L T DV g F mg V g F Fα ω ω−= = + =  
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3.3 Deriving and solving equations of motion for systems of particles 
 
We next turn to the more difficult problem of predicting the motion of a system that is subjected to a set 
of forces.   
 
 
3.3.1 General procedure for deriving and solving equations of motion for systems of particles 
 
It is very straightforward to analyze the motion of systems of particles.   You should always use the 
following procedure 

1. Introduce a set of variables that can describe the motion of the system.  Don’t worry if this sounds 
vague – it will be clear what this means when we solve specific examples. 

2. Write down the position vector of each particle in the system in terms of these variables 
3. Differentiate the position vector(s), to calculate the velocity and acceleration of each particle in 

terms of your variables; 
4. Draw a free body diagram showing the forces acting on each particle.  You may need to introduce 

variables to describe reaction forces.  Write down the resultant force vector. 
5. Write down Newton’s law m=F a  for each particle.  This will generate up to 3 equations of 

motion (one for each vector component) for each particle. 
6. If you wish, you can eliminate any unknown reaction forces from Newton’s laws. If you are 

trying to solve the equations by hand, you should always do this; of you are using MATLAB, it’s 
not usually necessary – you can have MATLAB calculate the reactions for you. The result will be 
a set of differential equations for the variables defined in step (1) 

7. If you find you have fewer equations than unknown variables, you should look for any 
constraints that restrict the motion of the particles.  The constraints must be expressed in terms of 
the unknown accelerations. 

8. Identify the initial conditions for the variables defined in (1).  These are usually the values of the 
unknown variables, their time derivatives, at time t=0. If you happen to know the values of the 
variables at some other instant in time, you can use that too.   If you don’t know their values at 
all, you should just introduce new (unknown) variables to denote the initial conditions.  

9. Solve the differential equations, subject to the initial conditions. 
 
Steps (3) (6) and (8) can usually be done on the computer, so you don’t actually have to do much calculus 
or math.   
 
Sometimes, you can avoid solving the equations of motion completely, by using conservation laws – 
conservation of energy, or conservation of momentum – to calculate quantities of interest.  These short-
cuts will be discussed in the next chapter. 
 
3.3.2 Simple examples of equations of motion and their solutions 
 
The general process described in the preceding section can be illustrated using simple examples.  In this 
section, we derive equations of motion for a number of simple systems, and find their solutions. 
 
The purpose of these examples is to illustrate the straightforward, step-by-step procedure for analyzing 
motion in a system.   Although we solve several problems of practical interest, we will simply set up and 
solve the equations of motion with some arbitrary values for system parameter, and won’t attempt to 
explore their behavior in detail.   More detailed discussions of the behavior of dynamical systems will 
follow in later chapters. 



 
Example 1: Trajectory of a particle near the earth’s surface (no air resistance) 
 
 
At time t=0, a projectile with mass m is launched from a 
position 0 X Y Z= + +X i j k  with initial velocity vector  

0 x y zV V V= + +V i j k .  Calculate its trajectory as a function 
of time. 
 
 
1. Introduce variables to describe the motion: We can 
simply use the Cartesian coordinates of the particle  ( ( ), ( ), ( ))x t y t z t  
 
2. Write down the position vector in terms of these variables: ( ) ( ) ( )x t y t z t= + +r i j k  
 
3. Differentiate the position vector with respect to time to find the acceleration. For this example, this is 
trivial 

2 2 2

2 2 2

dx dy dz d x d y d z
dt dt dt dt dt dt

= + + = + +v i j k a i j k  

 
4. Draw a free body diagram.  The only force acting on the particle is gravity – the 
free body diagram is shown in the figure.  The force vector follows as mg= −F k . 
 
 
5. Write down Newton’s laws of motion. This is easy  

2 2 2

2 2 2

d x d y d zm mg m
dt dt dt

 
= ⇒ − = + + 

 
F a k i j k  

The vector equation actually represents three separate differential equations of motion 
2 2 2

2 2 20 0d x d y d z g
dt dt dt

= = = −  

 
6. Eliminate reactions – this is not needed in this example. 
 
7. Identify initial conditions.  The initial conditions were given in this problem – we have that 

0 0 0x y z
dx dy dzx X V y Y V z Z V
dt dt dt

     = = = = = =     
     

 

 
8. Solve the equations of motion.  In general we will use MAPLE or matlab to do the rather tedious 
algebra necessary to solve the equations of motion.  Here, however, we will integrate the equations by 
hand, just to show that there is no magic in MAPLE. 
 
The equations of motion are 

2 2 2

2 2 20 0d x d y d z g
dt dt dt

= = = −  

It is a bit easier to see how to solve these if we define 
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x y z
dx dy dzv v v
dt dt dt

= = =  

The equation of motion can be re-written in terms of ( , , )x y zv v v  as 

0 0yx z
dvdv dv g

dt dt dt
= = = −  

We can separate variables and integrate, using the initial conditions as limits of integration 

0 0 0

0 0
yx z

x y z

vv vt t t

x x z
V V V

x x y y z z

dv dt dv dt dv gdt

v V v V v V gt

= = = −

= = = −

∫ ∫ ∫ ∫ ∫ ∫  

Now we can re-write the velocity components in terms of (x,y,z) as 

x y z
dx dy dzV V V gt
dt dy dt

= = = −  

Again, we can separate variables and integrate 

( )
0 0 00 0 0

2
0 0 0

1
2

yx t t z t

x y z
X Y Z

x y z

dx V dt dy V dt dz V gt dt

x X V t y Y V t z Z V t gt

= = = −

= + = + = + −

∫ ∫ ∫ ∫ ∫ ∫
 

so the position and velocity vectors are 

( ) ( )
( )

21
2x y z

x y z

X V t Y V t Z V t gt

V V V gt

 = + + + + + − 
 

= + + −

r i j k

v i j k
 

 
 
Applications of trajectory problems: It is traditional in elementary physics and dynamics courses to 
solve vast numbers of problems involving particle trajectories.   These invariably involve being given 
some information about the trajectory, which you must then use to work out something else.  These 
problems are all somewhat tedious, but we will show a couple of examples to uphold the fine traditions of 
a 19th century education.  
 
