Chapter 6

Rigid Body Dynamics

 

6.1 Introduction

 

In practice, it is often not possible to idealize a system as a particle.   In this section, we construct a more sophisticated description of the world, in which objects rotate, in addition to translating.  This general branch of physics is called ‘Rigid Body Dynamics.’

 

Rigid body dynamics has many applications.   In vehicle dynamics, we are often more worried about controlling the orientation of our vehicle than its path MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  an aircraft must keep its shiny side up, and we don’t want a spacecraft tumbling uncontrollably.   Rigid body mechanics is used extensively to design power generation and transmission systems, from jet engines, to the internal combustion engine, to gearboxes.  A typical problem is to convert rotational motion to linear motion, and vice-versa. Rigid body motion is also of great interest to people who design prosthetic devices, implants, or coach athletes: here, the goal is to understand human motion, to protect athletes from injury or improve their performance, or to design devices that replicate the complicated motion of a human joint correctly.   For example, Professor Crisco’s orthopaedics lab at Brown studies human motion and the forces they generate at human joints, to help understand how injuries occur and how they can be prevented. 

 

The motion of a rigid body is often very counter-intuitive.   That’s why there are so many toys that exploit the properties of rigid bodies: the motion of a spinning top; a boomerang; the ‘rattleback’ and a Frisbee can all be explained using the equations derived in this section.

 

Here is a quick outline of how we analyze motion of rigid bodies.

  1. A rigid body is idealized as an infinite number of small particles, connected by two-force members.
  2. We already know the equations of motion for a system of particles (Section 4 of the notes):

The force-momentum equation i F i ext = dp dt = d dt i=1 N m i v i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqafabaGaaC OramaaDaaaleaacaWGPbaabaGaamyzaiaadIhacaWG0baaaaqaaiaa dMgaaeqaniabggHiLdGccqGH9aqpdaWcaaqaaiaadsgacaWHWbaaba GaamizaiaadshaaaGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaa dshaaaWaaabCaeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaOGaaCODam aaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaa d6eaa0GaeyyeIuoaaaa@50B3@

The moment MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  angular momentum equation i r i × F i ext = dh dt = d dt i=1 N r i × m i v i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqafabaGaaC OCamaaBaaaleaacaWGPbaabeaakiabgEna0kaahAeadaqhaaWcbaGa amyAaaqaaiaadwgacaWG4bGaamiDaaaaaeaacaWGPbaabeqdcqGHri s5aOGaeyypa0ZaaSaaaeaacaWGKbGaaCiAaaqaaiaadsgacaWG0baa aiabg2da9maalaaabaGaamizaaqaaiaadsgacaWG0baaamaaqahaba GaaCOCamaaBaaaleaacaWGPbaabeaakiabgEna0kaad2gadaWgaaWc baGaamyAaaqabaGccaWH2bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadM gacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aaaa@5917@

The work-kinetic energy equation i F i ext v i = dT dt = d dt i=1 N 1 2 m i v i v i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqafabaGaaC OramaaDaaaleaacaWGPbaabaGaamyzaiaadIhacaWG0baaaOGaeyyX ICTaaCODamaaBaaaleaacaWGPbaabeaaaeaacaWGPbaabeqdcqGHri s5aOGaeyypa0ZaaSaaaeaacaWGKbGaamivaaqaaiaadsgacaWG0baa aiabg2da9maalaaabaGaamizaaqaaiaadsgacaWG0baaamaaqahaba WaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGTbWaaSbaaSqaaiaadMga aeqaaOGaaCODamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgwSixlaahAhadaWgaaWc baGaamyAaaqabaaaaa@5AF4@

  1. These equations tell us how a rigid body moves.   But to use them, we would need to keep track track of an infinite number of particles!   To simplify the problem, we set up some mathematical methods that allow us to express the position and velocity of every point in a rigid body in terms of the position r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadEeaaeqaaaaa@3766@  , velocity v G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadEeaaeqaaaaa@376A@   and acceleration a G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbWaaSbaaS qaaiaadEeaaeqaaaaa@3755@  of its center of mass, and its rotation tensor R(quantifying its orientation) and its angular velocity ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjpaaaa@36C8@  , and angular acceleration α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHXoaaaa@36AF@ .  This allows us to write the linear momentum, angular momentum, and kinetic energy of a rigid body in the form

p=M v G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahchacqGH9a qpcaWGnbGaaCODamaaBaaaleaacaWGhbaabeaaaaa@3AFF@       h= r G ×M v G + I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIgacqGH9a qpcaWHYbWaaSbaaSqaaiaadEeaaeqaaOGaey41aqRaamytaiaahAha daWgaaWcbaGaam4raaqabaGccqGHRaWkcaWHjbWaaSbaaSqaaiaadE eaaeqaaOGaaCyYdaaa@4320@           T= 1 2 M v G v G + 1 2 ω I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2eacaWH2bWaaSbaaSqa aiaadEeaaeqaaOGaeyyXICTaaCODamaaBaaaleaacaWGhbaabeaaki abgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaCyYdiabgwSixlaa hMeadaWgaaWcbaGaam4raaqabaGccaWHjpaaaa@49EC@

where M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3645@  is the total mass of the body and I G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaaaa@373D@  is its mass moment of inertia.

  1. We can then derive the rigid body equations of motion:

i F i ext =M a G i r i × F i ext =M r G × a G + I G α+ω× I G ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqafabaGaaC OramaaDaaaleaacaWGPbaabaGaamyzaiaadIhacaWG0baaaaqaaiaa dMgaaeqaniabggHiLdGccqGH9aqpcaWGnbGaaCyyamaaBaaaleaaca WGhbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVpaaqafabaGaaCOCamaaBaaaleaacaWG PbaabeaakiabgEna0kaahAeadaqhaaWcbaGaamyAaaqaaiaadwgaca WG4bGaamiDaaaaaeaacaWGPbaabeqdcqGHris5aOGaeyypa0Jaamyt aiaahkhadaWgaaWcbaGaam4raaqabaGccqGHxdaTcaWHHbWaaSbaaS qaaiaadEeaaeqaaOGaey4kaSIaaCysamaaBaaaleaacaWGhbaabeaa kiaahg7acqGHRaWkcaWHjpGaey41aq7aamWaaeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaOGaaCyYdaGaay5waiaaw2faaaaa@7EDE@

6.2 Describing Motion of a Rigid Body

 

We describe motion of a particle using its position, velocity and acceleration.   We can describe the position of a rigid body in the same way -  we could specify the position, velocity and acceleration of any convenient point in the body (we usually use the center of mass).  But we also need a way to describe the orientation of a rigid body, and its rotational motion. 

 

In this section, we define the various mathematical quantities that we use to describe rotation, angular velocity, and angular acceleration.

 

 

6.2.1 Describing rotations: The Rotation Tensor (or matrix)

 

Rotations are quantified by a mathematical object called a rotation tensor.  It is defined as follows:

1.       Choose some convenient initial orientation of the rigid body (eg for the rectangular prism in the figure, we chose to make the faces perpendicular to the {i,j,k} MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyAai aacYcacaWHQbGaaiilaiaahUgacaGG9baaaa@3BAC@  directions.

2.       When the body is rotated, every line in the body (eg the sides) moves to a new orientation, without changing its length.   We can describe this orientation change as a mapping.  Let A and B be two arbitrary points in the body.   Let p A , p B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHWbWaaSbaaS qaaiaadgeaaeqaaOGaaiilaiaahchadaWgaaWcbaGaamOqaaqabaaa aa@3A04@  be the initial positions of these points, and let r A , r B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadgeaaeqaaOGaaiilaiaahkhadaWgaaWcbaGaamOqaaqabaaa aa@3A08@  be their final positions.   We introduce the ‘rotation tensor[1]R which has the property that

r B r A =R( p B p A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaa kiabg2da9iaahkfacaGGOaGaaCiCamaaBaaaleaacaWGcbaabeaaki abgkHiTiaahchadaWgaaWcbaGaamyqaaqabaGccaGGPaaaaa@4261@

  

When we solve problems, we always express vectors as components in some basis.   When we do this, R becomes a matrix.  For example, if

p B p A = x 0 i+ y 0 j+ z 0 k r B r A =xi+yj+zk MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHWbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCiCamaaBaaaleaacaWGbbaabeaa kiabg2da9iaadIhadaWgaaWcbaGaaGimaaqabaGccaWHPbGaey4kaS IaamyEamaaBaaaleaacaaIWaaabeaakiaahQgacqGHRaWkcaWG6bWa aSbaaSqaaiaaicdaaeqaaOGaaC4AaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaahkhadaWgaaWcbaGaamOqaaqabaGccq GHsislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGaeyypa0JaamiEaiaa hMgacqGHRaWkcaWG5bGaaCOAaiabgUcaRiaadQhacaWHRbaaaa@6A56@

we would write

x y z = R xx R xy R xz R yx R yy R yz R yz R zy R zz x 0 y 0 z 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadeaaaeaacaWG4baabaGaamyEaaqaaiaadQhaaaaacaGLBbGaayzx aaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaamOuamaaBaaaleaaca WG4bGaamiEaaqabaaakeaacaWGsbWaaSbaaSqaaiaadIhacaWG5baa beaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadQhaaeqaaaGcbaGaam OuamaaBaaaleaacaWG5bGaamiEaaqabaaakeaacaWGsbWaaSbaaSqa aiaadMhacaWG5baabeaaaOqaaiaadkfadaWgaaWcbaGaamyEaiaadQ haaeqaaaGcbaGaamOuamaaBaaaleaacaWG5bGaamOEaaqabaaakeaa caWGsbWaaSbaaSqaaiaadQhacaWG5baabeaaaOqaaiaadkfadaWgaa WcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faamaadmaabaqb aeqabmqaaaqaaiaadIhadaWgaaWcbaGaaGimaaqabaaakeaacaWG5b WaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOEamaaBaaaleaacaaIWaaa beaaaaaakiaawUfacaGLDbaaaaa@609A@

Here, R 11 , R 12 ,... MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaigdacaaIXaaabeaakiaacYcacaWGsbWaaSbaaSqaaiaaigda caaIYaaabeaakiaacYcacaGGUaGaaiOlaiaac6caaaa@3DF0@   are a set of nine numbers (or sometimes formulas).  Following the usual rules of matrix-vector multiplication, this is just a short-hand notation for

x= R xx x 0 + R xy y 0 + R xz z 0 y= R yx x 0 + R yy y 0 + R yz z 0 z= R zx x 0 + R zy y 0 + R zz z 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhacq GH9aqpcaWGsbWaaSbaaSqaaiaadIhacaWG4baabeaakiaadIhadaWg aaWcbaGaaGimaaqabaGccqGHRaWkcaWGsbWaaSbaaSqaaiaadIhaca WG5baabeaakiaadMhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWG sbWaaSbaaSqaaiaadIhacaWG6baabeaakiaadQhadaWgaaWcbaGaaG imaaqabaaakeaacaWG5bGaeyypa0JaamOuamaaBaaaleaacaWG5bGa amiEaaqabaGccaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaam OuamaaBaaaleaacaWG5bGaamyEaaqabaGccaWG5bWaaSbaaSqaaiaa icdaaeqaaOGaey4kaSIaamOuamaaBaaaleaacaWG5bGaamOEaaqaba GccaWG6bWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOEaiabg2da9iaa dkfadaWgaaWcbaGaamOEaiaadIhaaeqaaOGaamiEamaaBaaaleaaca aIWaaabeaakiabgUcaRiaadkfadaWgaaWcbaGaamOEaiaadMhaaeqa aOGaamyEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadkfadaWgaa WcbaGaamOEaiaadQhaaeqaaOGaamOEamaaBaaaleaacaaIWaaabeaa aaaa@6D78@

The subscripts on R are meant to you help remember what each element in the matrix does MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  for example, R xx MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaadIhacaWG4baabeaaaaa@3870@  maps the x 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaicdaaeqaaaaa@3756@  onto x, R xy MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaadIhacaWG5baabeaaaaa@3871@  maps the y 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaSbaaS qaaiaaicdaaeqaaaaa@3757@  onto x, and so on.

 

 

 

So when we solve a problem, how do we go about finding R?  Let me count the ways:

 

Rotations in two dimensions:

 

Life is simple in 2D.   In this case our rigid body must lie in the i,j plane, so we can only rotate it about an axis parallel to the k direction.  A counter-clockwise rotation through an angle θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@3729@  about the k axis is produced by[2]

R= cosθ sinθ sinθ cosθ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaeyypa0 ZaamWaaeaafaqabeGacaaabaGaci4yaiaac+gacaGGZbGaeqiUdeha baGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdehabaGaci4CaiaacM gacaGGUbGaeqiUdehabaGaci4yaiaac+gacaGGZbGaeqiUdehaaaGa ay5waiaaw2faaaaa@4C71@

For example, a vector Li  that start parallel to the i axis is mapped to

cosθ sinθ sinθ cosθ L 0 = Lcosθ Lsinθ =Lcosθi+Lsinθj MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qaciaaaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaacqGHsislciGG ZbGaaiyAaiaac6gacqaH4oqCaeaaciGGZbGaaiyAaiaac6gacqaH4o qCaeaaciGGJbGaai4BaiaacohacqaH4oqCaaaacaGLBbGaayzxaaWa amWaaeaafaqabeGabaaabaGaamitaaqaaiaaicdaaaaacaGLBbGaay zxaaGaeyypa0ZaamWaaeaafaqabeGabaaabaGaamitaiGacogacaGG VbGaai4CaiabeI7aXbqaaiaadYeaciGGZbGaaiyAaiaac6gacqaH4o qCaaaacaGLBbGaayzxaaGaeyypa0JaamitaiGacogacaGGVbGaai4C aiabeI7aXjaahMgacqGHRaWkcaWGmbGaci4CaiaacMgacaGGUbGaeq iUdeNaaCOAaaaa@6A5E@

 

 

Rotation about a known axis

 

3D is a bit more difficult.   Any rotation can always be expressed as a rotation through some angle θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@3729@  about some axis parallel to a unit vector n (we always use the right hand screw convention).  In some problems you can see what n and θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@3729@  are: then you can write down a unit vector parallel to n

n= n x i+ n y j+ n z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaeyypa0 JaamOBamaaBaaaleaacaWG4baabeaakiaahMgacqGHRaWkcaWGUbWa aSbaaSqaaiaadMhaaeqaaOGaaCOAaiabgUcaRiaad6gadaWgaaWcba GaamOEaaqabaGccaWHRbaaaa@4282@

and then use the ‘Rodriguez Formula’

R= cosθ+(1cosθ) n x 2 (1cosθ) n x n y sinθ n z (1cosθ) n x n z +sinθ n y (1cosθ) n x n y +sinθ n z cosθ+(1cosθ) n y 2 (1cosθ) n y n z sinθ n x (1cosθ) n x n z sinθ n y (1cosθ) n y n z +sinθ n x cosθ+(1cosθ) n z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaeyypa0 ZaamWaaeaafaqabeWadaaabaGaci4yaiaac+gacaGGZbGaeqiUdeNa ey4kaSIaaiikaiaaigdacqGHsislciGGJbGaai4BaiaacohacqaH4o qCcaGGPaGaamOBamaaDaaaleaacaWG4baabaGaaGOmaaaaaOqaaiaa cIcacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqiUdeNaaiykai aad6gadaWgaaWcbaGaamiEaaqabaGccaWGUbWaaSbaaSqaaiaadMha aeqaaOGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdeNaamOBamaaBa aaleaacaWG6baabeaaaOqaaiaacIcacaaIXaGaeyOeI0Iaci4yaiaa c+gacaGGZbGaeqiUdeNaaiykaiaad6gadaWgaaWcbaGaamiEaaqaba GccaWGUbWaaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaci4CaiaacMga caGGUbGaeqiUdeNaamOBamaaBaaaleaacaWG5baabeaaaOqaaiaacI cacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqiUdeNaaiykaiaa d6gadaWgaaWcbaGaamiEaaqabaGccaWGUbWaaSbaaSqaaiaadMhaae qaaOGaey4kaSIaci4CaiaacMgacaGGUbGaeqiUdeNaamOBamaaBaaa leaacaWG6baabeaaaOqaaiGacogacaGGVbGaai4CaiabeI7aXjabgU caRiaacIcacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqiUdeNa aiykaiaad6gadaqhaaWcbaGaamyEaaqaaiaaikdaaaaakeaacaGGOa GaaGymaiabgkHiTiGacogacaGGVbGaai4CaiabeI7aXjaacMcacaWG UbWaaSbaaSqaaiaadMhaaeqaaOGaamOBamaaBaaaleaacaWG6baabe aakiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXjaad6gadaWgaaWc baGaamiEaaqabaaakeaacaGGOaGaaGymaiabgkHiTiGacogacaGGVb Gaai4CaiabeI7aXjaacMcacaWGUbWaaSbaaSqaaiaadIhaaeqaaOGa amOBamaaBaaaleaacaWG6baabeaakiabgkHiTiGacohacaGGPbGaai OBaiabeI7aXjaad6gadaWgaaWcbaGaamyEaaqabaaakeaacaGGOaGa aGymaiabgkHiTiGacogacaGGVbGaai4CaiabeI7aXjaacMcacaWGUb WaaSbaaSqaaiaadMhaaeqaaOGaamOBamaaBaaaleaacaWG6baabeaa kiabgUcaRiGacohacaGGPbGaaiOBaiabeI7aXjaad6gadaWgaaWcba GaamiEaaqabaaakeaaciGGJbGaai4BaiaacohacqaH4oqCcqGHRaWk caGGOaGaaGymaiabgkHiTiGacogacaGGVbGaai4CaiabeI7aXjaacM cacaWGUbWaa0baaSqaaiaadQhaaeaacaaIYaaaaaaaaOGaay5waiaa w2faaaaa@DDA2@

(This formula is impossible to remember MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  that’s what Google is for).