 Estimate how far you could throw a stone from the top 
of the Kremlin palace.   
 
Note that 

1. The horizontal and vertical components of 
velocity at time t=0 follow as 

0 0cos 0 sinx y zV v V V vθ θ= = =  
2. The components of the position of the particle 

at time t=0 are  0, 0,X Y Z H= = =  
3. The trajectory of the particle follows as 

( ) 2
0 0

1cos sin
2

v t H v t gtθ θ = + + − 
 

r i k  

4. When the particle hits the ground, its position vector is D=r i .  This must be on the trajectory, so 

D
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v0

i

k

θ



( ) 2
0 0

1cos sin
2I I Iv t H v t gt Dθ θ + + − = 

 
i k i  

where It  is the time of impact.    
5. The two components of this vector equation gives us two equations for the two unknowns 

{ , }It D , which can be solved 

clear all 
syms v0 theta tI g D H real 
eq1 = v0*cos(theta)*tI==D; 
eq2 = H+v0*sin(theta)*tI - g*tI^2/2; 
[D,tI] = solve([eq1,eq2],[D,tI]); 
D = simplify(D) 

 
For a rough estimate of the distance we can use the following numbers 

1. Height of Kremlin palace – 71m 
2. Throwing velocity – maybe 25mph?  (pretty pathetic, I know - you can probably do better, 

especially if you are on the baseball/softball teams).   
3. Throwing angle – 45 degrees. 

Substituting numbers gives 36m (118ft).  
If you want to go wild, you can maximize D with respect to θ , but this won’t improve your estimate 
much. 
 
Silicon nanoparticles with radius 20nm are in thermal motion near a flat surface.  At the surface, 
they have an average velocity 2 /kT m , where m is their mass, T is the 
temperature and k=1.3806503 × 10-23  is the Boltzmann constant. Estimate the 
maximum height above the surface that a typical particle can reach during its 
thermal motion, assuming that the only force acting on the particles is gravity 
 

1. The particle will reach its maximum height if it happens to be traveling 
vertically, and does not collide with any other particles. 

2. At time t=0 such a particle has position 0, 0, 0X Y Z= = =  and velocity 
0 0 2 /x y zV V V kT m= = =  

3. For time t>0 the position vector of the particle follows as 

( ) 212 /
2

kT m t gt = − 
 

r k  

Its velocity is 

( )2 /kT m gt= −v k  

4. When the particle reaches its maximum height, its velocity must be equal to zero (if you don’t see 
this by visualizing the motion of the particle, you can use the mathematical statement that if  



y=r k  is a maximum, then / ( / ) 0d dt dy dt= = =r v k ).  Therefore, at the instant of maximum 

height ( )max2 /kT m gt= − =v k 0  

5. This shows that the instant of max height occurs at time ( )max 2 / /t kT m g=  

6. Substituting this time back into the position vector shows that the position vector at max height is 
2 1 2

2
kT kT kT

mg mg mg
 

= − = 
 

r k k  

7. Si has a density of about 2330 kg/m^3. At room temperature (293K) we find that the distance is 
surprisingly large: 10mm or so.   Gravity is a very weak force at the nano-scale – surface forces 
acting between the particles, and the particles and the surface, are much larger.   

 
Example 2: Free vibration of a suspension system. 
 
A vehicle suspension can be idealized as a mass m supported by a spring.  The 
spring has stiffness k and un-stretched length 0L .  To test the suspension, the 
vehicle is constrained to move vertically, as shown in the figure. It is set in 
motion by stretching the spring to a length L  and then releasing it (from rest).  
Find an expression for the motion of the vehicle after it is released. 
 
As an aside, it is worth noting that a particle idealization is usually too crude to 
model a vehicle – a rigid body approximation is much better.  In this case, however, we assume that the 
vehicle does not rotate. Under these conditions the equations of motion for a rigid body reduce to 

m=F a  and =M 0 , and we shall find that we can analyze the system as if it were a particle. 
 
 
1. Introduce variables to describe the motion: The length of the spring ( )x t  is a convenient way to 
describe motion.   
 
2. Write down the position vector in terms of these variables:  We can take the origin at O as shown in 
the figure.  The position vector of the center of mass of the block is then 

( )
2
bx t = +  

r j  

 
3. Differentiate the position vector with respect to time to find the acceleration. For this example, this is 
trivial 

2

2

dx d x
dt dt

= =v j a j  

 
4. Draw a free body diagram.  The free body diagram is shown in the figure: 
the mass is subjected to the following forces 

• Gravity, acting at the center of mass of the vehicle 
• The force due to the spring 
• Reaction forces at each of the rollers that force the vehicle to move 

vertically. 
Recall the spring force law, which says that the forces exerted by a spring act parallel to its length, tend to 
shorten the spring, and are proportional to the difference between the length of the spring and its un-
stretched length.   

x(t)k,L0

m i
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5. Write down Newton’s laws of motion. This is easy  

( )
2

0 2( ) ( )Ax Bx
d xm R R mg k x L m
dt

= ⇒ + − + − =F a i j j  

The i and j components give two scalar equations of motion 

2
02

( ) 0

( )

Ax BxR R

d x kg x L
mdt

+ =

 = − + − 
 

 

6. Eliminate reactions – this is not needed in this example.  
 
7. Identify initial conditions.  The initial conditions were given in this problem – at time t=0, we know 
that x L=  and / 0dx dt =  
 
8. Solve the equations of motion. Again, we will first integrate the equations of motion by hand, and then 
repeat the calculation with Matlab.  The equation of motion is 

2
02 ( )d x kg x L

mdt
 = − + − 
 

 

We can re-write this in terms of  

x
dx v
dt

=  

This gives 

0( )x x x
x

dv dv dvdx kv g x L
dt dx dt dx m

 = = = − + − 
 

 

We can separate variables and integrate 

( )

0
0

2 2 2
0

2 2

0 0

( )

1 ( ) ( )
2 2

xv x

x x
L

x

x

kv dv g x L dx
m

k kv g x L x L L x L
m m

k mg mgv L L x L
m k k

 = − + − 
 

⇒ = − − − − + −

     ⇒ = − + − − +   
     

∫ ∫

 