 

If you are given a rotation matrix R, and need to find n and θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@3729@  , you can use the formulas:

1+2cosθ= R xx + R yy + R zz n= 1 2sinθ R zy R yz i+ R xz R zx j+ R yx R xy k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaaigdacq GHRaWkcaaIYaGaci4yaiaac+gacaGGZbGaeqiUdeNaeyypa0JaamOu amaaBaaaleaacaWG4bGaamiEaaqabaGccqGHRaWkcaWGsbWaaSbaaS qaaiaadMhacaWG5baabeaakiabgUcaRiaadkfadaWgaaWcbaGaamOE aiaadQhaaeqaaaGcbaGaaCOBaiabg2da9maalaaabaGaaGymaaqaai aaikdaciGGZbGaaiyAaiaac6gacqaH4oqCaaWaamWaaeaadaqadaqa aiaadkfadaWgaaWcbaGaamOEaiaadMhaaeqaaOGaeyOeI0IaamOuam aaBaaaleaacaWG5bGaamOEaaqabaaakiaawIcacaGLPaaacaWHPbGa ey4kaSYaaeWaaeaacaWGsbWaaSbaaSqaaiaadIhacaWG6baabeaaki abgkHiTiaadkfadaWgaaWcbaGaamOEaiaadIhaaeqaaaGccaGLOaGa ayzkaaGaaCOAaiabgUcaRmaabmaabaGaamOuamaaBaaaleaacaWG5b GaamiEaaqabaGccqGHsislcaWGsbWaaSbaaSqaaiaadIhacaWG5baa beaaaOGaayjkaiaawMcaaiaahUgaaiaawUfacaGLDbaaaaaa@707A@

The second formula blows up if sin(θ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGZbGaaiyAai aac6gacaGGOaGaeqiUdeNaaiykaiabg2da9iaaicdaaaa@3D1A@  .  If θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@3729@  is zero or 2π MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaeqiWda haaa@37EC@  you can simply set R=1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaeyypa0 JaaCymaaaa@380E@  (the identity), and n can be anything you like.  For θ=π MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcqGH9a qpcqaHapaCaaa@39EC@  you can use

n= R xx cosθ 1cosθ i± R yy cosθ 1cosθ j± R zz cosθ 1cosθ k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaeyypa0 ZaaOaaaeaadaWcaaqaaiaadkfadaWgaaWcbaGaamiEaiaadIhaaeqa aOGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGymaiabgk HiTiGacogacaGGVbGaai4CaiabeI7aXbaaaSqabaGccaaMc8UaaCyA aiabgglaXoaakaaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaadMhaca WG5baabeaakiabgkHiTiGacogacaGGVbGaai4CaiabeI7aXbqaaiaa igdacqGHsislciGGJbGaai4BaiaacohacqaH4oqCaaaaleqaaOGaaC OAaiabgglaXoaakaaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaadQha caWG6baabeaakiabgkHiTiGacogacaGGVbGaai4CaiabeI7aXbqaai aaigdacqGHsislciGGJbGaai4BaiaacohacqaH4oqCaaaaleqaaOGa aC4AaiaaykW7aaa@6DEA@

The signs of the square roots have to be chosen so that n x n y = R xy /2 n x n z = R xz /2 n y n z = R yz /2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamiEaaqabaGccaWGUbWaaSbaaSqaaiaadMhaaeqaaOGaeyyp a0JaamOuamaaBaaaleaacaWG4bGaamyEaaqabaGccaGGVaGaaGOmai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaad6gadaWgaaWc baGaamiEaaqabaGccaWGUbWaaSbaaSqaaiaadQhaaeqaaOGaeyypa0 JaamOuamaaBaaaleaacaWG4bGaamOEaaqabaGccaGGVaGaaGOmaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOBamaaBaaaleaacaWG5b aabeaakiaad6gadaWgaaWcbaGaamOEaaqabaGccqGH9aqpcaWGsbWa aSbaaSqaaiaadMhacaWG6baabeaakiaac+cacaaIYaaaaa@6494@  

In robotics, game engines, and vehicle dynamics the axis-angle representation of a rotation is often stored as a quaternion.  We won’t use that here, but mention it in passing in case you come across it in practice.   A quaternion is four numbers [ q 0 , q x , q y , q x ] MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaamyCam aaBaaaleaacaaIWaaabeaakiaacYcacaWGXbWaaSbaaSqaaiaadIha aeqaaOGaaiilaiaadghadaWgaaWcbaGaamyEaaqabaGccaGGSaGaam yCamaaBaaaleaacaWG4baabeaakiaac2faaaa@41A5@  that are related to n and θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@3729@  through the formulas:

q 0 =cos(θ/2) q x = n x sin(θ/2) q y = n y sin(θ/2) q z = n z sin θ/2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadghada WgaaWcbaGaaGimaaqabaGccqGH9aqpciGGJbGaai4BaiaacohacaGG OaGaeqiUdeNaai4laiaaikdacaGGPaaabaGaamyCamaaBaaaleaaca WG4baabeaakiabg2da9iaad6gadaWgaaWcbaGaamiEaaqabaGcciGG ZbGaaiyAaiaac6gacaGGOaGaeqiUdeNaai4laiaaikdacaGGPaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caWGXbWaaSbaaSqaaiaadMhaaeqaaOGaeyypa0 JaamOBamaaBaaaleaacaWG5baabeaakiGacohacaGGPbGaaiOBaiaa cIcacqaH4oqCcaGGVaGaaGOmaiaacMcacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadghadaWgaaWcbaGaamOE aaqabaGccqGH9aqpcaWGUbWaaSbaaSqaaiaadQhaaeqaaOGaci4Cai aacMgacaGGUbWaaeWaaeaacqaH4oqCcaGGVaGaaGOmaaGaayjkaiaa wMcaaaaaaa@833F@

 

Mapping the coordinate axes

 

In some problems we might know what happens to vectors that are parallel to the {i,j,k} directions in the initial rigid body (eg we might know what happens to the sides of our rectangular prism).  For example, we might know that {i,j,k} MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyAai aacYcacaWHQbGaaiilaiaahUgacaGG9baaaa@3BAC@  map to (unit) vectors  a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaaiilai aahkgacaGGSaGaaC4yaaaa@3994@  .   In that case we can write down each of a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaaiilai aahkgacaGGSaGaaC4yaaaa@3994@  as components in {i,j,k} MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyAai aacYcacaWHQbGaaiilaiaahUgacaGG9baaaa@3BAC@

a= a x i+ a y j+ a z kb= b x i+ b y j+ b z kc= c x i+ c y j+ c z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaamyyamaaBaaaleaacaWG4baabeaakiaahMgacqGHRaWkcaWGHbWa aSbaaSqaaiaadMhaaeqaaOGaaCOAaiabgUcaRiaadggadaWgaaWcba GaamOEaaqabaGccaWHRbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHIbGaeyypa0 JaamOyamaaBaaaleaacaWG4baabeaakiaahMgacqGHRaWkcaWGIbWa aSbaaSqaaiaadMhaaeqaaOGaaCOAaiabgUcaRiaadkgadaWgaaWcba GaamOEaaqabaGccaWHRbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHJbGaeyypa0 JaaGPaVlaadogadaWgaaWcbaGaamiEaaqabaGccaWHPbGaey4kaSIa am4yamaaBaaaleaacaWG5baabeaakiaahQgacqGHRaWkcaWGJbWaaS baaSqaaiaadQhaaeqaaOGaaC4Aaaaa@7F8D@

and use the formula

R= a x b x c x a y b y c y a z b z c z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaeyypa0 ZaamWaaeaafaqabeWadaaabaGaamyyamaaBaaaleaacaWG4baabeaa aOqaaiaadkgadaWgaaWcbaGaamiEaaqabaaakeaacaWGJbWaaSbaaS qaaiaadIhaaeqaaaGcbaGaamyyamaaBaaaleaacaWG5baabeaaaOqa aiaadkgadaWgaaWcbaGaamyEaaqabaaakeaacaWGJbWaaSbaaSqaai aadMhaaeqaaaGcbaGaamyyamaaBaaaleaacaWG6baabeaaaOqaaiaa dkgadaWgaaWcbaGaamOEaaqabaaakeaacaWGJbWaaSbaaSqaaiaadQ haaeqaaaaaaOGaay5waiaaw2faaaaa@4C50@

 

 

 

 

 

A sequence of rotations

 

Suppose we rotate an object twice (perhaps about two different axes).   How do we describe the result of two rotations?   That’s not hard.   Suppose we do the first rotation with one mapping

r B r A = R (1) ( p B p A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaa kiabg2da9iaahkfadaahaaWcbeqaaiaacIcacaaIXaGaaiykaaaaki aacIcacaWHWbWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCiCamaa BaaaleaacaWGbbaabeaakiaacMcaaaa@44AC@

Now we rotate our body again MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  this maps r B r A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaa aaa@3A45@  onto some new vector u B u A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH1bWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCyDamaaBaaaleaacaWGbbaabeaa aaa@3A4B@ :

( u B u A )= R (2) ( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaCyDam aaBaaaleaacaWGcbaabeaakiabgkHiTiaahwhadaWgaaWcbaGaamyq aaqabaGccaGGPaGaeyypa0JaaCOuamaaCaaaleqabaGaaiikaiaaik dacaGGPaaaaOGaaiikaiaahkhadaWgaaWcbaGaamOqaaqabaGccqGH sislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGaaiykaaaa@4610@

We can therefore write

( u B u A )= R (2) R (1) ( p B p A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaCyDam aaBaaaleaacaWGcbaabeaakiabgkHiTiaahwhadaWgaaWcbaGaamyq aaqabaGccaGGPaGaeyypa0JaaCOuamaaCaaaleqabaGaaiikaiaaik dacaGGPaaaaOGaaCOuamaaCaaaleqabaGaaiikaiaaigdacaGGPaaa aOGaaiikaiaahchadaWgaaWcbaGaamOqaaqabaGccqGHsislcaWHWb WaaSbaaSqaaiaadgeaaeqaaOGaaiykaaaa@4932@

We see that Sequential rotations are matrix products

R= R (2) R (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaeyypa0 JaaCjaVlaahkfadaahaaWcbeqaaiaacIcacaaIYaGaaiykaaaakiaa hkfadaahaaWcbeqaaiaacIcacaaIXaGaaiykaaaaaaa@3F1F@

 

Health warning: Matrix products (and hence sequences of rotations) do not commute

R (1) R (2) R (2) R (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbWaaWbaaS qabeaacaGGOaGaaGymaiaacMcaaaGccaWHsbWaaWbaaSqabeaacaGG OaGaaGOmaiaacMcaaaGccqGHGjsUcaWHsbWaaWbaaSqabeaacaGGOa GaaGOmaiaacMcaaaGccaWHsbWaaWbaaSqabeaacaGGOaGaaGymaiaa cMcaaaaaaa@43CA@

For example, the figure below shows the change in orientation caused by (a) a 90 degree positive rotation about i followed by a 90 degree positive rotation about k (the figure on the left); and (b) a 90 degree positive rotation about k followed by a 90 degree positive rotation about i (the figure on the right).

 

 

 

 

 

 

Orthogonality of R

 

The rotation tensor (matrix) has a very important property:

If you multiply R by its transpose, the result is always the identity matrix.   

Another way to say this is that

The transpose of R is equal to its inverse

 

Let’s try this with the 2D rotation matrix

R R T = cosθ sinθ sinθ cosθ cosθ sinθ sinθ cosθ = cos 2 θ+ sin 2 θ 0 0 sin 2 θ+ cos 2 θ = 1 0 0 1 R T R= cosθ sinθ sinθ cosθ cosθ sinθ sinθ cosθ = 1 0 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahkfaca WHsbWaaWbaaSqabeaacaWGubaaaOGaeyypa0ZaamWaaeaafaqabeGa caaabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaeyOeI0Iaci4Cai aacMgacaGGUbGaeqiUdehabaGaci4CaiaacMgacaGGUbGaeqiUdeha baGaci4yaiaac+gacaGGZbGaeqiUdehaaaGaay5waiaaw2faamaadm aabaqbaeqabiGaaaqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiGa cohacaGGPbGaaiOBaiabeI7aXbqaaiabgkHiTiGacohacaGGPbGaai OBaiabeI7aXbqaaiGacogacaGGVbGaai4CaiabeI7aXbaaaiaawUfa caGLDbaacqGH9aqpdaWadaqaauaabeqaciaaaeaaciGGJbGaai4Bai aacohadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcqGHRaWkciGGZbGa aiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqaH4oqCaeaacaaIWa aabaGaaGimaaqaaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOm aaaakiabeI7aXjabgUcaRiGacogacaGGVbGaai4CamaaCaaaleqaba GaaGOmaaaakiabeI7aXbaaaiaawUfacaGLDbaacqGH9aqpdaWadaqa auaabeqaciaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIXa aaaaGaay5waiaaw2faaaqaaiaahkfadaahaaWcbeqaaiaadsfaaaGc caWHsbGaeyypa0ZaamWaaeaafaqabeGacaaabaGaci4yaiaac+gaca GGZbGaeqiUdehabaGaci4CaiaacMgacaGGUbGaeqiUdehabaGaeyOe I0Iaci4CaiaacMgacaGGUbGaeqiUdehabaGaci4yaiaac+gacaGGZb GaeqiUdehaaaGaay5waiaaw2faamaadmaabaqbaeqabiGaaaqaaiGa cogacaGGVbGaai4CaiabeI7aXbqaaiabgkHiTiGacohacaGGPbGaai OBaiabeI7aXbqaaiGacohacaGGPbGaaiOBaiabeI7aXbqaaiGacoga caGGVbGaai4CaiabeI7aXbaaaiaawUfacaGLDbaacqGH9aqpdaWada qaauaabeqaciaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaI XaaaaaGaay5waiaaw2faaaaaaa@B9A4@

A matrix or tensor with this property is said to be orthogonal.

 

Why is this?   It turns out that a length-preserving mapping must be an orthogonal tensor.  To see this, let’s calculate the length of the rotated vector r B r A =R( p B p A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaa kiabg2da9iaahkfacaGGOaGaaCiCamaaBaaaleaacaWGcbaabeaaki abgkHiTiaahchadaWgaaWcbaGaamyqaaqabaGccaGGPaaaaa@4261@ .  We need to remember two vector/matrix operations:

1.     We can calculate the length of a vector by dotting it with itself and taking the square root

2.     For a vector u and a matrix R, we know (or can show!) that Ru Ru =u R T Ru MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaahk facaWH1baacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWHsbGaaCyD aaGaayjkaiaawMcaaiabg2da9iaahwhacqGHflY1daqadaqaaiaahk fadaahaaWcbeqaaiaadsfaaaGccaWHsbGaaCyDaaGaayjkaiaawMca aaaa@481C@  

This means

r B r A r B r A = R( p B p A ) R( p B p A ) = ( p B p A ) R T R( p B p A ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaamaabm aabaGaaCOCamaaBaaaleaacaWGcbaabeaakiabgkHiTiaahkhadaWg aaWcbaGaamyqaaqabaaakiaawIcacaGLPaaacqGHflY1daqadaqaai aahkhadaWgaaWcbaGaamOqaaqabaGccqGHsislcaWHYbWaaSbaaSqa aiaadgeaaeqaaaGccaGLOaGaayzkaaaaleqaaOGaeyypa0ZaaOaaae aadaGadaqaaiaahkfacaGGOaGaaCiCamaaBaaaleaacaWGcbaabeaa kiabgkHiTiaahchadaWgaaWcbaGaamyqaaqabaGccaGGPaaacaGL7b GaayzFaaGaeyyXIC9aaiWaaeaacaWHsbGaaiikaiaahchadaWgaaWc baGaamOqaaqabaGccqGHsislcaWHWbWaaSbaaSqaaiaadgeaaeqaaO GaaiykaaGaay5Eaiaaw2haaaWcbeaakiabg2da9maakaaabaGaaiik aiaahchadaWgaaWcbaGaamOqaaqabaGccqGHsislcaWHWbWaaSbaaS qaaiaadgeaaeqaaOGaaiykaiabgwSixpaacmaabaGaaCOuamaaCaaa leqabaGaamivaaaakiaahkfacaGGOaGaaCiCamaaBaaaleaacaWGcb aabeaakiabgkHiTiaahchadaWgaaWcbaGaamyqaaqabaGccaGGPaaa caGL7bGaayzFaaaaleqaaaaa@6F5E@

But we want the length of r B r A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaa aaa@3A45@  to equal the length of p B p A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHWbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCiCamaaBaaaleaacaWGbbaabeaa aaa@3A41@ , which means we need R to satisfy

( p B p A ) R T R( p B p A ) = ( p B p A )( p B p A ) ( p B p A ) R T R( p B p A ) ( p B p A ) 1( p B p A ) =0 ( p B p A ) R T R1 ( p B p A ) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaakaaaba GaaiikaiaahchadaWgaaWcbaGaamOqaaqabaGccqGHsislcaWHWbWa aSbaaSqaaiaadgeaaeqaaOGaaiykaiabgwSixpaacmaabaGaaCOuam aaCaaaleqabaGaamivaaaakiaahkfacaGGOaGaaCiCamaaBaaaleaa caWGcbaabeaakiabgkHiTiaahchadaWgaaWcbaGaamyqaaqabaGcca GGPaaacaGL7bGaayzFaaaaleqaaOGaeyypa0ZaaOaaaeaacaGGOaGa aCiCamaaBaaaleaacaWGcbaabeaakiabgkHiTiaahchadaWgaaWcba GaamyqaaqabaGccaGGPaGaeyyXICTaaiikaiaahchadaWgaaWcbaGa amOqaaqabaGccqGHsislcaWHWbWaaSbaaSqaaiaadgeaaeqaaOGaai ykaaWcbeaaaOqaaiabgkDiElaacIcacaWHWbWaaSbaaSqaaiaadkea aeqaaOGaeyOeI0IaaCiCamaaBaaaleaacaWGbbaabeaakiaacMcacq GHflY1daGadaqaaiaahkfadaahaaWcbeqaaiaadsfaaaGccaWHsbGa aiikaiaahchadaWgaaWcbaGaamOqaaqabaGccqGHsislcaWHWbWaaS baaSqaaiaadgeaaeqaaOGaaiykaaGaay5Eaiaaw2haaiabgkHiTiaa cIcacaWHWbWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCiCamaaBa aaleaacaWGbbaabeaakiaacMcacqGHflY1daGadaqaaiaahgdacaGG OaGaaCiCamaaBaaaleaacaWGcbaabeaakiabgkHiTiaahchadaWgaa WcbaGaamyqaaqabaGccaGGPaaacaGL7bGaayzFaaGaeyypa0JaaGim aaqaaiabgkDiElaacIcacaWHWbWaaSbaaSqaaiaadkeaaeqaaOGaey OeI0IaaCiCamaaBaaaleaacaWGbbaabeaakiaacMcacqGHflY1daGa daqaamaabmaabaGaaCOuamaaCaaaleqabaGaamivaaaakiaahkfacq GHsislcaWHXaaacaGLOaGaayzkaaGaaiikaiaahchadaWgaaWcbaGa amOqaaqabaGccqGHsislcaWHWbWaaSbaaSqaaiaadgeaaeqaaOGaai ykaaGaay5Eaiaaw2haaiabg2da9iaaicdaaaaa@9E4D@

where 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHXaaaaa@362D@  is the identity tensor (we normally use I for the identity tensor, but rigid body dynamics uses I to denote the mass moment of inertia so it’s already been taken….). With a bit of busy work, we can show that the last line can only be satisfied if R T R=1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbWaaWbaaS qabeaacaWGubaaaOGaaCOuaiabg2da9iaahgdaaaa@39F9@  .   In fact, a rigorous mathematical derivation of rotations starts with the statement that R must preserve the length of all vectors, and then derives all the other material in this section from that statement.   This is not easy to follow the first time around, but will probably be the approach used in more advanced courses.

 

 

Examples:

 

1. Write down the rotation matrix for the 2D rotation shown in the figure

The object rotates 90 degree counterclockwise about the k axis, so

 

R= cosθ sinθ sinθ cosθ = 0 1 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaeyypa0 ZaamWaaeaafaqabeGacaaabaGaci4yaiaac+gacaGGZbGaeqiUdeha baGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdehabaGaci4CaiaacM gacaGGUbGaeqiUdehabaGaci4yaiaac+gacaGGZbGaeqiUdehaaaGa ay5waiaaw2faaiabg2da9maadmaabaqbaeqabiGaaaqaaiaaicdaae aacqGHsislcaaIXaaabaGaaGymaaqaaiaaicdaaaaacaGLBbGaayzx aaaaaa@5350@

 

 

 

 

2. The object shown in the figure is first rotated 90 degrees about the i axis, and then 180 degrees about the j axis.   Find the rotation tensor.

 

We can construct the two rotations using the Rodriguez formula.  For the first rotation θ=π/2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcqGH9a qpcqaHapaCcaGGVaGaaGOmaaaa@3B5B@   n=i n x =1 n y = n z =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaeyypa0 JaaCyAaiabgkDiElaad6gadaWgaaWcbaGaamiEaaqabaGccqGH9aqp caaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWGUbWaaSbaaSqaaiaadMhaaeqaaOGaeyypa0JaamOBamaa BaaaleaacaWG6baabeaakiabg2da9iaaicdaaaa@5213@  

R (1) = 1 0 0 0 0 1 0 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbWaaWbaaS qabeaacaGGOaGaaGymaiaacMcaaaGccqGH9aqpdaWadaqaauaabeqa dmaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiabgkHiTiaaigdaaeaacaaIWaaabaGaaGymaaqaaiaaicda aaaacaGLBbGaayzxaaaaaa@4321@

For the second rotation θ=π MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcqGH9a qpcqaHapaCaaa@39EC@ n=j n y =1 n x = n z =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaeyypa0 JaaCOAaiabgkDiElaad6gadaWgaaWcbaGaamyEaaqabaGccqGH9aqp caaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWGUbWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaamOBamaa BaaaleaacaWG6baabeaakiabg2da9iaaicdaaaa@5214@

 

R (2) = 1 0 0 0 1 0 0 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbWaaWbaaS qabeaacaGGOaGaaGOmaiaacMcaaaGccqGH9aqpdaWadaqaauaabeqa dmaaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabgkHi TiaaigdaaaaacaGLBbGaayzxaaaaaa@4410@

The total rotation is therefore

R= R (2) R (1) = 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 = 1 0 0 0 0 1 0 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaeyypa0 JaaCOuamaaCaaaleqabaGaaiikaiaaikdacaGGPaaaaOGaaCOuamaa CaaaleqabaGaaiikaiaaigdacaGGPaaaaOGaeyypa0ZaamWaaeaafa qabeWadaaabaGaeyOeI0IaaGymaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacq GHsislcaaIXaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmWaaaqa aiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaeyOeI0IaaGymaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaaaaiaa wUfacaGLDbaacqGH9aqpdaWadaqaauaabeqadmaaaeaacqGHsislca aIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiab gkHiTiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiaaicdaaa aacaGLBbGaayzxaaaaaa@5EFC@

 

 

3. Find the axis-angle representation for the combined rotation in problem (2).

 

We can calculate the axis and angle of this rotation using the formulas

1+2cosθ= R xx + R yy + R zz 2cosθ=2θ=π n= R xx cosθ 1cosθ i± R yy cosθ 1cosθ j± R zz cosθ 1cosθ k = 1(1) 1(1) i± 0(1) 1(1) j± 0(1) 1(1) k= 1 2 j±k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaaigdacq GHRaWkcaaIYaGaci4yaiaac+gacaGGZbGaeqiUdeNaeyypa0JaamOu amaaBaaaleaacaWG4bGaamiEaaqabaGccqGHRaWkcaWGsbWaaSbaaS qaaiaadMhacaWG5baabeaakiabgUcaRiaadkfadaWgaaWcbaGaamOE aiaadQhaaeqaaOGaeyO0H4TaaGOmaiGacogacaGGVbGaai4CaiabeI 7aXjabg2da9iabgkHiTiaaikdacqGHshI3cqaH4oqCcqGH9aqpcqaH apaCaeaacaWHUbGaeyypa0ZaaOaaaeaadaWcaaqaaiaadkfadaWgaa WcbaGaamiEaiaadIhaaeqaaOGaeyOeI0Iaci4yaiaac+gacaGGZbGa eqiUdehabaGaaGymaiabgkHiTiGacogacaGGVbGaai4CaiabeI7aXb aaaSqabaGccaaMc8UaaCyAaiabgglaXoaakaaabaWaaSaaaeaacaWG sbWaaSbaaSqaaiaadMhacaWG5baabeaakiabgkHiTiGacogacaGGVb Gaai4CaiabeI7aXbqaaiaaigdacqGHsislciGGJbGaai4Baiaacoha cqaH4oqCaaaaleqaaOGaaCOAaiabgglaXoaakaaabaWaaSaaaeaaca WGsbWaaSbaaSqaaiaadQhacaWG6baabeaakiabgkHiTiGacogacaGG VbGaai4CaiabeI7aXbqaaiaaigdacqGHsislciGGJbGaai4Baiaaco hacqaH4oqCaaaaleqaaOGaaC4AaiaaykW7aeaacaaMc8UaaGPaVlaa ykW7caaMc8Uaeyypa0ZaaOaaaeaadaWcaaqaaiabgkHiTiaaigdacq GHsislcaGGOaGaeyOeI0IaaGymaiaacMcaaeaacaaIXaGaeyOeI0Ia aiikaiabgkHiTiaaigdacaGGPaaaaaWcbeaakiaaykW7caWHPbGaey ySae7aaOaaaeaadaWcaaqaaiaaicdacqGHsislcaGGOaGaeyOeI0Ia aGymaiaacMcaaeaacaaIXaGaeyOeI0IaaiikaiabgkHiTiaaigdaca GGPaaaaaWcbeaakiaahQgacqGHXcqSdaGcaaqaamaalaaabaGaaGim aiabgkHiTiaacIcacqGHsislcaaIXaGaaiykaaqaaiaaigdacqGHsi slcaGGOaGaeyOeI0IaaGymaiaacMcaaaaaleqaaOGaaC4AaiaaykW7 cqGH9aqpdaWcaaqaaiaaigdaaeaadaGcaaqaaiaaikdaaSqabaaaaO WaaeWaaeaacaWHQbGaeyySaeRaaC4AaaGaayjkaiaawMcaaaaaaa@C86D@

 

To decide which of these two choices to use we notice that R yz =1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamyEaiaadQhaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3BEF@  , which tells us that n y n z <0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamyEaaqabaGccaWGUbWaaSbaaSqaaiaadQhaaeqaaOGaeyip aWJaaGimaaaa@3C44@  .  The answer is therefore

θ=π,n= 1 2 (jk) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iabec8aWjaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaCOBaiab g2da9maalaaabaGaaGymaaqaamaakaaabaGaaGOmaaWcbeaaaaGcca GGOaGaaCOAaiabgkHiTiaahUgacaGGPaaaaa@4962@

It is incredibly difficult to visualize the effect of a rotation about an arbitrary axis (at least for me).  In fact this formula looks wrong MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  how can a 180 degree rotation end up tipping the box on its side?    But the answer is right, as the animation (which will only show up in the html version of the notes) shows.

 

 

6.2.2 Describing rotational motion: The angular velocity vector and spin tensor

 

 

We described the location of a particle in space using its position vector, and its motion using velocity.  We need to come up with something similar to velocity for rotations.

 

Definition of an angular velocity vector  Visualize a spinning object, like the cube shown in the figure.  The box rotates about an axis MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  in the example, the axis is the line connecting two cube diagonals.  In addition, the object turns through some number of revolutions every minute.   We would specify the angular velocity of the shaft as a vector ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyYdaaa@3748@ , with the following properties:

 

  1. The direction of the vector is parallel to the axis of the shaft (the axis of rotation). This direction would be specified by a unit vector n parallel to the shaft.

 

  1.  There are, of course, two possible directions for n.  By convention, we always choose a direction such that, when viewed in a direction parallel to n (so the vector points away from you) the shaft appears to rotate clockwise.  Or conversely, if n points towards you, the shaft appears to rotate counterclockwise. (This is the `right hand screw convention’)

cuberotbot

cuberottop

Viewed along n

Viewed in direction opposite to n

 

  1. The magnitude of the vector is the angular speed dθ/dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabeI 7aXjaac+cacaWGKbGaamiDaaaa@3B27@  of the object, in radians per second.  If you know the revs per minute n turned by the shaft, the number of radians per sec follows as dθ/dt=120πn MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabeI 7aXjaac+cacaWGKbGaamiDaiabg2da9iaaigdacaaIYaGaaGimaiab ec8aWjaad6gaaaa@410E@ .  The magnitude of the angular velocity is often denoted by ω=dθ/dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaey ypa0JaamizaiabeI7aXjaac+cacaWGKbGaamiDaaaa@3DFA@

 

The angular velocity vector is then ω= dθ dt n=ωn MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyYdiabg2 da9maalaaabaGaamizaiabeI7aXbqaaiaadsgacaWG0baaaiaah6ga cqGH9aqpcqaHjpWDcaWHUbaaaa@41A0@ .  

 

Since angular velocity is a vector, it has components ω= ω x i+ ω y j+ ω z k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyYdiabg2 da9iabeM8a3naaBaaaleaacaWG4baabeaakiaahMgacqGHRaWkcqaH jpWDdaWgaaWcbaGaamyEaaqabaGccaWHQbGaey4kaSIaeqyYdC3aaS baaSqaaiaadQhaaeqaaOGaaC4Aaaaa@45EE@  in a fixed Cartesian basis.

 

As always, in two dimensions, everything is very simple.   In this case objects can only rotate about the k axis, and we can write the angular velocity vector as

ω= dθ dt k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahM8acqGH9a qpdaWcaaqaaiaadsgacqaH4oqCaeaacaWGKbGaamiDaaaacaWHRbaa aa@3E17@

where θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37ED@  is the counterclockwise angle of rotation of any line embedded in the body.

 

 

Writing down angular velocities:

 

For 2D problems, we always know the direction of the angular velocity and can just use ω= ω z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahM8acqGH9a qpcqaHjpWDdaWgaaWcbaGaamOEaaqabaGccaWHRbaaaa@3C88@  to write it down (of course if we know the value or a formula for ω z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG6baabeaaaaa@392F@  we can use it).

 

For 3D problems, we can often use vector addition to write down  ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyYdaaa@3748@ .     We can illustrate this with a simple example:

Example: The propeller on the aircraft shown in the figure spins (about its axis) at 2000 rpm.   The aircraft travels at speed 200 km/hr in a turn with radius 1 km.    What is the angular velocity vector of (i) the body of the aircraft, and (ii) the propeller?  Express your answer in the normal-tangential-vertical basis.

 

(i) The circumference of the circle is s=2πR=2πkm MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGZbGaeyypa0 JaaGOmaiabec8aWjaadkfacqGH9aqpcaaIYaGaeqiWdaNaae4Aaiaa b2gaaaa@401E@  .   The airplane completes a full circle in t=s/V=(2π/200)×3600=36πsec MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0bGaeyypa0 Jaam4Caiaac+cacaWGwbGaeyypa0JaaiikaiaaikdacqaHapaCcaGG VaGaaGOmaiaaicdacaaIWaGaaiykaiabgEna0kaaiodacaaI2aGaaG imaiaaicdacqGH9aqpcaaIZaGaaGOnaiabec8aWjaabohacaqGLbGa ae4yaaaa@4DBF@  .   A full turn is 2π MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaeqiWda haaa@37EC@  radians, so the aircraft body turns at a rate 2π/(36π)=(1/18)krad/s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaeqiWda Naai4laiaacIcacaaIZaGaaGOnaiabec8aWjaacMcacqGH9aqpcaGG OaGaaGymaiaac+cacaaIXaGaaGioaiaacMcacaWHRbGaaGPaVlaayk W7caaMc8UaaGPaVlaabkhacaqGHbGaaeizaiaab+cacaqGZbaaaa@4E04@  about the k axis.

 

(ii) The propeller turns at 2000 rpm relative to the body of the plane.   The angular velocity of the prop with respect to a stationary observer is therefore the vector sum of the 2000 rpm about the t axis, plus the angular velocity of the body.  This gives

ω prop = 2000×2π/3600 t+ 1 18 k= 10π 9 t+ 1 18 krad/s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjpWaaSbaaS qaaiaadchacaWGYbGaam4BaiaadchaaeqaaOGaeyypa0ZaamWaaeaa caaIYaGaaGimaiaaicdacaaIWaGaey41aqRaaGOmaiabec8aWjaac+ cacaaIZaGaaGOnaiaaicdacaaIWaaacaGLBbGaayzxaaGaaCiDaiab gUcaRmaalaaabaGaaGymaaqaaiaaigdacaaI4aaaaiaahUgacqGH9a qpdaWcaaqaaiaaigdacaaIWaGaeqiWdahabaGaaGyoaaaacaWH0bGa ey4kaSYaaSaaaeaacaaIXaaabaGaaGymaiaaiIdaaaGaaC4Aaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabkhacaqGHbGaaeiz aiaab+cacaqGZbaaaa@65D4@

 

 

 

 

Relation between the rotation matrix and the angular velocity vector: the spin tensor

 

We might guess that the angular velocity vector is the derivative of the rotation tensor.   This is sort of correct, but the full story is a bit more complicated.  The relationship between R and ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahM8aaaa@378C@  is constructed as follows:

  1. We define the spin tensor W as

W= dR dt R T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahEfacqGH9a qpdaWcaaqaaiaadsgacaWHsbaabaGaamizaiaadshaaaGaaCOuamaa CaaaleqabaGaamivaaaaaaa@3DB4@

  1. The spin tensor is always skew ( W= W T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahEfacqGH9a qpcqGHsislcaWHxbWaaWbaaSqabeaacaWGubaaaaaa@3AF0@  ), and we can read off the angular velocity vector by looking at its components.  Specifically, if ω= ω x i+ ω y j+ ω z k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyYdiabg2 da9iabeM8a3naaBaaaleaacaWG4baabeaakiaahMgacqGHRaWkcqaH jpWDdaWgaaWcbaGaamyEaaqabaGccaWHQbGaey4kaSIaeqyYdC3aaS baaSqaaiaadQhaaeqaaOGaaC4Aaaaa@45EE@  then

W= 0 ω z ω y ω z 0 ω x ω y ω x 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahEfacqGH9a qpdaWadaqaauaabeqadmaaaeaacaaIWaaabaGaeyOeI0IaeqyYdC3a aSbaaSqaaiaadQhaaeqaaaGcbaGaeqyYdC3aaSbaaSqaaiaadMhaae qaaaGcbaGaeqyYdC3aaSbaaSqaaiaadQhaaeqaaaGcbaGaaGimaaqa aiabgkHiTiabeM8a3naaBaaaleaacaWG4baabeaaaOqaaiabgkHiTi abeM8a3naaBaaaleaacaWG5baabeaaaOqaaiabeM8a3naaBaaaleaa caWG4baabeaaaOqaaiaaicdaaaaacaGLBbGaayzxaaaaaa@5121@

We can use this formula in two ways: (1) Given R, we can calculate W and then read off the angular velocity vector components.  Alternatively, if we know ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahM8aaaa@378C@ , we can calculate R by first constructing W, then integrating the formula

dR dt =WR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaahkfaaeaacaWGKbGaamiDaaaacqGH9aqpcaWHxbGaaCOuaaaa @3CAE@

 

 

Angular velocity-rotation relations in 2D

 

We can check this for the special case of a 2D rotation:

R= cosθ sinθ sinθ cosθ dR dt R T = dθ dt sinθ dθ dt cosθ dθ dt cosθ dθ dt sinθ cosθ sinθ sinθ cosθ = 0 dθ dt dθ dt 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkfacqGH9a qpdaWadaqaauaabeqaciaaaeaaciGGJbGaai4BaiaacohacqaH4oqC aeaacqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCaeaaciGGZbGaai yAaiaac6gacqaH4oqCaeaaciGGJbGaai4BaiaacohacqaH4oqCaaaa caGLBbGaayzxaaGaeyO0H49aaSaaaeaacaWGKbGaaCOuaaqaaiaads gacaWG0baaaiaahkfadaahaaWcbeqaaiaadsfaaaGccqGH9aqpdaWa daqaauaabeqaciaaaeaacqGHsisldaWcaaqaaiaadsgacqaH4oqCae aacaWGKbGaamiDaaaaciGGZbGaaiyAaiaac6gacqaH4oqCaeaacqGH sisldaWcaaqaaiaadsgacqaH4oqCaeaacaWGKbGaamiDaaaaciGGJb Gaai4BaiaacohacqaH4oqCaeaadaWcaaqaaiaadsgacqaH4oqCaeaa caWGKbGaamiDaaaaciGGJbGaai4BaiaacohacqaH4oqCaeaacqGHsi sldaWcaaqaaiaadsgacqaH4oqCaeaacaWGKbGaamiDaaaaciGGZbGa aiyAaiaac6gacqaH4oqCaaaacaGLBbGaayzxaaWaamWaaeaafaqabe GacaaabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaci4CaiaacMga caGGUbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUde habaGaci4yaiaac+gacaGGZbGaeqiUdehaaaGaay5waiaaw2faaiab g2da9maadmaabaqbaeqabiGaaaqaaiaaicdaaeaacqGHsisldaWcaa qaaiaadsgacqaH4oqCaeaacaWGKbGaamiDaaaaaeaadaWcaaqaaiaa dsgacqaH4oqCaeaacaWGKbGaamiDaaaaaeaacaaIWaaaaaGaay5wai aaw2faaaaa@A31C@

 

As expected, we find that ω z = dθ dt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG6baabeaakiabg2da9maalaaabaGaamizaiabeI7aXbqa aiaadsgacaWG0baaaaaa@3ED0@  .