Don’t worry if the last line looks mysterious – writing the solution in this form just makes the algebra a 
bit simpler.  We can now integrate the velocity to find x 

2 2

0 0

2 2 0
0 0

x

x t

L

dx k mg mgv L L x L
dt m k k

dx dt
k mg mgL L x L
m k k

     = = − + − − +   
     

⇒ =
    − + − − +    
     

∫ ∫
 

The integral on the left can be evaluated using the substitution  



( )
( )

0

0

/
cos

/
x L mg k
L L mg k

θ
− +

=
− +

 

so that 

( )
( )

( )
( )

( )

0
01

0
2 00 0

0

0

0

0 0

/sin cos
/

1 cos

/
cos

/

/ cos /

t x L mg kd dt
L L mg kk

m
kt
m

x L mg k kt
L L mg k m

kx L L mg k t L mg k
m

θ
θ θ θ

θ

θ

− − +−
= =

− + − 

⇒ = −

 − +
⇒ = −  − +  

 
⇒ = − + − + −  

 

∫ ∫

 

Here’s the Matlab solution 
clear all 
syms g k m L L0 real 
assume(k>0); assume(m>0); 
syms x(t) v(t) 
eq = diff(x(t),t,2) == -(g+k*(x(t)-L0)/m); 
v(t) = diff(x(t),t); 
IC = [x(0)==L, v(0)==0]; 
x(t) = simplify(dsolve([eq,IC])) 

 
It doesn’t quite look the same as the hand calculation – but of course cos cos( )θ θ= −  so they really are 
the same. 
 
The solution is plotted in the figure.  The behavior of vibrating 
systems will be discussed in more detail later in this course, but it 
is worth noting some features of the solution: 

1. The average position of the mass is 0 /x L mg k= − .  
Here, mg/k is the static deflection of the spring i.e. the 
deflection of the spring due to the weight of the vehicle 
(without motion). This means that the car vibrates 
symmetrically about its static deflection.  

2. The amplitude of vibration is 0 /L L mg k− + .  This 
corresponds to the distance of the mass above its average 
position at time t=0. 

3. The period of oscillation (the time taken for one 
complete cycle of vibration) is 2 /T m kπ=  



4. The frequency of oscillation (the number of cycles per second) is 1
2

kf
mπ

=  (note f=1/T).  

Frequency is also sometimes quoted as angular frequency, which is related to f  by 
2 /f k mω π= = .  Angular frequency is in radians per second. 

 
An interesting feature of these results is that the static deflection is related to the frequency of oscillation - 
so if you measure the static deflection /mg kδ = , you can calculate the (angular) vibration frequency as 

/gω δ=  
 
 
 
Example 3: Silly FE exam problem 
 
This example shows how polar coordinates can be used to 
analyze motion.   
 
The rod shown in the picture rotates at constant angular speed 
in the horizontal plane.  The interface between block and rod 
has friction coefficient µ .  The rod pushes a block of mass m, 
which starts at r=0 with radial speed V.   Find an expression 
for r(t). 
 
 

1. Introduce variables to describe the motion – the polar coordinates ,r θ  work for this problem 
 
2. Write down the position vector and differentiate to find acceleration – we don’t need to do 

this – we can just write down the standard result for polar coordinates 
2

2
2

2r
d r drr

dtdt
θω ω

 
= − +  

 
a e e  

 
3. Draw a free body diagram – shown in the figure – note that it is 

important to draw the friction force in the correct direction.  The block 
will slide radially outwards, and friction opposes the slip. 

 
4. Write down Newton’s law 

 
2

2
2

2r r
d r drT N m r

dtdt
θ θω ω

   − + = − +      
e e e e  

 
5. Eliminate reactions  

 
The θe  component of F=ma shows that  

2 drN
dt

ω=  

θ
r

ω i
j

er
eθL

T
N

e
er

θ



The friction law gives T Nµ= .  Substituting this into the re  component of F=ma and 
simplifying shows that 
 

2
2

2 2 0d r dr r
dtdt

µω ω+ − =  

 
6. Identify initial conditions Here, r=0  dr/dt=V at time t=0. 
 
7. Solve the equation: If you’ve taken AM33 you will know how to solve this equation…   If not 

you can use Matlab: 
 

clear all 
syms mu omega V0 real 
syms r(t) v(t) 
diffeq = diff(r(t),t,2) + 2*mu*omega*diff(r(t),t) - r(t)*omega^2 ==0; 
v(t) = diff(r(t),t); 
IC = [r(0)==0,v(0)==V0]; 
r(t) = simplify(dsolve(diffeq,IC)) 

 
This can be simplified slightly by hand: 

2
2

( ) sinh( 1 )
1

tVr t e tµω µ ω
ω µ

−= +
+

 

 
 
 
3.3.3 Numerical solutions to equations of motion using MATLAB 
 
In the preceding section, we were able to solve all our equations of motion exactly, and hence to find 
formulas that describe the motion of the system.  This should give you a warm and fuzzy feeling – it 
appears that with very little work, you can predict everything about the motion of the system.  You may 
even have visions of running a consulting business from your yacht in the Caribbean, with nothing more 
than your chef, your masseur (or masseuse) and a laptop with a copy of MAPLE. 
 
Unfortunately real life is not so simple.   Equations of motion for most engineering systems cannot be 
solved exactly.  Even very simple problems, such as calculating the effects of air resistance on the 
trajectory of a particle, cannot be solved exactly. 
 
For nearly all practical problems, the equations of motion need to be solved numerically, by using a 
computer to calculate values for the position, velocity and acceleration of the system as functions of time. 
Vast numbers of computer programs have been written for this purpose – some focus on very specialized 
applications, such as calculating orbits for spacecraft (STK); calculating motion of atoms in a material 
(LAMMPS); solving fluid flow problems (e.g. fluent, CFDRC); or analyzing deformation in solids (e.g. 
ABAQUS, ANSYS, NASTRAN, DYNA); others are more general purpose equation solving programs. 
 



In this course we will use a general purpose program called MATLAB, which is widely used in all 
engineering applications.  You should complete the MATLAB tutorial before proceeding any further. 
 