 

This means that in 2D, angular velocity and the angle of rotation θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37ED@  are related by the same formulas as distance traveled and speed for position.   We can use all the same rules of calculus to go back and forth between them.

 

 

Angular velocity-Spin tensor formula

 

There is an important formula relating W and ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahM8aaaa@378C@ .    Let r B r A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqa aaaa@3B09@  be a vector joining any two points in a rigid body.   Then

W( r B r A )=ω×( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahEfacaGGOa GaaCOCamaaBaaaleaacaWGcbaabeaakiabgkHiTiaahkhadaWgaaWc baGaamyqaaqabaGccaGGPaGaeyypa0JaaCyYdiabgEna0kaacIcaca WHYbWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaa caWGbbaabeaakiaacMcaaaa@47F3@

 

You can see this by just multiplying out the definition of W and comparing the result to the cross product: if

r B r A =xi+yj+zk MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaa kiabg2da9iaadIhacaWHPbGaey4kaSIaamyEaiaahQgacqGHRaWkca WG6bGaaC4Aaaaa@42EC@ , then

 

W( r B r A )= 0 ω z ω y ω z 0 ω x ω y ω x 0 x y z = ω y z ω z x ω z x ω x z ω x y ω y x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahEfacaGGOa GaaCOCamaaBaaaleaacaWGcbaabeaakiabgkHiTiaahkhadaWgaaWc baGaamyqaaqabaGccaGGPaGaeyypa0ZaamWaaeaafaqabeWadaaaba GaaGimaaqaaiabgkHiTiabeM8a3naaBaaaleaacaWG6baabeaaaOqa aiabeM8a3naaBaaaleaacaWG5baabeaaaOqaaiabeM8a3naaBaaale aacaWG6baabeaaaOqaaiaaicdaaeaacqGHsislcqaHjpWDdaWgaaWc baGaamiEaaqabaaakeaacqGHsislcqaHjpWDdaWgaaWcbaGaamyEaa qabaaakeaacqaHjpWDdaWgaaWcbaGaamiEaaqabaaakeaacaaIWaaa aaGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiaadIhaaeaaca WG5baabaGaamOEaaaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaa beqadeaaaeaacqaHjpWDdaWgaaWcbaGaamyEaaqabaGccaWG6bGaey OeI0IaeqyYdC3aaSbaaSqaaiaadQhaaeqaaOGaamiEaaqaaiabeM8a 3naaBaaaleaacaWG6baabeaakiaadIhacqGHsislcqaHjpWDdaWgaa WcbaGaamiEaaqabaGccaWG6baabaGaeqyYdC3aaSbaaSqaaiaadIha aeqaaOGaamyEaiabgkHiTiabeM8a3naaBaaaleaacaWG5baabeaaki aadIhaaaaacaGLBbGaayzxaaaaaa@7A18@

Hopefully you can see that this is the same as the cross product!

 

 

6.2.3 The angular acceleration vector

 

Angular acceleration is the time derivative of angular velocity

α= dω dt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahg7acqGH9a qpdaWcaaqaaiaadsgacaWHjpaabaGaamizaiaadshaaaaaaa@3CAA@

For 3D, we can use

α x = d ω x dt α y = d ω y dt α z = d ω z dt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWG4baabeaakiabg2da9maalaaabaGaamizaiabeM8a3naa BaaaleaacaWG4baabeaaaOqaaiaadsgacaWG0baaaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlabeg7aHnaaBaaaleaacaWG5baabeaakiabg2da9m aalaaabaGaamizaiabeM8a3naaBaaaleaacaWG5baabeaaaOqaaiaa dsgacaWG0baaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqaHXoqydaWgaaWcbaGaamOEaaqa baGccqGH9aqpdaWcaaqaaiaadsgacqaHjpWDdaWgaaWcbaGaamOEaa qabaaakeaacaWGKbGaamiDaaaaaaa@7548@

For 3D, we can’t express the angular accelerations or velocities as derivatives of rotation angles, because these can’t be defined for a general motion.

 

For a 2D problem, the direction of angular velocity and acceleration are known, so we have

α= α z kω= ω z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahg7acqGH9a qpcqaHXoqydaWgaaWcbaGaamOEaaqabaGccaWHRbGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaahM8acqGH9aqpcqaHjpWDdaWgaaWcbaGa amOEaaqabaGccaWHRbaaaa@56A2@

The components are related by

α z = d ω z dt = d 2 θ d t 2 = ω z d ω z dθ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWG6baabeaakiabg2da9maalaaabaGaamizaiabeM8a3naa BaaaleaacaWG6baabeaaaOqaaiaadsgacaWG0baaaiabg2da9maala aabaGaamizamaaCaaaleqabaGaaGOmaaaakiabeI7aXbqaaiaadsga caWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iabeM8a3naaBa aaleaacaWG6baabeaakmaalaaabaGaamizaiabeM8a3naaBaaaleaa caWG6baabeaaaOqaaiaadsgacqaH4oqCaaaaaa@520D@

For 2D problems, we can use all the usual rules of calculus to go from angular acceleration to angular velocity to angle, and vice-versa (just like distance-speed-acceleration formulas for straight line motion).

 

 

 

 

6.2.3 Relative velocity and acceleration of two points in a rigid body

 

We now know how to describe rotational motion.   Our next order of business is to discuss a couple of very important formulas that we use to analyze the motion of a system of rigid bodies, and also to derive formulas for the angular momentum and kinetic energy of a rigid body..

 

Consider a rigid body:

Let ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahM8aaaa@378C@  be the (instantaneous) angular velocity of the body, and W the corresponding spin tensor

Let A and B be two arbitrary points in a rigid body, and let r A , r B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaamyqaaqabaGccaGGSaGaaCOCamaaBaaaleaacaWGcbaabeaa aaa@3ACC@  and v A , v B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamyqaaqabaGccaGGSaGaaCODamaaBaaaleaacaWGcbaabeaa aaa@3AD4@  , a A , a B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggadaWgaa WcbaGaamyqaaqabaGccaGGSaGaaCyyamaaBaaaleaacaWGcbaabeaa aaa@3AAA@  be their (instantaneous) position, velocity and acceleration vectors. 

 

Then the relative position and velocity of A and B are related by

v B v A =ω×( r B r A ) v B v A =W( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaBaaaleaacaWGcbaabeaakiabgkHiTiaahAhadaWgaaWcbaGaamyq aaqabaGccqGH9aqpcaWHjpGaey41aqRaaiikaiaahkhadaWgaaWcba GaamOqaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGa aiykaaqaaiaahAhadaWgaaWcbaGaamOqaaqabaGccqGHsislcaWH2b WaaSbaaSqaaiaadgeaaeqaaOGaeyypa0JaaC4vaiaacIcacaWHYbWa aSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbb aabeaakiaacMcaaaaa@52C8@

 

The relative acceleration of A and B are related their relative positions and velocity by

   a B a A =α×( r B r A )+ω×( v B v A )=α×( r B r A )+ω× ω×( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWHHbWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0JaaCySdiabgEna0kaacIcacaWHYbWaaSbaaSqaaiaadk eaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaakiaacMca cqGHRaWkcaWHjpGaey41aqRaaiikaiaahAhadaWgaaWcbaGaamOqaa qabaGccqGHsislcaWH2bWaaSbaaSqaaiaadgeaaeqaaOGaaiykaiab g2da9iaahg7acqGHxdaTcaGGOaGaaCOCamaaBaaaleaacaWGcbaabe aakiabgkHiTiaahkhadaWgaaWcbaGaamyqaaqabaGccaGGPaGaey4k aSIaaCyYdiabgEna0oaadmaabaGaaCyYdiabgEna0kaacIcacaWHYb WaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWG bbaabeaakiaacMcaaiaawUfacaGLDbaaaaa@6A7B@

 

For 2D problems only: we can simplify these, because we know ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjpaaaa@36C8@  is always parallel to the k direction.  Therefore

v B v A = ω z k×( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0JaeqyYdC3aaSbaaSqaaiaadQhaaeqaaOGaaC4AaiabgE na0kaacIcacaWHYbWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCOC amaaBaaaleaacaWGbbaabeaakiaacMcaaaa@4863@

a B a A = α z k×( r B r A ) ω z 2 ( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWHHbWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0JaeqySde2aaSbaaSqaaiaadQhaaeqaaOGaaC4AaiabgE na0kaacIcacaWHYbWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCOC amaaBaaaleaacaWGbbaabeaakiaacMcacqGHsislcqaHjpWDdaqhaa WcbaGaamOEaaqaaiaaikdaaaGccaGGOaGaaCOCamaaBaaaleaacaWG cbaabeaakiabgkHiTiaahkhadaWgaaWcbaGaamyqaaqabaGccaGGPa aaaa@52EC@

 

 

 

Proof: These fornulas are easy to prove. Remember the mapping:

r B r A =R( p B p A ) v B v A = d dt ( r B r A )= dR dt ( p B p A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0JaaCOuaiaacIcacaWHWbWaaSbaaSqaaiaadkeaaeqaaO GaeyOeI0IaaCiCamaaBaaaleaacaWGbbaabeaakiaacMcacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabgkDiElaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaCODamaaBaaaleaacaWGcbaabeaakiabgkHiTiaa hAhadaWgaaWcbaGaamyqaaqabaGccqGH9aqpdaWcaaqaaiaadsgaae aacaWGKbGaamiDaaaacaGGOaGaaCOCamaaBaaaleaacaWGcbaabeaa kiabgkHiTiaahkhadaWgaaWcbaGaamyqaaqabaGccaGGPaGaeyypa0 ZaaSaaaeaacaWGKbGaaCOuaaqaaiaadsgacaWG0baaaiaacIcacaWH WbWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCiCamaaBaaaleaaca WGbbaabeaakiaacMcaaaa@6ED7@

  Also,

r B r A =R( p B p A ) R T ( r B r A )= R T R( p B p A )=( p B p A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0JaaCOuaiaacIcacaWHWbWaaSbaaSqaaiaadkeaaeqaaO GaeyOeI0IaaCiCamaaBaaaleaacaWGbbaabeaakiaacMcacqGHshI3 caWHsbWaaWbaaSqabeaacaWGubaaaOGaaiikaiaahkhadaWgaaWcba GaamOqaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGa aiykaiabg2da9iaahkfadaahaaWcbeqaaiaadsfaaaGccaWHsbGaai ikaiaahchadaWgaaWcbaGaamOqaaqabaGccqGHsislcaWHWbWaaSba aSqaaiaadgeaaeqaaOGaaiykaiabg2da9iaacIcacaWHWbWaaSbaaS qaaiaadkeaaeqaaOGaeyOeI0IaaCiCamaaBaaaleaacaWGbbaabeaa kiaacMcaaaa@5ED6@

Hence

v B v A = dR dt R T ( r B r A )=W( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0ZaaSaaaeaacaWGKbGaaCOuaaqaaiaadsgacaWG0baaai aahkfadaahaaWcbeqaaiaadsfaaaGccaGGOaGaaCOCamaaBaaaleaa caWGcbaabeaakiabgkHiTiaahkhadaWgaaWcbaGaamyqaaqabaGcca GGPaGaeyypa0JaaC4vaiaacIcacaWHYbWaaSbaaSqaaiaadkeaaeqa aOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaakiaacMcaaaa@5012@

Remember that W( r B r A )=ω×( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahEfacaGGOa GaaCOCamaaBaaaleaacaWGcbaabeaakiabgkHiTiaahkhadaWgaaWc baGaamyqaaqabaGccaGGPaGaeyypa0JaaCyYdiabgEna0kaacIcaca WHYbWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaa caWGbbaabeaakiaacMcaaaa@47F3@ , so the acceleration formula then follows as

a B a A = d dt v B v A = dω dt ×( r B r A )+ω× d dt ( r B r A )=α×( r B r A )+ω×( v B v A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWHHbWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaaeWaae aacaWH2bWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaaCODamaaBaaa leaacaWGbbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaam izaiaahM8aaeaacaWGKbGaamiDaaaacqGHxdaTcaGGOaGaaCOCamaa BaaaleaacaWGcbaabeaakiabgkHiTiaahkhadaWgaaWcbaGaamyqaa qabaGccaGGPaGaey4kaSIaaCyYdiabgEna0oaalaaabaGaamizaaqa aiaadsgacaWG0baaaiaacIcacaWHYbWaaSbaaSqaaiaadkeaaeqaaO GaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaakiaacMcacqGH9aqp caWHXoGaey41aqRaaiikaiaahkhadaWgaaWcbaGaamOqaaqabaGccq GHsislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGaaiykaiabgUcaRiaa hM8acqGHxdaTcaGGOaGaaCODamaaBaaaleaacaWGcbaabeaakiabgk HiTiaahAhadaWgaaWcbaGaamyqaaqabaGccaGGPaaaaa@7539@

 

 

 

 

6.3 Analyzing motion in connected rigid bodies

 

The formulas in 6.2.3 are used to analyze motion in machines.   A typical problem is illustrated in the figure.  An actuator moves point B on the car jack shown in the figure horizontally with constant velocity V.  What are the velocity and acceleration of the platform (CF)?

 

You could probably solve this rather simple example with elementary trig, but we need a more systematic method for general problems, especially to analyze 3D motion.   Here’s the general procedure

  1. Define variables to denote the unknown angular velocities and angular accelerations of each rigid body in the system
  2. Write down all the known velocities in the system
  3. Use the rigid body formulas

v B v A =ω×( r B r A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0JaaCyYdiabgEna0kaacIcacaWHYbWaaSbaaSqaaiaadk eaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaakiaacMca aaa@45C2@

to write down equations relating velocities of the connections, joints, or contacts on each rigid body

  1. Write down constraint equations relating velocities of the two connected rigid bodies at each connection, joint, or contact
  2. Solve the equations for unknown velocities of connections, and the angular velocities of the rigid bodies.
  3. Finally, once the velocities are known,  write down equations for the accelerations of pairs of joints/contacts/connections on each rigid body 

a B a A =α×( r B r A )+ω×( v B v A ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggadaWgaa WcbaGaamOqaaqabaGccqGHsislcaWHHbWaaSbaaSqaaiaadgeaaeqa aOGaeyypa0JaaCySdiabgEna0kaacIcacaWHYbWaaSbaaSqaaiaadk eaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGbbaabeaakiaacMca cqGHRaWkcaWHjpGaey41aqRaaiikaiaahAhadaWgaaWcbaGaamOqaa qabaGccqGHsislcaWH2bWaaSbaaSqaaiaadgeaaeqaaOGaaiykaaaa @500B@

  1. Write down constraints equations for accelerations at connected points
  2. Solve the equations in 6,7 for unknown accelerations and angular accelerations.

 

 

This all sounds terribly complicated, so let’s solve a few examples to show how it works in practice.  

 

Example 1:  In the figure shown the link AB rotates counter-clockwise with constant angular speed 4 rad/s.     Point C on member BC is constrained to move horizontally.  Calculate the velocity and acceleration of point C.

 

Calculating the velocity:

  • We know A is stationary, and are given the angular velocity of AB.  We can use the rigid body formula to find the velocity of B:

v B v A = ω zAB k×( r B r A )=4k×2j v B =8i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahAhada WgaaWcbaGaamOqaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadgea aeqaaOGaeyypa0JaeqyYdC3aaSbaaSqaaiaadQhacaWGbbGaamOqaa qabaGccaWHRbGaey41aqRaaiikaiaahkhadaWgaaWcbaGaamOqaaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGaaiykaiabg2 da9iaaisdacaWHRbGaey41aqRaaGOmaiaahQgaaeaacqGHshI3caWH 2bWaaSbaaSqaaiaadkeaaeqaaOGaeyypa0JaeyOeI0IaaGioaiaahM gaaaaa@57B1@

  • We don’t know the angular velocity of BC, so we introduce ω zBC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadkeacaWGdbaabeaaaaa@39FA@  as an unknown, and use the rigid body formula for member BC to write down an equation for the velocity of C

v C v B = ω zBC k×( r C r B )= ω zBC k×(2i2j)=2 ω BC i+2 ω BC j v C =8i+2 ω BC i+2 ω BC j MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahAhada WgaaWcbaGaam4qaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadkea aeqaaOGaeyypa0JaeqyYdC3aaSbaaSqaaiaadQhacaWGcbGaam4qaa qabaGccaWHRbGaey41aqRaaiikaiaahkhadaWgaaWcbaGaam4qaaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadkeaaeqaaOGaaiykaiabg2 da9iabeM8a3naaBaaaleaacaWG6bGaamOqaiaadoeaaeqaaOGaaC4A aiabgEna0kaacIcacaaIYaGaaCyAaiabgkHiTiaaikdacaWHQbGaai ykaiabg2da9iaaikdacqaHjpWDdaWgaaWcbaGaamOqaiaadoeaaeqa aOGaaCyAaiabgUcaRiaaikdacqaHjpWDdaWgaaWcbaGaamOqaiaado eaaeqaaOGaaCOAaaqaaiabgkDiElaahAhadaWgaaWcbaGaam4qaaqa baGccqGH9aqpcqGHsislcaaI4aGaaCyAaiabgUcaRiaaikdacqaHjp WDdaWgaaWcbaGaamOqaiaadoeaaeqaaOGaaCyAaiabgUcaRiaaikda cqaHjpWDdaWgaaWcbaGaamOqaiaadoeaaeqaaOGaaCOAaaaaaa@782D@

  • We know that C can only move horizontally.   This means that its j component of velocity must be zero.   This shows that

ω BC =0, v C =8i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOqaiaadoeaaeqaaOGaeyypa0JaaGimaiaacYcacaaMc8Ua aGPaVlaaykW7caWH2bWaaSbaaSqaaiaadoeaaeqaaOGaeyypa0Jaey OeI0IaaGioaiaahMgaaaa@45B8@

Calculating the acceleration:

  • We know A is stationary, and are given the angular velocity and angular acceleration of AB.  We can use the rigid body formula to find the acceleration of B:

a B a A = α zAB k×( r B r A ) ω zAB 2 ( r B r A )=32j a B =32j MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahggada WgaaWcbaGaamOqaaqabaGccqGHsislcaWHHbWaaSbaaSqaaiaadgea aeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaadQhacaWGbbGaamOqaa qabaGccaWHRbGaey41aqRaaiikaiaahkhadaWgaaWcbaGaamOqaaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGaaiykaiabgk HiTiabeM8a3naaDaaaleaacaWG6bGaamyqaiaadkeaaeaacaaIYaaa aOGaaiikaiaahkhadaWgaaWcbaGaamOqaaqabaGccqGHsislcaWHYb WaaSbaaSqaaiaadgeaaeqaaOGaaiykaiabg2da9iabgkHiTiaaioda caaIYaGaaCOAaaqaaiabgkDiElaahggadaWgaaWcbaGaamOqaaqaba GccqGH9aqpcqGHsislcaaIZaGaaGOmaiaahQgaaaaa@624B@

  • We don’t know the angular acceleration of BC, so we introduce α zBC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamOEaiaadkeacaWGdbaabeaaaaa@39CC@  as an unknown and use the rigid body formula for member BC to write down an equation for the acceleration of C

a C a B = α zBC k×( r C r B ) ω zAB 2 ( r C r B )= α zBC k×(2i2j)0 a C =32j+2 α BC i+2 α zBC j MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahggada WgaaWcbaGaam4qaaqabaGccqGHsislcaWHHbWaaSbaaSqaaiaadkea aeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaadQhacaWGcbGaam4qaa qabaGccaWHRbGaey41aqRaaiikaiaahkhadaWgaaWcbaGaam4qaaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadkeaaeqaaOGaaiykaiabgk HiTiabeM8a3naaDaaaleaacaWG6bGaamyqaiaadkeaaeaacaaIYaaa aOGaaiikaiaahkhadaWgaaWcbaGaam4qaaqabaGccqGHsislcaWHYb WaaSbaaSqaaiaadkeaaeqaaOGaaiykaiabg2da9iabeg7aHnaaBaaa leaacaWG6bGaamOqaiaadoeaaeqaaOGaaC4AaiabgEna0kaacIcaca aIYaGaaCyAaiabgkHiTiaaikdacaWHQbGaaiykaiabgkHiTiaahcda aeaacqGHshI3caWHHbWaaSbaaSqaaiaadoeaaeqaaOGaeyypa0Jaey OeI0IaaG4maiaaikdacaWHQbGaey4kaSIaaGOmaiabeg7aHnaaBaaa leaacaWGcbGaam4qaaqabaGccaWHPbGaey4kaSIaaGOmaiabeg7aHn aaBaaaleaacaWG6bGaamOqaiaadoeaaeqaaOGaaCOAaaaaaa@7A9A@

  • Point C can only move horizontally, so it can’t have any vertical acceleration.  This means that the j component of acceleration is zero:

2 α zBC 32=0 α zBC =16 a C =32i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaaikdacq aHXoqydaWgaaWcbaGaamOEaiaadkeacaWGdbaabeaakiabgkHiTiaa iodacaaIYaGaeyypa0JaaGimaiabgkDiElabeg7aHnaaBaaaleaaca WG6bGaamOqaiaadoeaaeqaaOGaeyypa0JaaGymaiaaiAdaaeaacqGH shI3caWHHbWaaSbaaSqaaiaadoeaaeqaaOGaeyypa0JaaG4maiaaik dacaWHPbaaaaa@4FB6@

Example 2: For a more complicated example, we can solve the car jack problem posed at the start of this section. An actuator moves point B on the car jack shown in the figure horizontally with constant velocity V.  What are the velocity and acceleration of the platform (CF)?

 

The system contains 3 rigid bodies (AC, BD, CF[3]).  We don’t know the angular velocities or accelerations of any of them, so we denote them by unknowns ω zAC MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadgeacaWGdbaabeaaaaa@39F8@ , ω zBD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadkeacaWGebaabeaaaaa@39FA@ ω zCF MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadoeacaWGgbaabeaaaaa@39FD@ , α zAC MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamOEaiaadgeacaWGdbaabeaaaaa@39CA@ , α zBD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamOEaiaadkeacaWGebaabeaaaaa@39CC@ α zCF MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamOEaiaadoeacaWGgbaabeaaaaa@39CF@

 

Calculating the velocity:

  • We start at point(s) with known velocity: A is stationary, and the velocity of B is given:

v A =0 v B =Vi MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadgeaaeqaaOGaeyypa0JaaCimaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWH2bWaaSbaaSqaaiaadkeaaeqaaO Gaeyypa0JaamOvaiaahMgaaaa@48C9@

  • Point E lies on both member AC and on member BD.   We use the rigid body formulas to write down an equation for the velocity of E on each member (notice we use the 2D equations):

v E v A = ω zAC k×( r E r A ) v E v B = ω zBD k×( r E r B ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahAhada WgaaWcbaGaamyraaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadgea aeqaaOGaeyypa0JaeqyYdC3aaSbaaSqaaiaadQhacaWGbbGaam4qaa qabaGccaWHRbGaey41aqRaaiikaiaahkhadaWgaaWcbaGaamyraaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGaaiykaaqaai aahAhadaWgaaWcbaGaamyraaqabaGccqGHsislcaWH2bWaaSbaaSqa aiaadkeaaeqaaOGaeyypa0JaeqyYdC3aaSbaaSqaaiaadQhacaWGcb GaamiraaqabaGccaWHRbGaey41aqRaaiikaiaahkhadaWgaaWcbaGa amyraaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadkeaaeqaaOGaai ykaaaaaa@5CFD@

  • The two members AC and BD are pinned together at E and so must have the same velocity.  We can eliminate v E MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadweaaeqaaaaa@3768@  and write out the position vectors in i,j components

ω zAC k×(Lcos30i+Lsin30j)Vi= ω zBD k×(Lcos30i+Lsin30j) ( ω zAC Lsin30V)i+ ω zAC Lcos30j= ω zBD Lsin30i ω zBD Lcos30j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeM8a3n aaBaaaleaacaWG6bGaamyqaiaadoeaaeqaaOGaaC4AaiabgEna0kaa cIcacaWGmbGaci4yaiaac+gacaGGZbGaaG4maiaaicdacaWHPbGaey 4kaSIaamitaiGacohacaGGPbGaaiOBaiaaiodacaaIWaGaaCOAaiaa cMcacqGHsislcaWGwbGaaCyAaiabg2da9iabeM8a3naaBaaaleaaca WG6bGaamOqaiaadseaaeqaaOGaaC4AaiabgEna0kaacIcacqGHsisl caWGmbGaci4yaiaac+gacaGGZbGaaG4maiaaicdacaWHPbGaey4kaS IaamitaiGacohacaGGPbGaaiOBaiaaiodacaaIWaGaaCOAaiaacMca aeaacaGGOaGaeyOeI0IaeqyYdC3aaSbaaSqaaiaadQhacaWGbbGaam 4qaaqabaGccaWGmbGaci4CaiaacMgacaGGUbGaaG4maiaaicdacqGH sislcaWGwbGaaiykaiaahMgacqGHRaWkcqaHjpWDdaWgaaWcbaGaam OEaiaadgeacaWGdbaabeaakiaadYeaciGGJbGaai4BaiaacohacaaI ZaGaaGimaiaahQgacqGH9aqpcqGHsislcqaHjpWDdaWgaaWcbaGaam OEaiaadkeacaWGebaabeaakiaadYeaciGGZbGaaiyAaiaac6gacaaI ZaGaaGimaiaahMgacqGHsislcqaHjpWDdaWgaaWcbaGaamOEaiaadk eacaWGebaabeaakiaadYeaciGGJbGaai4BaiaacohacaaIZaGaaGim aiaahQgaaaaa@9868@

The i,j components give two equations for ω zAC MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadgeacaWGdbaabeaaaaa@39F8@ , ω zBD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadkeacaWGebaabeaaaaa@39FA@

ω zAC LsinθV= ω zBD Lsinθ ω zAC Lcosθ= ω zBD Lcosθ ω zAC 2LsinθcosθVcosθ=0 ω zAC =V/(2Lsinθ) ω zBD =V/(2Lsinθ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabgkHiTi abeM8a3naaBaaaleaacaWG6bGaamyqaiaadoeaaeqaaOGaamitaiGa cohacaGGPbGaaiOBaiabeI7aXjabgkHiTiaadAfacqGH9aqpcqGHsi slcqaHjpWDdaWgaaWcbaGaamOEaiaadkeacaWGebaabeaakiaadYea ciGGZbGaaiyAaiaac6gacqaH4oqCaeaacqaHjpWDdaWgaaWcbaGaam OEaiaadgeacaWGdbaabeaakiaadYeaciGGJbGaai4BaiaacohacqaH 4oqCcqGH9aqpcqGHsislcqaHjpWDdaWgaaWcbaGaamOEaiaadkeaca WGebaabeaakiaadYeaciGGJbGaai4BaiaacohacqaH4oqCaeaacqGH shI3cqGHsislcqaHjpWDdaWgaaWcbaGaamOEaiaadgeacaWGdbaabe aakiaaikdacaWGmbGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaa c+gacaGGZbGaeqiUdeNaeyOeI0IaamOvaiGacogacaGGVbGaai4Cai abeI7aXjabg2da9iaaicdaaeaacqGHshI3cqaHjpWDdaWgaaWcbaGa amOEaiaadgeacaWGdbaabeaakiabg2da9iabgkHiTiaadAfacaGGVa GaaiikaiaaikdacaWGmbGaci4CaiaacMgacaGGUbGaeqiUdeNaaiyk aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeqyYdC3aaSbaaSqaaiaadQhacaWGcbGaamiraaqabaGccqGH9aqp caWGwbGaai4laiaacIcacaaIYaGaamitaiGacohacaGGPbGaaiOBai abeI7aXjaacMcaaaaa@AB2F@

 

  • We can now use the rigid body formulas for members AC and BD to find the velocities of C and D

v C v A = ω zAC k×( r C r A ) v C = V 2Lsinθ k×(2Lcosθi+2Lsinθj)=ViVcotθj v D v B = ω zBD k×( r D r B ) v D =Vi+ V 2Lsinθ k×(2Lcosθi+2Lsinθj)=Vcotθj MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahAhada WgaaWcbaGaam4qaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadgea aeqaaOGaeyypa0JaeqyYdC3aaSbaaSqaaiaadQhacaWGbbGaam4qaa qabaGccaWHRbGaey41aqRaaiikaiaahkhadaWgaaWcbaGaam4qaaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadgeaaeqaaOGaaiykaiabgk DiElaahAhadaWgaaWcbaGaam4qaaqabaGccqGH9aqpdaWcaaqaaiab gkHiTiaadAfaaeaacaaIYaGaamitaiGacohacaGGPbGaaiOBaiabeI 7aXbaacaWHRbGaey41aqRaaiikaiaaikdacaWGmbGaci4yaiaac+ga caGGZbGaeqiUdeNaaCyAaiabgUcaRiaaikdacaWGmbGaci4CaiaacM gacaGGUbGaeqiUdeNaaCOAaiaacMcacqGH9aqpcaWGwbGaaCyAaiab gkHiTiaadAfaciGGJbGaai4BaiaacshacqaH4oqCcaWHQbaabaGaaC ODamaaBaaaleaacaWGebaabeaakiabgkHiTiaahAhadaWgaaWcbaGa amOqaaqabaGccqGH9aqpcqaHjpWDdaWgaaWcbaGaamOEaiaadkeaca WGebaabeaakiaahUgacqGHxdaTcaGGOaGaaCOCamaaBaaaleaacaWG ebaabeaakiabgkHiTiaahkhadaWgaaWcbaGaamOqaaqabaGccaGGPa GaeyO0H4TaaCODamaaBaaaleaacaWGebaabeaakiabg2da9iaadAfa caWHPbGaey4kaSYaaSaaaeaacaWGwbaabaGaaGOmaiaadYeaciGGZb GaaiyAaiaac6gacqaH4oqCaaGaaC4AaiabgEna0kaacIcacaaIYaGa amitaiGacogacaGGVbGaai4CaiabeI7aXjaahMgacqGHRaWkcaaIYa GaamitaiGacohacaGGPbGaaiOBaiabeI7aXjaahQgacaGGPaGaeyyp a0JaeyOeI0IaamOvaiGacogacaGGVbGaaiiDaiabeI7aXjaahQgaaa aa@B27B@

 

  • We can use the rigid body formula for CF to relate the velocities of C and F

v F v C = ω zCF k×( r F r C ) v F =ViVcotθj ω zCF 2Lcosθj MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahAhada WgaaWcbaGaamOraaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadoea aeqaaOGaeyypa0JaeqyYdC3aaSbaaSqaaiaadQhacaWGdbGaamOraa qabaGccaWHRbGaey41aqRaaiikaiaahkhadaWgaaWcbaGaamOraaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadoeaaeqaaOGaaiykaaqaai aahAhadaWgaaWcbaGaamOraaqabaGccqGH9aqpcaWGwbGaaCyAaiab gkHiTiaadAfaciGGJbGaai4BaiaacshacqaH4oqCcaWHQbGaeyOeI0 IaeqyYdC3aaSbaaSqaaiaadQhacaWGdbGaamOraaqabaGccaaIYaGa amitaiGacogacaGGVbGaai4CaiabeI7aXjaahQgaaaaa@61E7@  

  • Point D on CD and point F on CF must have the same vertical velocity (the roller at D allows their horizontal velocities to differ).  This can be expressed as

v F j=v D jVcotθ ω zCF 2Lcosθ=Vcotθ ω zCF =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahAhada WgaaWcbaGaamOraaqabaGccqGHflY1caWHQbGaeyypa0JaaCODaiaa xcW7daWgaaWcbaGaamiraaqabaGccqGHflY1caWHQbGaeyO0H4Taey OeI0IaamOvaiGacogacaGGVbGaaiiDaiabeI7aXjabgkHiTiabeM8a 3naaBaaaleaacaWG6bGaam4qaiaadAeaaeqaaOGaaGOmaiaadYeaci GGJbGaai4BaiaacohacqaH4oqCcqGH9aqpcqGHsislcaWGwbGaci4y aiaac+gacaGG0bGaeqiUdehabaGaeyO0H4TaeqyYdC3aaSbaaSqaai aadQhacaWGdbGaamOraaqabaGccqGH9aqpcaaIWaaaaaa@66D0@

  • All points on CF therefore have the same velocity (equal to the velocity of C)

v CF =ViVcotθj MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadoeacaWGgbaabeaakiabg2da9iaadAfacaWHPbGaeyOeI0Ia amOvaiGacogacaGGVbGaaiiDaiabeI7aXjaahQgaaaa@4252@

 

Calculating the acceleration.

  • We can now calculate the accelerations.  We start at a known point: Points A and B have zero acceleration. 
  • We can use the rigid body formula to calculate the acceleration of E on each of AC and BD:

a E a A = α zAC k×( r E r A ) ω zAC 2 ( r E r A ) a E a B = α zAD k×( r E r B ) ω zAD 2 ( r E r B ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCyyam aaBaaaleaacaWGfbaabeaakiabgkHiTiaahggadaWgaaWcbaGaamyq aaqabaGccqGH9aqpcqaHXoqydaWgaaWcbaGaamOEaiaadgeacaWGdb aabeaakiaahUgacqGHxdaTcaGGOaGaaCOCamaaBaaaleaacaWGfbaa beaakiabgkHiTiaahkhadaWgaaWcbaGaamyqaaqabaGccaGGPaGaey OeI0IaeqyYdC3aa0baaSqaaiaadQhacaWGbbGaam4qaaqaaiaaikda aaGccaGGOaGaaCOCamaaBaaaleaacaWGfbaabeaakiabgkHiTiaahk hadaWgaaWcbaGaamyqaaqabaGccaGGPaaabaGaaCyyamaaBaaaleaa caWGfbaabeaakiabgkHiTiaahggadaWgaaWcbaGaamOqaaqabaGccq GH9aqpcqaHXoqydaWgaaWcbaGaamOEaiaadgeacaWGebaabeaakiaa hUgacqGHxdaTcaGGOaGaaCOCamaaBaaaleaacaWGfbaabeaakiabgk HiTiaahkhadaWgaaWcbaGaamOqaaqabaGccaGGPaGaeyOeI0IaeqyY dC3aa0baaSqaaiaadQhacaWGbbGaamiraaqaaiaaikdaaaGccaGGOa GaaCOCamaaBaaaleaacaWGfbaabeaakiabgkHiTiaahkhadaWgaaWc baGaamOqaaqabaGccaGGPaaaaaa@75F7@

  • The two members are connected at E and so must have the same acceleration there.   This shows that