In the remainder of this section, we provide a number of examples that illustrate how MATLAB can be 
used to solve dynamics problems.   Each example illustrates one or more important technique for setting 
up or solving equations of motion. 
 
 
 
Example 1: Trajectory of a particle near the earth’s surface (with air resistance) 
 
As a simple example we set up MATLAB to solve the 
particle trajectory problem discussed in the preceding 
section.  We will extend the calculation to account for the 
effects of air resistance, however.   We will assume that our 
projectile is spherical, with diameter D, and we will assume 
that there is no wind.  You may find it helpful to review the 
discussion of aerodynamic drag forces in Section 2.1.7 
before proceeding with this example. 
 
1. Introduce variables to describe the motion: We can 
simply use the Cartesian coordinates of the particle  ( ( ), ( ), ( ))x t y t z t  
 
2. Write down the position vector in terms of these variables: ( ) ( ) ( )x t y t z t= + +r i j k  
 
3. Differentiate the position vector with respect to time to find the acceleration. Simple calculus gives 
 

2 2 2

2 2 2

dx dy dz d x d y d z
dt dt dt dt dt dt

= + + = + +v i j k a i j k  

 
4. Draw a free body diagram.  The particle is now subjected to two forces, as shown in the picture. 
 
Gravity – as always we have g mg= −F k . 
   
 
Air resistance.   

 

The magnitude of the air drag force is given by 21
2D DF C DVρ= , where 

•  ρ  is the air density,  
• DC  is the drag coefficient, 
• D is the projectile’s diameter, and 
• V  is the magnitude of the projectile’s velocity relative to the air. Since we assumed the air is 

stationary, V is simply the magnitude of the particle’s velocity, i.e. 
2 2 2dx dy dzV

dt dt dt
     = + +     
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The Direction of the air drag force is always opposite to the direction of motion of the projectile 
through the air.  In this case the air is stationary, so the drag force is simply opposite to the direction 
of the particle’s velocity.   Note that / Vv  is a unit vector parallel to the particle’s velocity.  The drag 
force vector is therefore 

2 2
21 1

2 4 2 4D D D
D D dx dy dzC V C V

V dt dt dt
π πρ ρ  = − = − + + 

 

vF i j k  

 
The total force vector is therefore 

21
2 4D

D dx dy dzmg C V
dt dt dt

πρ  = − − + + 
 

F k i j k  

 
 
5. Write down Newton’s laws of motion.  

2 2 2 2

2 2 2

1
2 4D

D dx dy dz d x d y d zm mg C V m
dt dt dt dt dt dt

πρ
  = ⇒ − − + + = + +  

   
F a k i j k i j k  

It is helpful to simplify the equation by defining a specific drag coefficient 2

8 Dc D C
m
π ρ= , so that 

2 2 2

2 2 2

dx dy dz d x d y d zg cV
dt dt dt dt dt dt

  − − + + = + +  
   

k i j k i j k  

The vector equation actually represents three separate differential equations of motion 
2 2 2

2 2 2

d x dx d y dy d z dzcV cV g cV
dt dt dt dt dt dt

= − = − = − −  

 
6. Eliminate reactions – this is not needed in this example. 
 
7. Identify initial conditions.  The initial conditions were given in this problem - we have that 

0 0 0x y z
dx dy dzx X V y Y V z Z V
dt dt dt

     = = = = = =     
     

 

 
8. Solve the equations of motion.  We can’t use the magic ‘dsolve’ command in MAPLE to solve this 
equation – it has no known exact solution.  So instead, we use MATLAB to generate a numerical 
solution. 
 
This takes two steps.  First, we must turn the equations of motion into a form that MATLAB can use.  
This means we must convert the equations into first-order vector valued differential equation of the 

general form ( , )d f t
dt

=
y y .  Then, we must write a MATLAB script to integrate the equations of motion. 

 
Converting the equations of motion:  We can’t solve directly for (x,y,z), because these variables get 
differentiated more than once with respect to time.   To fix this, we introduce the time derivatives of 
(x,y,z) as new unknown variables.   In other words, we will solve for ( , , , , , )x y zx y z v v v , where 

x y z
dx dx dxv v v
dt dt dt

= = =  



These definitions are three new equations of motion relating our unknown variables.   In addition, we can 
re-write our original equations of motion as 

yx z
x y z

dvdv dvcVv cVv g cVv
dt dt dt

= − = − = − −  

So, expressed as a vector valued differential equation, our equations of motion are 
x

y

z

x x

y y

z z

vx
vy

z vd
v cVvdt
v cVv
v g cVv

  
  
  
  
 = 

−  
   −  
   − −   

 

 
MATLAB script.  The procedure for solving these equations is discussed in the MATLAB tutorial.  A 
basic MATLAB script is listed below. 
 
function trajectory_3d 

% Function to plot trajectory of a projectile  
% launched from position X0 with velocity V0 
% with specific air drag coefficient c 
% stop_time specifies the end of the calculation 
  
g = 9.81; % gravitational accel 
c=0.5; % The constant c 
X0=0; Y0=0; Z0=0; % The initial position 
VX0=10; VY0=10; VZ0=20; 
stop_time = 5; 
 
initial_w = [X0,Y0,Z0,VX0,VY0,VZ0]; % The solution at t=0 
  
[times,sols] = ode45(@(t,w) eom(t,w,c,g),[0,stop_time],initial_w); 
  
plot3(sols(:,1),sols(:,2),sols(:,3)) % Plot the trajectory 
 

end 
function dwdt = eom(t,w,c,g) 

% Variables stored as follows w = [x,y,z,vx,vy,vz] 
% i.e. x = w(1), y=w(2), z=w(3), etc 
   x = w(1); y=w(2); z=w(3); 
   vx = w(4); vy = w(5); vz = w(6); 
   vmag = sqrt(vx^2+vy^2+vz^2); 
   dxdt = vx; dydt = vy; dzdt = vz; 
   dvxdt = -c*vmag*vx; 
   dvydt = -c*vmag*vy; 
   dvzdt = -c*vmag*vz-g; 
   dwdt = [dxdt;dydt;dzdt;dvxdt;dvydt;dvzdt]; 

end 
 
 
This produces a plot that looks like this (the plot’s been edited to add the grid,etc) 
 



 
 
Example 2: Simple satellite orbit calculation 
 
The figure shows satellite with mass m orbiting a planet with 
mass M.  At time t=0 the satellite has position vector R=r i  
and velocity vector V=v j .  The planet’s motion may be 
neglected (this is accurate as long as M>>m). Calculate and 
plot the orbit of the satellite. 
 