α zAC k×(Lcosθi+Lsinθj) ω zAC 2 (Lcosθi+Lsinθj) = α zAD k×(Lcosθi+Lsinθj) ω zAD 2 (Lcosθi+Lsinθj) α zAC (LcosθjLsinθi) ω zAC 2 (Lcosθi+Lsinθj) = α zAD (LcosθjLsinθi) ω zAD 2 (Lcosθi+Lsinθj) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqySde 2aaSbaaSqaaiaadQhacaWGbbGaam4qaaqabaGccaWHRbGaey41aqRa aiikaiaadYeaciGGJbGaai4BaiaacohacqaH4oqCcaWHPbGaey4kaS IaamitaiGacohacaGGPbGaaiOBaiabeI7aXjaahQgacaGGPaGaeyOe I0IaeqyYdC3aa0baaSqaaiaadQhacaWGbbGaam4qaaqaaiaaikdaaa GccaGGOaGaamitaiGacogacaGGVbGaai4CaiabeI7aXjaahMgacqGH RaWkcaWGmbGaci4CaiaacMgacaGGUbGaeqiUdeNaaCOAaiaacMcaae aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcqaHXoqydaWgaaWcba GaamOEaiaadgeacaWGebaabeaakiaahUgacqGHxdaTcaGGOaGaeyOe I0IaamitaiaacogacaGGVbGaai4CaiabeI7aXjaahMgacqGHRaWkca WGmbGaai4CaiaacMgacaGGUbGaeqiUdeNaaCOAaiaacMcacqGHsisl cqaHjpWDdaqhaaWcbaGaamOEaiaadgeacaWGebaabaGaaGOmaaaaki aacIcacqGHsislcaWGmbGaai4yaiaac+gacaGGZbGaeqiUdeNaaCyA aiabgUcaRiaadYeacaGGZbGaaiyAaiaac6gacqaH4oqCcaWHQbGaai ykaaqaaiabgkDiElabeg7aHnaaBaaaleaacaWG6bGaamyqaiaadoea aeqaaOGaaiikaiaadYeaciGGJbGaai4BaiaacohacqaH4oqCcaWHQb GaeyOeI0IaamitaiGacohacaGGPbGaaiOBaiabeI7aXjaahMgacaGG PaGaeyOeI0IaeqyYdC3aa0baaSqaaiaadQhacaWGbbGaam4qaaqaai aaikdaaaGccaGGOaGaamitaiGacogacaGGVbGaai4CaiabeI7aXjaa hMgacqGHRaWkcaWGmbGaci4CaiaacMgacaGGUbGaeqiUdeNaaCOAai aacMcaaeaacaaMc8UaaGPaVlabg2da9iabeg7aHnaaBaaaleaacaWG 6bGaamyqaiaadseaaeqaaOGaaiikaiabgkHiTiaadYeacaGGJbGaai 4BaiaacohacqaH4oqCcaWHQbGaeyOeI0IaamitaiaacohacaGGPbGa aiOBaiabeI7aXjaahMgacaGGPaGaeyOeI0IaeqyYdC3aa0baaSqaai aadQhacaWGbbGaamiraaqaaiaaikdaaaGccaGGOaGaeyOeI0Iaamit aiaacogacaGGVbGaai4CaiabeI7aXjaahMgacqGHRaWkcaWGmbGaai 4CaiaacMgacaGGUbGaeqiUdeNaaCOAaiaacMcaaaaa@FB4E@

  • The i,j components give two equations for the unknown angular accelerations:

α zAC Lsinθ ω zAC 2 Lcosθ= α zAD Lsinθ+ ω zAD 2 Lcosθ α zAC Lcosθ ω zAC 2 Lsinθ= α zAD Lcosθ ω zAD 2 Lsinθ 2 α zAC Lsinθcosθ= ω zAD 2 L( cos 2 θ sin 2 θ)+ ω zAC 2 L α zAC = V 2 cosθ/(4 L 2 sin 3 θ) α zAD = α zAC = V 2 cosθ/(4 L 2 sin 3 θ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyOeI0 IaeqySde2aaSbaaSqaaiaadQhacaWGbbGaam4qaaqabaGccaWGmbGa ci4CaiaacMgacaGGUbGaeqiUdeNaeyOeI0IaeqyYdC3aa0baaSqaai aadQhacaWGbbGaam4qaaqaaiaaikdaaaGccaWGmbGaci4yaiaac+ga caGGZbGaeqiUdeNaeyypa0JaeyOeI0IaeqySde2aaSbaaSqaaiaadQ hacaWGbbGaamiraaqabaGccaWGmbGaai4CaiaacMgacaGGUbGaeqiU deNaey4kaSIaeqyYdC3aa0baaSqaaiaadQhacaWGbbGaamiraaqaai aaikdaaaGccaWGmbGaai4yaiaac+gacaGGZbGaeqiUdehabaGaeqyS de2aaSbaaSqaaiaadQhacaWGbbGaam4qaaqabaGccaWGmbGaci4yai aac+gacaGGZbGaeqiUdeNaeyOeI0IaeqyYdC3aa0baaSqaaiaadQha caWGbbGaam4qaaqaaiaaikdaaaGccaWGmbGaci4CaiaacMgacaGGUb GaeqiUdeNaeyypa0JaeyOeI0IaeqySde2aaSbaaSqaaiaadQhacaWG bbGaamiraaqabaGccaWGmbGaai4yaiaac+gacaGGZbGaeqiUdeNaey OeI0IaeqyYdC3aa0baaSqaaiaadQhacaWGbbGaamiraaqaaiaaikda aaGccaWGmbGaai4CaiaacMgacaGGUbGaeqiUdehabaGaeyO0H4Taey OeI0IaaGOmaiabeg7aHnaaBaaaleaacaWG6bGaamyqaiaadoeaaeqa aOGaamitaiGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai 4CaiabeI7aXjabg2da9iabeM8a3naaDaaaleaacaWG6bGaamyqaiaa dseaaeaacaaIYaaaaOGaamitaiaacIcaciGGJbGaai4Baiaacohada ahaaWcbeqaaiaaikdaaaGccqaH4oqCcqGHsislciGGZbGaaiyAaiaa c6gadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcaGGPaGaey4kaSIaeq yYdC3aa0baaSqaaiaadQhacaWGbbGaam4qaaqaaiaaikdaaaGccaWG mbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHshI3caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlabeg7aHnaaBaaaleaacaWG6bGaamyq aiaadoeaaeqaaOGaeyypa0JaeyOeI0IaamOvamaaCaaaleqabaGaaG OmaaaakiGacogacaGGVbGaai4CaiabeI7aXjaac+cacaGGOaGaaGin aiaadYeadaahaaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gada ahaaWcbeqaaiaaiodaaaGccqaH4oqCcaGGPaaabaGaeqySde2aaSba aSqaaiaadQhacaWGbbGaamiraaqabaGccqGH9aqpcqGHsislcqaHXo qydaWgaaWcbaGaamOEaiaadgeacaWGdbaabeaakiabg2da9iaadAfa daahaaWcbeqaaiaaikdaaaGcciGGJbGaai4BaiaacohacqaH4oqCca GGVaGaaiikaiaaisdacaWGmbWaaWbaaSqabeaacaaIYaaaaOGaci4C aiaacMgacaGGUbWaaWbaaSqabeaacaaIZaaaaOGaeqiUdeNaaiykaa aaaa@02BB@

  • We can use the rigid body acceleration formulas to calculate the velocities of D and C:

a C a A = α zAC k×( r C r A ) ω zAC 2 ( r D r A ) a C = V 2 cosθ 4 L 2 sin 3 θ (2Lcosθj2Lsinθi) V 2 4 L 2 sin 2 θ (2Lcosθi+2Lsinθj) a C = V 2 L cosθ sin 2 θ i V 2 2L 1 sin 3 θ j a D a B = α zAD k×( r D r B ) ω zAD 2 ( r D r B ) a D = V 2 2L 1 sin 3 θ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCyyam aaBaaaleaacaWGdbaabeaakiabgkHiTiaahggadaWgaaWcbaGaamyq aaqabaGccqGH9aqpcqaHXoqydaWgaaWcbaGaamOEaiaadgeacaWGdb aabeaakiaahUgacqGHxdaTcaGGOaGaaCOCamaaBaaaleaacaWGdbaa beaakiabgkHiTiaahkhadaWgaaWcbaGaamyqaaqabaGccaGGPaGaey OeI0IaeqyYdC3aa0baaSqaaiaadQhacaWGbbGaam4qaaqaaiaaikda aaGccaGGOaGaaCOCamaaBaaaleaacaWGebaabeaakiabgkHiTiaahk hadaWgaaWcbaGaamyqaaqabaGccaGGPaaabaGaaCyyamaaBaaaleaa caWGdbaabeaakiabg2da9iabgkHiTmaalaaabaGaamOvamaaCaaale qabaGaaGOmaaaakiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaisda caWGmbWaaWbaaSqabeaacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaW baaSqabeaacaaIZaaaaOGaeqiUdehaaiaacIcacaaIYaGaamitaiGa cogacaGGVbGaai4CaiabeI7aXjaahQgacqGHsislcaaIYaGaamitai GacohacaGGPbGaaiOBaiabeI7aXjaahMgacaGGPaGaeyOeI0YaaSaa aeaacaWGwbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiaadYeada ahaaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqa aiabgkdaYaaakiabeI7aXbaacaGGOaGaaGOmaiaadYeaciGGJbGaai 4BaiaacohacqaH4oqCcaWHPbGaey4kaSIaaGOmaiaadYeaciGGZbGa aiyAaiaac6gacqaH4oqCcaWHQbGaaiykaaqaaiaahggadaWgaaWcba Gaam4qaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaadAfadaahaaWc beqaaiaaikdaaaaakeaacaWGmbaaamaalaaabaGaci4yaiaac+gaca GGZbGaeqiUdehabaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaI YaaaaOGaeqiUdehaaiaahMgacqGHsisldaWcaaqaaiaadAfadaahaa WcbeqaaiaaikdaaaaakeaacaaIYaGaamitaaaadaWcaaqaaiaaigda aeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaiodaaaGccqaH4o qCaaGaaCOAaaqaaiaahggadaWgaaWcbaGaamiraaqabaGccqGHsisl caWHHbWaaSbaaSqaaiaadkeaaeqaaOGaeyypa0JaeqySde2aaSbaaS qaaiaadQhacaWGbbGaamiraaqabaGccaWHRbGaey41aqRaaiikaiaa hkhadaWgaaWcbaGaamiraaqabaGccqGHsislcaWHYbWaaSbaaSqaai aadkeaaeqaaOGaaiykaiabgkHiTiabeM8a3naaDaaaleaacaWG6bGa amyqaiaadseaaeaacaaIYaaaaOGaaiikaiaahkhadaWgaaWcbaGaam iraaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadkeaaeqaaOGaaiyk aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkDiElaayk W7caaMc8UaaGPaVlaaykW7caWHHbWaaSbaaSqaaiaadseaaeqaaOGa eyypa0JaeyOeI0YaaSaaaeaacaWGwbWaaWbaaSqabeaacaaIYaaaaa GcbaGaaGOmaiaadYeaaaWaaSaaaeaacaaIXaaabaGaci4CaiaacMga caGGUbWaaWbaaSqabeaacaaIZaaaaOGaeqiUdehaaiaahQgaaaaa@F165@

  • We can use the rigid body formula to relate the accelerations of C and F

a F a C = α zCF k×( r F r C ) ω zCF 2 ( r F r C ) a F = V 2 L cosθ sin 2 θ i V 2 2L 1 sin 3 θ j+ α zCF k×(2Lcosθi) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCyyam aaBaaaleaacaWGgbaabeaakiabgkHiTiaahggadaWgaaWcbaGaam4q aaqabaGccqGH9aqpcqaHXoqydaWgaaWcbaGaamOEaiaadoeacaWGgb aabeaakiaahUgacqGHxdaTcaGGOaGaaCOCamaaBaaaleaacaWGgbaa beaakiabgkHiTiaahkhadaWgaaWcbaGaam4qaaqabaGccaGGPaGaey OeI0IaeqyYdC3aa0baaSqaaiaadQhacaWGdbGaamOraaqaaiaaikda aaGccaGGOaGaaCOCamaaBaaaleaacaWGgbaabeaakiabgkHiTiaahk hadaWgaaWcbaGaam4qaaqabaGccaGGPaaabaGaeyO0H4TaaCyyamaa BaaaleaacaWGgbaabeaakiabg2da9iabgkHiTmaalaaabaGaamOvam aaCaaaleqabaGaaGOmaaaaaOqaaiaadYeaaaWaaSaaaeaaciGGJbGa ai4BaiaacohacqaH4oqCaeaaciGGZbGaaiyAaiaac6gadaahaaWcbe qaaiaaikdaaaGccqaH4oqCaaGaaCyAaiabgkHiTmaalaaabaGaamOv amaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGmbaaamaalaaaba GaaGymaaqaaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaG4maaaa kiabeI7aXbaacaWHQbGaey4kaSIaeqySde2aaSbaaSqaaiaadQhaca WGdbGaamOraaqabaGccaWHRbGaey41aqRaaiikaiabgkHiTiaaikda caWGmbGaai4yaiaac+gacaGGZbGaeqiUdeNaaCyAaiaacMcaaaaa@8758@

  • Finally, we know that D and F must have the same vertical acceleration (so they remain in contact).  Their horizontal accelerations may differ, because of the roller attached to D.   This gives

a D j= a F j V 2 2L 1 sin 3 θ α zCF 2Lcosθ= V 2 2L 1 sin 3 θ α CF =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahggada WgaaWcbaGaamiraaqabaGccqGHflY1caWHQbGaeyypa0JaaCyyamaa BaaaleaacaWGgbaabeaakiabgwSixlaahQgaaeaacqGHshI3cqGHsi sldaWcaaqaaiaadAfadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa amitaaaadaWcaaqaaiaaigdaaeaaciGGZbGaaiyAaiaac6gadaahaa WcbeqaaiaaiodaaaGccqaH4oqCaaGaeyOeI0IaeqySde2aaSbaaSqa aiaadQhacaWGdbGaamOraaqabaGccaaIYaGaamitaiaacogacaGGVb Gaai4CaiabeI7aXjabg2da9iabgkHiTmaalaaabaGaamOvamaaCaaa leqabaGaaGOmaaaaaOqaaiaaikdacaWGmbaaamaalaaabaGaaGymaa qaaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaG4maaaakiabeI7a XbaacqGHshI3cqaHXoqydaWgaaWcbaGaam4qaiaadAeaaeqaaOGaey ypa0JaaGimaaaaaa@6C68@

  • Since CF has zero angular velocity and angular acceleration, all points on CF have the same acceleration (which must equal that of point C).   Therefore

a CF = V 2 L cosθ sin 2 θ i V 2 2L 1 sin 3 θ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggadaWgaa WcbaGaam4qaiaadAeaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWG wbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamitaaaadaWcaaqaaiGaco gacaGGVbGaai4CaiabeI7aXbqaaiGacohacaGGPbGaaiOBamaaCaaa leqabaGaaGOmaaaakiabeI7aXbaacaWHPbGaeyOeI0YaaSaaaeaaca WGwbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaadYeaaaWaaSaa aeaacaaIXaaabaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIZa aaaOGaeqiUdehaaiaahQgaaaa@542F@

 

6.3.1 Summary of constraint equations at joints and contacts

 

As the examples in the preceding section show, the keys to analyzing motion in a system of connected rigid bodies are: (1) the formulas for relative velocity and acceleration of two points in a rigid body, and (2) constraints that relate the velocities and accelerations on two bodies at points where they touch.

 

There are three common types of connection between rigid bodies:

 

 

1.       A pin joint: the two connected members must have the same velocity and acceleration at the connected point

v B = v A a B = a A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadkeaaeqaaOGaeyypa0JaaCODamaaBaaaleaacaWGbbaabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaCyyamaaBaaaleaacaWGcbaabeaakiab g2da9iaahggadaWgaaWcbaGaamyqaaqabaaaaa@5032@

2.       A slider joint: the two connected members must have the same velocity and acceleration normal to the slider

v B n= v A n a B n= a A n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadkeaaeqaaOGaeyyXICTaaCOBaiabg2da9iaahAhadaWgaaWc baGaamyqaaqabaGccqGHflY1caWHUbGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH HbWaaSbaaSqaaiaadkeaaeqaaOGaeyyXICTaaCOBaiabg2da9iaahg gadaWgaaWcbaGaamyqaaqabaGccqGHflY1caWHUbaaaa@5D40@

3.       Contact between two objects without relative slip (sliding) at the contact (friction forces must act to prevent the slip, in general):  The velocities of the touching objects must be equal at the contact point.   The tangential components of acceleration must also be equal (the normal components of acceleration differ)

v B = v A a B t= a A t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadkeaaeqaaOGaeyypa0JaaCODamaaBaaaleaacaWGbbaabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaCyyamaaBaaaleaacaWGcbaabeaakiab gwSixlaahshacqGH9aqpcaWHHbWaaSbaaSqaaiaadgeaaeqaaOGaey yXICTaaCiDaaaa@56CA@

 

 

 

 

 

6.3.2 The Rolling Wheel

 

Wheels are everywhere.   They can be analyzed using the general rigid body equations, but it’s helpful to be able to avoid all the tedious cross products.   In this section we summarize special formulas for velocity and acceleration of points on a wheel.

 

 

Motion of a wheel rolling without slip on a stationary surface

 

It is surprisingly difficult to visualize the motion of a wheel.  The figure above might help: it shows the trajectory of one point on the circumference of the wheel.  The point traces quite a complicated path.   The important thing to notice is:

 

If a wheel rolls without slip on a stationary surface, the point touching the surface is stationary

 

Each point is only in contact with the ground for an instant, and while it touches the ground it has a large vertical acceleration, but it is instantaneously stationary.   We know this from the list of constraints in Sect 6.3.1, of course, but it’s still not an easy thing to visualize.

 

More generally, the ground need not necessarily be stationary (or the wheel could touch another surface).  In this case we know that the contacting points on two bodies in rolling contact have equal velocity at the contact.

Angular velocity-linear velocity formula: With this insight, we can use the rigid body formulas to calculate the instantaneous velocity vector for any point on the wheel.  Assume that

  • The wheel rolls with angular velocity ω= ω z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjpGaeyypa0 JaeqyYdC3aaSbaaSqaaiaadQhaaeqaaOGaaC4Aaaaa@3BC4@   counterclockwise rotation is positive.
  • The center of the wheel moves with velocity v O = v xO i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaad+eaaeqaaOGaeyypa0JaamODamaaBaaaleaacaWG4bGaam4t aaqabaGccaWHPbaaaa@3C76@  

The rolling wheel formula gives

v xO = ω z R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaSbaaS qaaiaadIhacaWGpbaabeaakiabg2da9iabgkHiTiabeM8a3naaBaaa leaacaWG6baabeaakiaadkfaaaa@3E41@

 

To see this, you can simply use the rigid body formula to go from the contact point (which is stationary) to O

v O v C =ω×( r O r C ) v O = ω z k×(Rj)= ω z Ri MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaad+eaaeqaaOGaeyOeI0IaaCODamaaBaaaleaacaWGdbaabeaa kiabg2da9iaahM8acqGHxdaTcaGGOaGaaCOCamaaBaaaleaacaWGpb aabeaakiabgkHiTiaahkhadaWgaaWcbaGaam4qaaqabaGccaGGPaGa eyO0H4TaaCODamaaBaaaleaacaWGpbaabeaakiabg2da9iabeM8a3n aaBaaaleaacaWG6baabeaakiaahUgacqGHxdaTcaGGOaGaamOuaiaa hQgacaGGPaGaeyypa0JaeyOeI0IaeqyYdC3aaSbaaSqaaiaadQhaae qaaOGaamOuaiaahMgaaaa@5A76@

 

More generally, we can calculate the velocity of any point on the wheel we might be interested in.  In fact, we can just write down the velocity of any point in the wheel by noticing that instantaneously all points are in circular motion about the contact point (just imagine the disk is rotating about C).  See if you can show all the following:

  • v A = ω z R(i+j) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadgeaaeqaaOGaeyypa0JaeyOeI0IaeqyYdC3aaSbaaSqaaiaa dQhaaeqaaOGaamOuaiaacIcacaWHPbGaey4kaSIaaCOAaiaacMcaaa a@415A@  
  • v D = ω z 2Ri MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadseaaeqaaOGaeyypa0JaeyOeI0IaeqyYdC3aaSbaaSqaaiaa dQhaaeqaaOGaaGOmaiaadkfacaWHPbaaaa@3EEB@
  • v B = ω z R(ij) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadkeaaeqaaOGaeyypa0JaeyOeI0IaeqyYdC3aaSbaaSqaaiaa dQhaaeqaaOGaamOuaiaacIcacaWHPbGaeyOeI0IaaCOAaiaacMcaaa a@4166@

Notice that the direction of the velocity at each point is always perpendicular to the line connecting to the point to C.

 

Angular acceleration-linear acceleration formula: Assume that

  • The wheel rolls with angular acceleration α= α z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHXoGaeyypa0 JaeqySde2aaSbaaSqaaiaadQhaaeqaaOGaaC4Aaaaa@3B7E@   counterclockwise rotation is positive.
  • The center of the wheel moves with acceleration a O = a xO i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbWaaSbaaS qaaiaad+eaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWG4bGaam4t aaqabaGccaWHPbaaaa@3C4C@  

The rolling wheel formula gives

a xO = α z R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadIhacaWGpbaabeaakiabg2da9iabgkHiTiabeg7aHnaaBaaa leaacaWG6baabeaakiaadkfaaaa@3DFE@

 

 

You can derive this formula in two different ways:

(1)    Differentiate the velocity formula v xO = ω z R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaSbaaS qaaiaadIhacaWGpbaabeaakiabg2da9iabgkHiTiabeM8a3naaBaaa leaacaWG6baabeaakiaadkfaaaa@3E41@  with respect to time

(2)    Use the rigid body formula:  

( a O a C )=α×( r O r C ) ω z 2 ( r O r C ) a O = a C α z Ri ω z 2 Rj MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaacIcaca WHHbWaaSbaaSqaaiaad+eaaeqaaOGaeyOeI0IaaCyyamaaBaaaleaa caWGdbaabeaakiaacMcacqGH9aqpcaWHXoGaey41aqRaaiikaiaahk hadaWgaaWcbaGaam4taaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaa doeaaeqaaOGaaiykaiabgkHiTiabeM8a3naaDaaaleaacaWG6baaba GaaGOmaaaakiaacIcacaWHYbWaaSbaaSqaaiaad+eaaeqaaOGaeyOe I0IaaCOCamaaBaaaleaacaWGdbaabeaakiaacMcaaeaacqGHshI3ca WHHbWaaSbaaSqaaiaad+eaaeqaaOGaeyypa0JaaCyyamaaBaaaleaa caWGdbaabeaakiabgkHiTiabeg7aHnaaBaaaleaacaWG6baabeaaki aadkfacaWHPbGaeyOeI0IaeqyYdC3aa0baaSqaaiaadQhaaeaacaaI YaaaaOGaamOuaiaahQgaaaaa@6469@

We know that the i component of acceleration at point C has to be the same as the i component of acceleration of the ground (i.e. zero).  (The j components don’t have to be equal).   We also know that O has no j acceleration, because it remains at the same height above the ground.   Therefore

a xO i= a yC j α z Ri ω z 2 Rj a xO = α z R a yC = ω z 2 R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadggada WgaaWcbaGaamiEaiaad+eaaeqaaOGaaCyAaiabg2da9iaadggadaWg aaWcbaGaamyEaiaadoeaaeqaaOGaaCOAaiabgkHiTiabeg7aHnaaBa aaleaacaWG6baabeaakiaadkfacaWHPbGaeyOeI0IaeqyYdC3aa0ba aSqaaiaadQhaaeaacaaIYaaaaOGaamOuaiaahQgaaeaacqGHshI3ca WGHbWaaSbaaSqaaiaadIhacaWGpbaabeaakiabg2da9iabgkHiTiab eg7aHnaaBaaaleaacaWG6baabeaakiaadkfacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaWG5bGa am4qaaqabaGccqGH9aqpcqaHjpWDdaqhaaWcbaGaamOEaaqaaiaaik daaaGccaWGsbaaaaa@6866@

We can calculate the acceleration of any other point on the disk using the rigid body formula.

 

Example: The block AB has horizontal acceleration a and horizontal speed v.   Calculate the angular velocity and angular acceleration of the rollers.  Then, calculate the linear velocity and acceleration of O

 

To solve problems like this we use two ideas: (1) the formulas relating velocity and accelerations of points on the disk; and (2) the tangential velocity and acceleration of contacting points are equal.

 

Here, we know the tangential velocity at C is zero; the tangential velocity at A is vi MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaaCyAaa aa@3760@  .   We can use the wheel formulas

v xA =2 ω z R ω z =v/(2R) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaSbaaS qaaiaadIhacaWGbbaabeaakiabg2da9iabgkHiTiaaikdacqaHjpWD daWgaaWcbaGaamOEaaqabaGccaWGsbGaeyO0H4TaeqyYdC3aaSbaaS qaaiaadQhaaeqaaOGaeyypa0JaeyOeI0IaamODaiaac+cacaGGOaGa aGOmaiaadkfacaGGPaaaaa@4ADB@

Similarly, the tangential acceleration at A is ai MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbGaaCyAaa aa@374B@  .   The rolling wheel formula gives

a xA =2 α z R α z =a/(2R) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadIhacaWGbbaabeaakiabg2da9iabgkHiTiaaikdacqaHXoqy daWgaaWcbaGaamOEaaqabaGccaWGsbGaeyO0H4TaeqySde2aaSbaaS qaaiaadQhaaeqaaOGaeyypa0JaeyOeI0Iaamyyaiaac+cacaGGOaGa aGOmaiaadkfacaGGPaaaaa@4A55@

 

To find the velocity and acceleration at O, we can use

v xO = ω z R=v/2 a xO = α z R=a/2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadAhada WgaaWcbaGaamiEaiaad+eaaeqaaOGaeyypa0JaeyOeI0IaeqyYdC3a aSbaaSqaaiaadQhaaeqaaOGaamOuaiabg2da9iaadAhacaGGVaGaaG OmaaqaaiaadggadaWgaaWcbaGaamiEaiaad+eaaeqaaOGaeyypa0Ja eyOeI0IaeqySde2aaSbaaSqaaiaadQhaaeqaaOGaamOuaiabg2da9i aadggacaGGVaGaaGOmaaaaaa@4D9E@

 

6.3.3 Gears

Gears can be analyzed in much the same way as a rolling wheel.   Gears are used to increase or decrease angular velocities (they act like mechanical amplifiers): for example, in the animation the small gear is rotating at twice the angular rate of the large one.   They also modify the torques (or moments) applied to the gears: if a gear system increases angular velocity, it reduces torque by the same factor (so the torque on the small gear in the animation is half that on the large one).   Some clever gear systems can even be used to add angular velocities (see the discussion of epicyclic gears below.

 

There are many different gear designs.  Here, we focus only on two-dimensional ‘spur gears’.    Spur gears have a rather complicated geometry, which we don’t have time to discuss in detail in this course.   They are designed to behave like two wheels which roll against each other with no slip at the contact.   The wheel radius is equal to the ‘pitch circle radius’ of the gears (which is slightly smaller than physical diameter of the gears, because the teeth have to overlap).   Gear manufacturers often specify the number of teeth on a gear instead of its radius.  The number of teeth and the radius have to be related, because the teeth have to be the same circumferential distance apart for the gear pair to mesh.

 

We analyze motion of gears using two ideas:

(1)    Two meshed gears must have equal velocities at the point where they touch.

(2)    The rigid body formula, relating the velocity of points on the circumference of the gear to the velocity of its center:

v C = v O + ω z k×( r C r O ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadoeaaeqaaOGaeyypa0JaaCODamaaBaaaleaacaWGpbaabeaa kiabgUcaRiabeM8a3naaBaaaleaacaWG6baabeaakiaahUgacqGHxd aTcaGGOaGaaCOCamaaBaaaleaacaWGdbaabeaakiabgkHiTiaahkha daWgaaWcbaGaam4taaqabaGccaGGPaaaaa@47B2@

In practice we don’t usually bother doing the cross product, and instead just write down the velocity on the circumference directly using the figure provided:

·         v A = v O + ω z Rj MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadgeaaeqaaOGaeyypa0JaaCODamaaBaaaleaacaWGpbaabeaa kiabgUcaRiabeM8a3naaBaaaleaacaWG6baabeaakiaadkfacaWHQb aaaa@402B@

·         v B = v O ω z Ri MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadkeaaeqaaOGaeyypa0JaaCODamaaBaaaleaacaWGpbaabeaa kiabgkHiTiabeM8a3naaBaaaleaacaWG6baabeaakiaadkfacaWHPb aaaa@4036@

·         v C = v O ω z Rj MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadoeaaeqaaOGaeyypa0JaaCODamaaBaaaleaacaWGpbaabeaa kiabgkHiTiabeM8a3naaBaaaleaacaWG6baabeaakiaadkfacaWHQb aaaa@4038@

·         v D = v O + ω z Ri MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadseaaeqaaOGaeyypa0JaaCODamaaBaaaleaacaWGpbaabeaa kiabgUcaRiabeM8a3naaBaaaleaacaWG6baabeaakiaadkfacaWHPb aaaa@402D@

You don’t have to remember these MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  just visualize every point on the gear moving in circular motion (counterclockwise) around O, and write down the vectors (be careful with signs!).

 

Example 1:  The left gear in the figure rotates with counterclockwise angular velocity ω z1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaaigdaaeqaaaaa@3926@ .   The large gear has radius R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaigdaaeqaaaaa@3731@  and N 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaSbaaS qaaiaaigdaaeqaaaaa@372D@  teeth, the small one has radius R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaikdaaeqaaaaa@3732@  and N 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaSbaaS qaaiaaikdaaeqaaaaa@372E@  teeth.   Calculate the angular velocity of the smaller gear.

 

Note:

  • The velocities of the two touching gears are equal at C
  • The gear rotation/velocity formula gives

ω z1 R 1 j= ω z2 R 2 j ω z2 = R 2 R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaaigdaaeqaaOGaamOuamaaBaaaleaacaaIXaaabeaa kiaahQgacqGH9aqpcqGHsislcqaHjpWDdaWgaaWcbaGaamOEaiaaik daaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaakiaahQgacqGHshI3 cqaHjpWDdaWgaaWcbaGaamOEaiaaikdaaeqaaOGaeyypa0JaeyOeI0 YaaSaaaeaacaWGsbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOuamaa BaaaleaacaaIXaaabeaaaaaaaa@4FFD@

Notice that we assume both gears rotate counterclockwise.   The formula tells us that the second gear has a negative angular velocity MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  this means that it is actually rotating clockwise.   The animation at the top of this section confirms that this indeed is the case.

 

 

Example 2: An ‘epicyclic’ gearbox is a special arrangement of gears that has many applications.  The sketch shows a simple example.   The gearbox can be driven in three different places: one drive shaft is connected to the central sun gear (A); the other is attached to the ‘planet carrier’, which is joined to the center of the ‘pinion gears’ B,C and D.  The outer gear (E MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  called the ‘ring gear’) can also be driven separately.

 

Epicyclic gearboxes are used in all automatic vehicle transmissions.   They are also very useful in ‘split power’ drives, where two motors need to be connected together to drive a single axle.   Hybrid vehicles, which have both an electric motor and an internal combustion engine driving the same axle, are one example.   You can find a very nice description of the Toyota Prius split power transmission here:  the website includes a Flash animation that lets you change the speeds of the motors in the system and visualize the motion of the gears.

 

The figure shows a schematic diagram illustrating the general geometry and motion of the system.   We have four rigid bodies:

  • The central sun gear, radius R S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaadofaaeqaaaaa@374E@  , N S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaSbaaS qaaiaadofaaeqaaaaa@374A@  teeth, rotating at angular velocity ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaaaa@3943@  
  • The planet carrier, angular velocity ω zPC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfacaWGdbaabeaaaaa@3A08@
  • The ring gear, radius R R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaadkfaaeqaaaaa@374D@ , with N R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaSbaaS qaaiaadkfaaeqaaaaa@3749@  teeth, angular velocity ω zR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadkfaaeqaaaaa@3942@
  • The planet gear, radius r=( R R R S )/2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaeyypa0 JaaiikaiaadkfadaWgaaWcbaGaamOuaaqabaGccqGHsislcaWGsbWa aSbaaSqaaiaadofaaeqaaOGaaiykaiaac+cacaaIYaaaaa@3EEE@  , N P =( N R N S )/2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaSbaaS qaaiaadcfaaeqaaOGaeyypa0Jaaiikaiaad6eadaWgaaWcbaGaamOu aaqabaGccqGHsislcaWGobWaaSbaaSqaaiaadofaaeqaaOGaaiykai aac+cacaaIYaaaaa@3FCD@  teeth, rotating at angular velocity ω zP MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfaaeqaaaaa@3940@  

 

In any application, we are given the angular velocity of two of the drive shafts (any two of ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaaaa@3943@ , ω zPC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfacaWGdbaabeaaaaa@3A08@ , ω zR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadkfaaeqaaaaa@3942@  ), and must calculate the third.   The planet gear is not connected to any drive shaft, so we usually don’t care very much about its angular speed, but we will need to find ω zP MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfaaeqaaaaa@3940@  to solve for the unknown one of ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaaaa@3943@ , ω zPC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfacaWGdbaabeaaaaa@3A08@ , ω zR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadkfaaeqaaaaa@3942@  .

 

This seems a terribly difficult problem, but it can be solved in a very simple way with a trick. 

 

We start by solving a simpler version of the problem.  Suppose that the planet carrier is stationary ( ω zPC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfacaWGdbaabeaaaaa@3A08@  =0) and the sun gear rotates with angular speed  ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaaaa@3943@  (see the animation).   What is the angular velocity of the ring gear?     

 

The sun gear and the planet gear are just a standard gear pair so we know that

ω zS R S = ω zP r ω zP = ω zS R S r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaOGaamOuamaaBaaaleaacaWGtbaabeaa kiabg2da9iabgkHiTiabeM8a3naaBaaaleaacaWG6bGaamiuaaqaba GccaWGYbGaeyO0H4TaeqyYdC3aaSbaaSqaaiaadQhacaWGqbaabeaa kiabg2da9iabgkHiTiabeM8a3naaBaaaleaacaWG6bGaam4uaaqaba GcdaWcaaqaaiaadkfadaWgaaWcbaGaam4uaaqabaaakeaacaWGYbaa aaaa@50E0@

The two touching points on the planet gear and the ring gear must have the same velocity, so (using the rotating gear formula)

ω zP rj= ω zR R R j ω R = ω zP r R R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfaaeqaaOGaamOCaiaahQgacqGH9aqpcqaHjpWD daWgaaWcbaGaamOEaiaadkfaaeqaaOGaamOuamaaBaaaleaacaWGsb aabeaakiaahQgacaaMc8UaaGPaVlaaykW7cqGHshI3caaMc8UaaGPa VlaaykW7cqaHjpWDdaWgaaWcbaGaamOuaaqabaGccqGH9aqpcqaHjp WDdaWgaaWcbaGaamOEaiaadcfaaeqaaOWaaSaaaeaacaWGYbaabaGa amOuamaaBaaaleaacaWGsbaabeaaaaaaaa@5921@

We can eliminate ω zP MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfaaeqaaaaa@3940@  to get the answer:

ω zR = ω zS R S R R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaMc8UaaGPaVl abeM8a3naaBaaaleaacaWG6bGaamOuaaqabaGccqGH9aqpcqGHsisl cqaHjpWDdaWgaaWcbaGaamOEaiaadofaaeqaaOWaaSaaaeaacaWGsb WaaSbaaSqaaiaadofaaeqaaaGcbaGaamOuamaaBaaaleaacaWGsbaa beaaaaaaaa@45FE@

 

Now let’s try the harder problem.   The animation shows a general situation, where ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaaaa@3943@ , ω zPC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfacaWGdbaabeaaaaa@3A08@  are both nonzero.   How can we find ω zR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadkfaaeqaaaaa@3942@  now?

 

This is difficult to analyze because the center of the planet gear is not fixed, so it’s hard for us to visualize the motion, and the standard gear formulas don’t work.   But we can simplify the problem by analyzing motion in a reference frame that rotates with the planet carrier.   For example, imagine attaching a videocamera to the planet carrier MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  this camera would show the planet carrier to be stationary, with the surrounding world rotating in the opposite direction.   The angular velocity of the planet carrier would be subtracted from all the other angular velocities.   In this reference frame, we can use the result we just calculated:

( ω zR ω zPC ) ( ω zS ω zPC ) = R S R R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaMc8UaaGPaVp aalaaabaGaaiikaiabeM8a3naaBaaaleaacaWG6bGaamOuaaqabaGc cqGHsislcqaHjpWDdaWgaaWcbaGaamOEaiaadcfacaWGdbaabeaaki aacMcaaeaacaGGOaGaeqyYdC3aaSbaaSqaaiaadQhacaWGtbaabeaa kiabgkHiTiabeM8a3naaBaaaleaacaWG6bGaamiuaiaadoeaaeqaaO GaaiykaaaacqGH9aqpcqGHsisldaWcaaqaaiaadkfadaWgaaWcbaGa am4uaaqabaaakeaacaWGsbWaaSbaaSqaaiaadkfaaeqaaaaaaaa@53D8@

 

This result is general, and can be re-arranged to tell you the angular velocities for any given combination of ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaaaa@3943@ , ω zPC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadcfacaWGdbaabeaaaaa@3A08@  and ω zR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadkfaaeqaaaaa@3942@ .