1. Introduce variables to describe the motion: We will use 
the (x,y) coordinates of the satellite. 
 
2. Write down the position vector in terms of these variables: x y= +r i j  
 
3. Differentiate the position vector with respect to time to find the acceleration.  

2 2

2 2

dx dy d x d y
dt dt dt dt

= + = +v i j a i j  

 
 

4. Draw a free body diagram.  The satellite is subjected to a gravitational 
force. 

The magnitude of the force is 2g
GMmF

r
= , where  

• G  is the gravitational constant, and 

• 2 2r x y= +  is the distance between the planet and the satellite 
 
The direction of the force is always towards the origin:  / r−r  is therefore a unit vector parallel to the 
direction of the force.   The total force acting on the satellite is therefore 

( )2 3
GMm GMm x y

rr r
= − = − +

rF i j  

 
5. Write down Newton’s laws of motion.  

i

j

m
M

V
R

i

j
Fg



( )
2 2

3 2 2

GMm d x d ym x y m
r dt dt

 
= ⇒ − + = + 

 
F a i j i j  

The vector equation represents two separate differential equations of motion 
2 2

2 3 2 3

d x GM d y GMx y
dt r dt r

= − = −  

 
6. Eliminate reactions – this is not needed in this example. 
 
7. Identify initial conditions.  The initial conditions were given in this problem - we have that 

0 0dx dyx R y V
dt dt

   = = = =   
   

 

 
8. Solve the equations of motion.  We follow the usual procedure: (i) convert the equations into 
MATLAB form; and (ii) code a MATLAB script to solve them. 
 
Converting the equations of motion:  We introduce the time derivatives of (x,y) as new unknown 
variables.   In other words, we will solve for ( , , , )x yx y v v , where 

x y
dx dxv v
dt dt

= =  

These definitions are new equations of motion relating our unknown variables.   In addition, we can re-
write our original equations of motion as 

3 3
yx dvdv GM GMx y

dt dtr r
= − = −  

So, expressed as a vector valued differential equation, our equations of motion are 

3

3

/

/

x

y

x

y

vx
vyd

vdt GMx r
v GMy r

  
  
   =    −  
    − 

 

 
Matlab script: Here’s a simple script to solve these equations. 
 

function satellite_orbit 
% Function to plot orbit of a satellite  
% launched from position (R,0) with velocity (0,V) 
  
GM=1; 
R=1; 
V=1; 
Time=100; 
w0 = [R,0,0,V]; % Initial conditions 
  
[t_values,w_values] = ode45(@(t,w) odefunc(t,w,GM),[0,time],w0); 
  
plot(w_values(:,1),w_values(:,2)) 
  
 



end 
function dwdt = odefunc(t,w,GM) 
   x=w(1); y=w(2); vx=w(3); vy=w(4); 
   r = sqrt(x^2+y^2); 
   dwdt = [vx;vy;-GM*x/r^3;-GM*y/r^3]; 
end 
  

 
Running the script produces the result shown (the plot was annotated by 
hand) 
 
Do we believe this result?   It is a bit surprising – the satellite seems to be 
spiraling in towards the planet.   Most satellites don’t do this – so the 
result is a bit suspicious.   The First Law of Scientific Computing states 
that ` if a computer simulation predicts a result that surprises you, it is 
probably wrong.’ 
So how can we test our computation?   There are two good tests: 

1. Look for any features in the simulation that you can predict 
without computation, and compare your predictions with those of 
the computer. 

2. Try to find a special choice of system parameters for which you can derive an exact solution to 
your problem, and compare your result with the computer 

We can use both these checks here. 
 
1. Conserved quantities  For this particular problem, we know that (i) the total energy of the system 
should be constant; and (ii) the angular momentum of the system about the planet should be constant 
(these conservation laws will be discussed in the next chapter – for now, just take this as given).  The total 
energy of the system consists of the potential energy and kinetic energy of the satellite, and can be 
calculated from the formula 

( )
( )

2 2 2

2 2

1 1
2 2

1
2

x y

x y

GMm GMmE mv m v v
r r

E GM v v
m r

= − + = − + +

⇒ = − + +
 

The total angular momentum of the satellite (about the origin) can be calculated from the formula 
( ) ( )

( )

( )x y y x

y x

m x y m v v m xv yv

xv yv
m

= × = + × + = −

⇒ = −

H r v i j i j k

H  

(If you don’t know these formulas, don’t panic – we will discuss energy and angular momentum in the 
next part of the course) 
 
We can have MATLAB plot E/m and / mH , and see if these are really conserved.  The energy and 
momentum can be calculated by adding these lines to the MATLAB script 
 
 
for i =1:length(t) 
     r = sqrt(w_values(i,1)^2 + w_values(i,2)^2) 
     vmag = sqrt(w_values(i,1)^2 + w_values(i,2)^2) 

energy(i) = -GM/r + vmag^2/2; 
angularm(i) = w_values(i,1)*w_values(i,4)-w_values(i,2)*w_values(i,3); 

end 



 
You can then plot the results (e.g. plot(t_values,energy)).  The results are shown below.  

 
These results look really bad – neither energy, nor angular momentum, are conserved in the simulation.  
Something is clearly very badly wrong. 
 
Comparison to exact solution: It is not always possible to find a 
convenient exact solution, but in this case, we might guess that some 
special initial conditions could set the satellite moving on a circular path.  
A circular path might be simple enough to analyze by hand.  So let’s 
assume that the path is circular, and try to find the necessary initial 
conditions. If you still remember the circular motion formulas, you could 
use them to do this.  But only morons use formulas – here we will derive 
the solution from scratch. Note that, for a circular path 

(a) the particle’s radius r=constant.  In fact, we know r=R, from the 
position at time t=0.  
(b) The satellite must move at constant speed, and the angle θ  must increase linearly with time, 
i.e. tθ ω=  where θ ω=  is a constant (see section 3.1.3 to review motion at constant speed 
around a circle). 

With this information we can solve the equations of motion.   Recall that the position, velocity and 
acceleration vectors for a particle traveling at constant speed around a circle are  

( )2

cos ( ) sin ( )
( sin ( ) cos ( ) )

cos ( ) sin ( )

R t R t
R t t
R t R t

θ θ
ω θ θ

ω θ θ

= +
= − +

= − +

r i j
v i j
a i j

 

We know that V=v  from the initial conditions, and v  is constant. This tells us that 
V Rω=  

Finally, we can substitute this into Newton’s law 
2

2 2 (cos sin ) (cos sin )GMm GMm Vm m m
R RR R

θ θ θ θ= ⇒ − = ⇒ − + = − +
rF a a i j i j  

Both components of the equation of motion are satisfied if we choose 
2

2
GM V

RR
=  

So, if we choose initial values of , ,GM V R  satisfying this equation, the orbit will be circular.  In fact, our 
original choice, 1, 1, 1GM V R= = =  should have given a circular orbit.  It did not.  Again, this means our 
computer generated solution is totally wrong. 
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Fixing the problem:  In general, when computer predictions are 
suspect, we need to check the following 

1. Is there an error in our MATLAB program?  This is nearly 
always the cause of the problem.  In this case, however, the 
program is correct (it’s too simple to get wrong, even for me). 

2. There may be something wrong with our equations of motion 
(because we made a mistake in the derivation).  This would not 
explain the discrepancy between the circular orbit we predict 
and the simulation, since we used the same equations in both 
cases. 

3. Is the MATLAB solution sufficiently accurate?  Remember that 
by default the ODE solver tries to give a solution that has 0.1% 
error.  This may not be good enough.  So we can try solving the 
problem again, but with better accuracy.  We can do this by modifying the MATLAB call to the 
equation solver as follows 

      options = odeset('RelTol',0.00001); 
      [t_values,w_vlues] = ode45(@(t,w) odefunc(t,w,GM),[0,time],w0,options); 

4. Is there some feature of the equation of motion that makes them especially difficult to solve? In 
this case we might have to try a different equation solver, or try a different way to set up the 
problem.  

 
The figure on the right shows the orbit predicted with the better accuracy.  You can see there is no longer 
any problem – the orbit is perfectly circular.   The figures below plot the energy and angular momentum 
predicted by the computer. 

  
There is a small change in energy and angular momentum but the rate of change has been reduced 
dramatically.   We can make the error smaller still by using improving the tolerances further, if this is 
needed.  But the changes in energy and angular momentum are only of order 0.01% over a large number 
of orbits: this would be sufficiently accurate for most practical applications. 
 
Most ODE solvers are purposely designed to lose a small amount of energy as the simulation proceeds, 
because this helps to make them more stable.  But in some applications this is unacceptable – for example 
in a molecular dynamic simulation where we are trying to predict the entropic response of a polymer, or a 
free vibration problem where we need to run the simulation for an extended period of time.  There are 
special ODE solvers that will conserve energy exactly. 
 
 
 



Example 3: Earthquake response of a 2-storey building 
 
The figure shows a very simple idealization of a 2-storey building.   The 
roof and second floor are idealized as blocks with mass m.  They are 
supported by structural columns, which can be idealized as springs with 
stiffness k and unstretched length L.   At time t=0 the floors are at rest 
and the columns have lengths 1 2/ / 2l L mg k l L mg k= − = −  (can 
you show this?).  We will neglect the thickness of the floors themselves, 
to keep things simple. 
 
For time t>0, an earthquake makes the ground vibrate vertically. The 
ground motion can be described using the equation 0 sind d tω= .  
Horizontal motion may be neglected. Our goal is to calculate the motion of the first and second floor of 
the building. 
It is worth noting a few points about this problem: 

1. You may be skeptical that the floor of a building can be idealized as a particle (then again, maybe 
you couldn’t care less…).    If so, you are right – it certainly is not a `small’ object.   However, 
because the floors move vertically without rotation, the rigid body equations of motion simply 
reduce to  m=F a  and M=0, where the moments are taken about the center of mass of the block.  
The floors behave as though they are particles, even though they are very large. 

2. Real earthquakes involve predominantly horizontal, not vertical motion of the ground.  In 
addition, structural columns resist extensional loading much more strongly than transverse 
loading.  So we should really be analyzing horizontal motion of the building rather than vertical 
motion.  However, the free body diagrams for horizontal motion are messy (see if you can draw 
them) and the equations of motion for vertical and horizontal motion turn out to be the same, so 
we consider vertical motion to keep things simple. 

3. This problem could be solved analytically (e.g. using the `dsolve’ feature of MAPLE) – a 
numerical solution is not necessary.  Try this for yourself. 

 
1. Introduce variables to describe the motion: We will use the height of each floor 1 2( , )y y  as the 
variables. 
 
2. Write down the position vector in terms of these variables: We now have to worry about two masses, 
and must write down the position vector of both 

1 1 2 2y y= =r j r j  
Note that we must measure the position of each mass from a fixed point. 
 
 
 
3. Differentiate the position vector with respect to time to find the acceleration.  

2
1 1

1 1 2

2
2 2

2 2 2

dy dy
dt dt

dy dy
dt dt

    = =      
    = =      

v j a j

v j a j

 

 
4. Draw a free body diagram. We must draw a free body diagram for each mass. The resultant force 
acting on the bottom and top masses, respectively, are 

d0sinω t

k

m

l1

l2

k

k k
m

y1
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   { }1 1 2 2 22 ( ) 2 ( ) 2 ( )mg k l L k l L mg k l L= − − − + − = − − −F j F j  
  
We will have to find the spring lengths 1 2,l l  in terms of our coordinates 1 2,y y  
to solve the problem.   Geometry shows that 

2 2 1 1 1 0 sinl y y l y d tω= − = −  
 
5. Write down Newton’s laws of motion.  F=ma for each mass gives 

{ }

{ }

2
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1 2 2

2
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2 ( ) 2 ( )

2 ( )

d y
mg k l L k l L m

dt
d y

mg k l L m
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j j
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This is two equations of motion – we can substitute for 1 2,l l  and rearrange them as 
2
1

1 0 2 12

2
2

2 12

2 ( sin ) 2 ( )

2 ( )

dy k kg y d t L y y L
m mdt

dy kg y y L
mdt

ω = − − − − + − − 
 

 = − − − − 
 

 

 
6. Eliminate reactions – this is not needed in this example. 
 
7. Identify initial conditions. We know that, at time t=0 

1 2
1 2/ 0 2 3 / 2 0

dy dy
y L mg k y L mg k

dt dt
= − = = − =  

 
8. Solve the equations of motion. We need to (i) reduce the equations to the standard MATLAB form and 
(ii) write a MATLAB script to solve them. 
 
Converting the equations.  We now need to do two things: (a) remove the second derivatives with respect 
to time, by introducing new variables; and (b) rearrange the equations into the form / ( , )d dt t=y f y .  We 

remove the derivatives by introducing 1 2
1 2

dl dlv v
dt dt

= =  as additional unknown variables, in the usual 

way.   Our equations of motion can then be expressed as 
1

1

2
2
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dy
v

dt
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v
dt

dv k kg y d t L y y L
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mdt
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 = − − − − 
 

 

 
We can now code MATLAB to solve these equations directly for dy/dt.  A script (which plots the 
position of each floor as a function of time) is shown below. 
 
 

mg

k(l2-L)

k(l1-L)

mg



function building 
% 
k=100; 
m=1; 
omega=9; 
d=0.1; 
L=10; 
time=20; 
g = 9.81; 
w0 = [L-m*g/k,2*L-3*m*g/(2*k),0,0]; 
[t_values,w_values] = ode45(@(t,w) eom(k,m,L,d,omega,g),[0,time],w0); 
plot(t_values,w_values(:,1:2)); 

end 
function dwdt = eom(t,w,k,m,L,d,omega,g) 
      y1=w(1); 
      y2=w(2); 
     v1=w(3); 
     v2=w(4); 

 
      dwdt = [v1;v2;... 
     -2*k*(y1-d*sin(omega*t)-L)/m+2*k*(y2-y1-L)/m;... 

    -g-2*k*(y2-y1-L)/m]; 
end 
 
 
The figures below plot the height of each floor as a function of time, for various earthquake frequencies.  
For special earthquake frequencies (near the two resonant frequencies of the structure) the building 
vibrations are very severe.   As long as the structure is designed so that its resonant frequencies are well 
away from the frequency of a typical earthquake, it will be safe. 
 
We will discuss vibrations in much more detail later in this course. 

           



          
 
 
 
Final remark: we made this calculation a bit more complicated than necessary by solving for the heights 

1 2,y y  .    It is better to solve for the deflections of the floors instead of their heights.   Define 

1 1 2 2( / ) (2 3 / 2 )z y L mg k z y L mg k= − − = − −  
If we substitute for 1 2,y y  in our equations we find that 
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=
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These are a lot simpler, and more importantly, tell us that the motion of the system does not 
depend on the spring length L or gravity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.4 Summary of main equations and definitions 
 
 
Position-velocity-acceleration relations in a Cartesian Frame 
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The direction of the velocity vector is tangent to its path. 

The magnitude of the velocity vector 2 2 2
x y zv v v+ +  is the distance traveled along the path per  

unit time (speed). 
 
A unit vector tangent to the path can be found as 

2 2 2

( ) ( ) ( )x y z

x y z

v t v t v t

v v v

+ +
=

+ +
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t  

 
Straight line motion with constant acceleration 
 

( )2
0 0 0

1
2

X V t at V at a = + + = + =  
r i v i a i  

Here, a is the (constant) acceleration; 0 0,X V  are the position and speed at time t=0. 
 
 
Straight line motion with time/position dependent acceleration 
 

Acceleration given as a function of time: 0 0
0 0

( ) ( )
t t

X v t dt V a t dt
   
   = + = +
   
   

∫ ∫r i v i  

Acceleration given as a function of position 
0
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V
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Separation of variables for one-dimensional motion 
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Simple Harmonic Motion                
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Circular Motion at Constant Speed 
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General Circular Motion 
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Note that the straight-line motion relations can be used to relate , ,θ ω α , by exchanging 

, ,x v aθ ω α→ → →  
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Motion along an arbitrary path in normal-tangential coordinates 
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Position-velocity-acceleration relations in polar-coordinates 
 

2 2 1

cos sin sin cos
cos sin sin cos

cos sin

tan /

r

r r
x r y r

r x y y x

θ

θ θ

θ θ θ θ
θ θ θ θ

θ θ

θ −

= + = − +

= − = +

= =

= + =

e i j e i j
i e e j e e

 

 
 

22 2

2 2 2

r

r

r

r
dr dr
dt dt

d r d d dr dr r
dt dt dtdt dt

θ

θ

θ

θ θ θ

=

= +

     = − + +         

r e

v e e

a e e

 

 
 
 

Newton’s laws 
 

For a particle m=F a  
 
For a rigid body moving without rotation or 
rotating at fixed angular rate about a fixed axis 

0C =M  (you must take moments about the 
center of mass) 
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Drawing free body diagrams: 
 

1. Decide which part of a system you will idealize as a particle (you may need more than one 
particle) 

2. Draw the part of the system you have idealized as a particle by itself (very important!).  It is 
important to make sure that your particle is isolated – it can’t be touching something else. 
You may need more than one drawing if you have more than one particle in your system.  

3. Draw on any of the following external forces that apply. Make sure you draw them acting in 
the correct direction, acting on the correct part of the body:  

a. gravity (at the COM);  
b. air resistance or lift forces (and sometimes moments) – various conventions are used 

to locate these forces but in this course we usually put them at the COM and neglect 
moments;  

c. Buoyancy forces (act at the COM of the displaced fluid) 
d. Electrostatic or electromagnetic forces 

4. Draw the forces exerted by springs attached to the particle.   It is best to assume that springs 
always pull on the point they are connected to, and that the magnitude of the force in the 
spring is 0( )sF k l l= − , where l is the length of the spring, and 0l is its unstretched length. 

5. Draw the forces exerted by dashpots or dampers (like springs, assume they pull on the object 
they are connected to, and exert a force magnitude /dF dl dtl=  where l is the length of the 
dashpot. 

6. Draw forces exerted by cables.  Cables always pull, and exert a force parallel to the direction 
of the cable.  The magnitude of the force has to be left as an unknown. 

7. Draw any unknown reaction forces, with the following rules: 
a. Reaction forces must act at any point on any point of the body that is touching 

something outside the particle (i.e. a part of your system that you did not include in 
your drawing in step 2).      

b. If the connection between the two touching objects prevents them from rotating with 
respect to one another (or, like a motor, makes them rotate with some controllable 
angular speed), you will need to draw both reaction forces and moments.  (Reaction 
moments do sometimes come up in dynamics problems, but they are not very 
common, so think carefully before including them). 

c.  If friction acts at the contact point, and you don’t know whether the two objects slide 
at the contact (or you know they do not slide), draw both a normal and a tangential 
force with unknown magnitudes N,T (or some suitable variable).  The direction of the 
friction force is not important.  DO NOT assume T Nµ= . 

d. If friction acts at the contact point, and you know the contact slips,  draw both a 
tangential and a normal force.  You must draw the tangential force so that it opposes 
the direction of sliding (ask a faculty member or TA if you don’t understand this).  If 
slip occurs you can assume T Nµ= . 

e. If the contact point is frictionless, draw only a normal force. 
f. If your particle is being touched by a two-force member (no, this is not a gender and 

sexuality class… a two force member is a massless rod, connected through freely 
rotating hinges at both ends.  A massless freely rotating wheel can also be idealized 
as a two-force member) you can assume the reaction force acts parallel to the two-
force member.  

g. If you have more than one particle in your system, make sure that any forces exerted 
by one particle on the other have equal and opposite reactions. 

 
 



Calculating unknown forces or accelerations using Newton’s laws: 
 

1. Decide how to idealize the system (what are the particles?) 
2. Draw a free body diagram showing the forces acting on each particle 
3. Consider the kinematics of the problem. The goal is to calculate the acceleration of each particle 

in the system – you may be able to start by writing down the position vector and differentiating it, 
or you may be able to relate the accelerations of two particles (eg if two particles move together, 
their accelerations must be equal). 

4. Write down F=ma for each particle. 
5. If you are solving a problem involving a massless frames (see, e.g. Example 3, involving a 

bicycle with negligible mass) you also need to write down C =M 0  about the particle. 
6. Solve the resulting equations for any unknown components of force or acceleration (this is just 

like a statics problem, except the right hand side is not zero). 
 
Problems like this will usually ask you to make some design prediction at the end, which might involve 
calculating critical conditions for something to slip, tip, break, etc. 

• At the onset of slip at a contact T Nµ=  
• At the critical point where an object tips over, a reaction force somewhere will go to zero.  You 

will have to identify where this point is, find the reaction force, and set it to zero. 
 
 
Deriving equations of motion for a system of particles 
 

1. Introduce a set of variables that can describe the motion of the system.  Don’t worry if this sounds 
vague – it will be clear what this means when we solve specific examples. 

2. Write down the position vector of each particle in the system in terms of these variables 
3. Differentiate the position vector(s), to calculate the velocity and acceleration of each particle in 

terms of your variables; 
4. Draw a free body diagram showing the forces acting on each particle.  You may need to introduce 

variables to describe reaction forces.  Write down the resultant force vector. 
5. Write down Newton’s law m=F a  for each particle.  This will generate up to 3 equations of 

motion (one for each vector component) for each particle. 
6. If you wish, you can eliminate any unknown reaction forces from Newton’s laws. If you are 

trying to solve the equations by hand, you should always do this; of you are using MATLAB, it’s 
not usually necessary – you can have MATLAB calculate the reactions for you. The result will be 
a set of differential equations for the variables defined in step (1) 

7. If you find you have fewer equations than unknown variables, you should look for any 
constraints that restrict the motion of the particles.  The constraints must be expressed in terms of 
the unknown accelerations. 

8. Identify the initial conditions for the variables defined in (1).  These are usually the values of the 
unknown variables, their time derivatives, at time t=0. If you happen to know the values of the 
variables at some other instant in time, you can use that too.   If you don’t know their values at 
all, you should just introduce new (unknown) variables to denote the initial conditions.  

9. Solve the differential equations, subject to the initial conditions. 
 
 
 
 
 
 



Trajectory equations for particle moving near earth’s 
surface with no air resistance 
 
 

0 0 0

0 0 0
0

x y z

X Y Z
td V V V

dt

= + + 
 =

= + + 

r i j k
r i j k

 

 

( ) ( )
( ) ( ) ( )

2
0 0 0 0 0 0

0 0 0

1
2x y z

x y z

X V t Y V t Z V t gt

V V V gt

g

 = + + + + + − 
 

= + + −

= −

r i j k

v i j k

a k
 

 
 
Solving differential equations with Matlab: 
 

Example: to solve 
2

2
2 2 0n n

d y dy y
dtdt

ζω ω+ + =  

with initial conditions 0 0
dyy y v
dt

= =  at time t=0 

clear all 
syms x(t) t omega_n zeta x0 v0 
diffeq = (1/omega_n^2)*diff(x(t),t,2) + 2*zeta/omega_n * diff(x(t),t) + x(t)==0 
Dx = diff(x) 
initial_condition = [x(0)==x0, Dx(0)==v0] 
x(t) = simplify(dsolve(diffeq,initial_condition)) 

 
 

Re-writing a second-order differential equation as a pair of first-order equations for 
MATLAB 
 

Example: to solve 
2

2
2 2 0n n

d y dy y
dtdt

ζω ω+ + =  

we introduce /v dy dt=  as an additional variable.   This new equation, together with the original 
ODE can then be written in the following form 

22 n n

vyd
vdt v yζω ω
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This is now in the form 
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as required. 
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