 

 

 

 

6.4 Linear momentum, angular momentum and kinetic energy of rigid bodies

 

In this section, we determine how to calculate the angular momentum and kinetic energy of a rigid body, and define two important quantities: (1) the center of mass of a rigid body (which you already know), and (2) the Inertia tensor (matrix) of a rigid body.

 

To keep things simple, we won’t consider a general rigid body right away.   Instead, we will calculate the linear momentum, angular momentum, and kinetic energy of a system of N particles that are connected together by rigid, massless links.

 

Definitions of inertial properties: For this system, we will define  

The total mass M= i=1 N m i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaaeWbqaaiaad2gadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiab g2da9iaaigdaaeaacaWGobaaniabggHiLdaaaa@3FD4@  

The position of the center of mass r G = 1 M i=1 N m i r i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGnbaa amaaqahabaGaamyBamaaBaaaleaacaWGPbaabeaakiaahkhadaWgaa WcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaa niabggHiLdaaaa@44BB@  

The position vector of each mass relative to the center of mass d i = r i r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahsgadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWHYbWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0IaaCOCamaaBaaaleaacaWGhbaabeaaaaa@3E4D@  

The velocity of the center of mass v G = d r G dt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWcaaqaaiaadsgacaWHYbWaaSba aSqaaiaadEeaaeqaaaGcbaGaamizaiaadshaaaaaaa@3E16@  

 

The mass moment of inertia about the center of mass (a tensor, which can be expressed as a matrix if we choose a coordinate system and set d i = d ix i+ d iy j+ d iz k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHKbWaaSbaaS qaaiaadMgaaeqaaOGaeyypa0JaamizamaaBaaaleaacaWGPbGaamiE aaqabaGccaWHPbGaey4kaSIaamizamaaBaaaleaacaWGPbGaamyEaa qabaGccaWHQbGaey4kaSIaamizamaaBaaaleaacaWGPbGaamOEaaqa baGccaWHRbaaaa@4648@  )

 

I G = I Gxx I Gxy I Gxz I Gyx I Gyy I Gyz I Gzx I Gzy I Gzz = i=1 N m i d iy 2 + d iz 2 d ix d iy d ix d iz d ix d iy d ix 2 + d iz 2 d iy d iz d ix d iz d iy d iz d ix 2 + d iy 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWadaqaauaabeqadmaaaeaacaWG jbWaaSbaaSqaaiaadEeacaWG4bGaamiEaaqabaaakeaacaWGjbWaaS baaSqaaiaadEeacaWG4bGaamyEaaqabaaakeaacaWGjbWaaSbaaSqa aiaadEeacaWG4bGaamOEaaqabaaakeaacaWGjbWaaSbaaSqaaiaadE eacaWG5bGaamiEaaqabaaakeaacaWGjbWaaSbaaSqaaiaadEeacaWG 5bGaamyEaaqabaaakeaacaWGjbWaaSbaaSqaaiaadEeacaWG5bGaam OEaaqabaaakeaacaWGjbWaaSbaaSqaaiaadEeacaWG6bGaamiEaaqa baaakeaacaWGjbWaaSbaaSqaaiaadEeacaWG6bGaamyEaaqabaaake aacaWGjbWaaSbaaSqaaiaadEeacaWG6bGaamOEaaqabaaaaaGccaGL BbGaayzxaaGaeyypa0ZaaabCaeaacaWGTbWaaSbaaSqaaiaadMgaae qaaOWaamWaaeaafaqabeWadaaabaGaamizamaaDaaaleaacaWGPbGa amyEaaqaaiaaikdaaaGccqGHRaWkcaWGKbWaa0baaSqaaiaadMgaca WG6baabaGaaGOmaaaaaOqaaiabgkHiTiaadsgadaWgaaWcbaGaamyA aiaadIhaaeqaaOGaamizamaaBaaaleaacaWGPbGaamyEaaqabaaake aacqGHsislcaWGKbWaaSbaaSqaaiaadMgacaWG4baabeaakiaadsga daWgaaWcbaGaamyAaiaadQhaaeqaaaGcbaGaeyOeI0IaamizamaaBa aaleaacaWGPbGaamiEaaqabaGccaWGKbWaaSbaaSqaaiaadMgacaWG 5baabeaaaOqaaiaadsgadaqhaaWcbaGaamyAaiaadIhaaeaacaaIYa aaaOGaey4kaSIaamizamaaDaaaleaacaWGPbGaamOEaaqaaiaaikda aaaakeaacqGHsislcaWGKbWaaSbaaSqaaiaadMgacaWG5baabeaaki aadsgadaWgaaWcbaGaamyAaiaadQhaaeqaaaGcbaGaeyOeI0Iaamiz amaaBaaaleaacaWGPbGaamiEaaqabaGccaWGKbWaaSbaaSqaaiaadM gacaWG6baabeaaaOqaaiabgkHiTiaadsgadaWgaaWcbaGaamyAaiaa dMhaaeqaaOGaamizamaaBaaaleaacaWGPbGaamOEaaqabaaakeaaca WGKbWaa0baaSqaaiaadMgacaWG4baabaGaaGOmaaaakiabgUcaRiaa dsgadaqhaaWcbaGaamyAaiaadMhaaeaacaaIYaaaaaaaaOGaay5wai aaw2faaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHi Ldaaaa@AB97@

 

The mass moment of inertia is sometimes also written in a more abstract but very compact way as

I G = i=1 N m i d i 2 1 m i d i d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0ZaaabCaeaadaqadaqaaiaad2gadaWg aaWcbaGaamyAaaqabaGcdaabdaqaaiaahsgadaWgaaWcbaGaamyAaa qabaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccaWHXaGa eyOeI0IaamyBamaaBaaaleaacaWGPbaabeaakiaahsgadaWgaaWcba GaamyAaaqabaGccqGHxkcXcaWHKbWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0 GaeyyeIuoaaaa@51BE@

Here, 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHXaaaaa@362C@  is the identity tensor, and d i d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHKbWaaSbaaS qaaiaadMgaaeqaaOGaey4LIqSaaCizamaaBaaaleaacaWGPbaabeaa aaa@3B94@  is a tensor with components d ix d ix MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaSbaaS qaaiaadMgacaWG4baabeaakiaadsgadaWgaaWcbaGaamyAaiaadIha aeqaaaaa@3B7D@  , d ix d iy MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaSbaaS qaaiaadMgacaWG4baabeaakiaadsgadaWgaaWcbaGaamyAaiaadMha aeqaaaaa@3B7E@ , d ix d iz MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaSbaaS qaaiaadMgacaWG4baabeaakiaadsgadaWgaaWcbaGaamyAaiaadQha aeqaaaaa@3B7F@ , etc (the symbol MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHxkcXaaa@377C@  is called the ‘diadic product’ of two vectors).

 

 

Formulas for linear and angular momentum and kinetic energy: We will show that:

 

The total linear momentum is p=M v G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahchacqGH9a qpcaWGnbGaaCODamaaBaaaleaacaWGhbaabeaaaaa@3AFF@

 

The total angular momentum (about the origin) is h= r G ×M v G + I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIgacqGH9a qpcaWHYbWaaSbaaSqaaiaadEeaaeqaaOGaey41aqRaamytaiaahAha daWgaaWcbaGaam4raaqabaGccqGHRaWkcaWHjbWaaSbaaSqaaiaadE eaaeqaaOGaaCyYdaaa@4320@

 

The total kinetic energy is T= 1 2 M v G v G + 1 2 ω I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2eacaWH2bWaaSbaaSqa aiaadEeaaeqaaOGaeyyXICTaaCODamaaBaaaleaacaWGhbaabeaaki abgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaCyYdiabgwSixlaa hMeadaWgaaWcbaGaam4raaqabaGccaWHjpaaaa@49EC@

 

These are actually general results that hold for all rigid bodies, as long as we use a more general definition of M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eaaaa@3709@  and I G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4raaqabaaaaa@3801@  .

 

 

Simplified formulas for two dimensions:  For planar problems, d iz =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaSbaaS qaaiaadMgacaWG6baabeaakiabg2da9iaaicdaaaa@3A3F@  (since all the masses are in the plane), and ω= ω z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjpGaeyypa0 JaeqyYdC3aaSbaaSqaaiaadQhaaeqaaOGaaC4Aaaaa@3BC4@  .   In this case, we can use

The total linear momentum is p=M v G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahchacqGH9a qpcaWGnbGaaCODamaaBaaaleaacaWGhbaabeaaaaa@3AFF@

The total angular momentum (about the origin) is h= r G ×M v G + I Gzz ω z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIgacqGH9a qpcaWHYbWaaSbaaSqaaiaadEeaaeqaaOGaey41aqRaamytaiaahAha daWgaaWcbaGaam4raaqabaGccqGHRaWkcaWGjbWaaSbaaSqaaiaadE eacaWG6bGaamOEaaqabaGccqaHjpWDdaWgaaWcbaGaamOEaaqabaGc caWHRbaaaa@47BB@

The total kinetic energy is T= 1 2 M v G v G + 1 2 I Gzz ω z 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2eacaWH2bWaaSbaaSqa aiaadEeaaeqaaOGaeyyXICTaaCODamaaBaaaleaacaWGhbaabeaaki abgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaamysamaaBaaaleaa caWGhbGaamOEaiaadQhaaeqaaOGaeqyYdC3aa0baaSqaaiaadQhaae aacaaIYaaaaaaa@4AA7@

 

Here I Gzz MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaaaaa@3937@  is just the bottom diagonal term of the full inertia matrix (i.e. just a single number)

I Gzz = i=1 N m i d ix 2 + d iy 2 = i=1 N m i d i 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaam4raiaadQhacaWG6baabeaakiabg2da9maaqahabaGaamyB amaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaai aad6eaa0GaeyyeIuoakmaabmaabaGaamizamaaDaaaleaacaWGPbGa amiEaaqaaiaaikdaaaGccqGHRaWkcaWGKbWaa0baaSqaaiaadMgaca WG5baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maaqahabaGa amyBamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaa qaaiaad6eaa0GaeyyeIuoakmaaemaabaGaaCizamaaBaaaleaacaWG PbaabeaaaOGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaaa@5BC5@

 

 

Example 1: A simple 3D assembly of masses is shown in the figure. 

 

(1) Find the mass moment of inertia.  

 

By symmetry, the COM is at the origin. The inertia tensor is therefore

 

I G = 2 m y L y 2 + m z L z 2 0 0 0 2 m x L x 2 + m z L z 2 0 0 0 2 m x L x 2 + m y L y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWadaqaauaabeqadmaaaeaacaaI YaWaaeWaaeaacaWGTbWaaSbaaSqaaiaadMhaaeqaaOGaamitamaaDa aaleaacaWG5baabaGaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGa amOEaaqabaGccaWGmbWaa0baaSqaaiaadQhaaeaacaaIYaaaaaGcca GLOaGaayzkaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOm amaabmaabaGaamyBamaaBaaaleaacaWG4baabeaakiaadYeadaqhaa WcbaGaamiEaaqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaa dQhaaeqaaOGaamitamaaDaaaleaacaWG6baabaGaaGOmaaaaaOGaay jkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikda daqadaqaaiaad2gadaWgaaWcbaGaamiEaaqabaGccaWGmbWaa0baaS qaaiaadIhaaeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaWG 5baabeaakiaadYeadaqhaaWcbaGaamyEaaqaaiaaikdaaaaakiaawI cacaGLPaaaaaaacaGLBbGaayzxaaaaaa@665A@

 

 

(2) Assume that the COM is stationary (i.e. the assembly rotates about the origin). Find formulas for the angular momentum and kinetic energy of the system, in terms of the angular velocity components ω x , ω y , ω z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamiEaaqabaGccaGGSaGaeqyYdC3aaSbaaSqaaiaadMhaaeqa aOGaaiilaiabeM8a3naaBaaaleaacaWG6baabeaaaaa@3FCC@  

 

The formula gives the angular momentum

 

h= r G ×M v G + I G ω= 2 m y L y 2 + m z L z 2 0 0 0 2 m x L x 2 + m z L z 2 0 0 0 2 m x L x 2 + m y L y 2 ω x ω y ω z =2 m y L y 2 + m z L z 2 ω x i+2 m x L x 2 + m z L z 2 ω y j+2 m x L x 2 + m y L y 2 ω z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCiAai abg2da9iaahkhadaWgaaWcbaGaam4raaqabaGccqGHxdaTcaWGnbGa aCODamaaBaaaleaacaWGhbaabeaakiabgUcaRiaahMeadaWgaaWcba Gaam4raaqabaGccaWHjpGaeyypa0ZaamWaaeaafaqabeWadaaabaGa aGOmamaabmaabaGaamyBamaaBaaaleaacaWG5baabeaakiaadYeada qhaaWcbaGaamyEaaqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqa aiaadQhaaeqaaOGaamitamaaDaaaleaacaWG6baabaGaaGOmaaaaaO GaayjkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa ikdadaqadaqaaiaad2gadaWgaaWcbaGaamiEaaqabaGccaWGmbWaa0 baaSqaaiaadIhaaeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaa caWG6baabeaakiaadYeadaqhaaWcbaGaamOEaaqaaiaaikdaaaaaki aawIcacaGLPaaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI YaWaaeWaaeaacaWGTbWaaSbaaSqaaiaadIhaaeqaaOGaamitamaaDa aaleaacaWG4baabaGaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGa amyEaaqabaGccaWGmbWaa0baaSqaaiaadMhaaeaacaaIYaaaaaGcca GLOaGaayzkaaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqa aiabeM8a3naaBaaaleaacaWG4baabeaaaOqaaiabeM8a3naaBaaale aacaWG5baabeaaaOqaaiabeM8a3naaBaaaleaacaWG6baabeaaaaaa kiaawUfacaGLDbaaaeaacqGH9aqpcaaIYaWaaeWaaeaacaWGTbWaaS baaSqaaiaadMhaaeqaaOGaamitamaaDaaaleaacaWG5baabaGaaGOm aaaakiabgUcaRiaad2gadaWgaaWcbaGaamOEaaqabaGccaWGmbWaa0 baaSqaaiaadQhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeqyYdC3a aSbaaSqaaiaadIhaaeqaaOGaaCyAaiabgUcaRiaaikdadaqadaqaai aad2gadaWgaaWcbaGaamiEaaqabaGccaWGmbWaa0baaSqaaiaadIha aeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaWG6baabeaaki aadYeadaqhaaWcbaGaamOEaaqaaiaaikdaaaaakiaawIcacaGLPaaa cqaHjpWDdaWgaaWcbaGaamyEaaqabaGccaWHQbGaey4kaSIaaGOmam aabmaabaGaamyBamaaBaaaleaacaWG4baabeaakiaadYeadaqhaaWc baGaamiEaaqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaadM haaeqaaOGaamitamaaDaaaleaacaWG5baabaGaaGOmaaaaaOGaayjk aiaawMcaaiabeM8a3naaBaaaleaacaWG6baabeaakiaahUgaaaaa@B206@

Note that h is a vector.   Importantly, h is not generally parallel to the angular velocity vector, as this example shows.

 

The kinetic energy is

T= 1 2 M v G 2 + 1 2 ω I G ω= 1 2 ω x ω y ω z 2 m y L y 2 + m z L z 2 0 0 0 2 m x L x 2 + m z L z 2 0 0 0 2 m x L x 2 + m y L y 2 ω x ω y ω z T= m y L y 2 + m z L z 2 ω x 2 + m x L x 2 + m z L z 2 ω y 2 + m x L x 2 + m y L y 2 ω z 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivai abg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamytamaaemaabaGa aCODamaaBaaaleaacaWGhbaabeaaaOGaay5bSlaawIa7amaaCaaale qabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGa aCyYdiabgwSixlaahMeadaWgaaWcbaGaam4raaqabaGccaWHjpGaey ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaauaabeqadeaa aeaacqaHjpWDdaWgaaWcbaGaamiEaaqabaaakeaacqaHjpWDdaWgaa WcbaGaamyEaaqabaaakeaacqaHjpWDdaWgaaWcbaGaamOEaaqabaaa aaGccaGLBbGaayzxaaGaeyyXIC9aamWaaeaafaqabeWadaaabaGaaG OmamaabmaabaGaamyBamaaBaaaleaacaWG5baabeaakiaadYeadaqh aaWcbaGaamyEaaqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaai aadQhaaeqaaOGaamitamaaDaaaleaacaWG6baabaGaaGOmaaaaaOGa ayjkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaik dadaqadaqaaiaad2gadaWgaaWcbaGaamiEaaqabaGccaWGmbWaa0ba aSqaaiaadIhaaeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaaca WG6baabeaakiaadYeadaqhaaWcbaGaamOEaaqaaiaaikdaaaaakiaa wIcacaGLPaaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIYa WaaeWaaeaacaWGTbWaaSbaaSqaaiaadIhaaeqaaOGaamitamaaDaaa leaacaWG4baabaGaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGaam yEaaqabaGccaWGmbWaa0baaSqaaiaadMhaaeaacaaIYaaaaaGccaGL OaGaayzkaaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaai abeM8a3naaBaaaleaacaWG4baabeaaaOqaaiabeM8a3naaBaaaleaa caWG5baabeaaaOqaaiabeM8a3naaBaaaleaacaWG6baabeaaaaaaki aawUfacaGLDbaaaeaacaWGubGaeyypa0ZaaeWaaeaacaWGTbWaaSba aSqaaiaadMhaaeqaaOGaamitamaaDaaaleaacaWG5baabaGaaGOmaa aakiabgUcaRiaad2gadaWgaaWcbaGaamOEaaqabaGccaWGmbWaa0ba aSqaaiaadQhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeqyYdC3aa0 baaSqaaiaadIhaaeaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWGTbWa aSbaaSqaaiaadIhaaeqaaOGaamitamaaDaaaleaacaWG4baabaGaaG OmaaaakiabgUcaRiaad2gadaWgaaWcbaGaamOEaaqabaGccaWGmbWa a0baaSqaaiaadQhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeqyYdC 3aa0baaSqaaiaadMhaaeaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWG TbWaaSbaaSqaaiaadIhaaeqaaOGaamitamaaDaaaleaacaWG4baaba GaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGaamyEaaqabaGccaWG mbWaa0baaSqaaiaadMhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeq yYdC3aa0baaSqaaiaadQhaaeaacaaIYaaaaaaaaa@C56A@

 

These results help us understand what the formulas are predicting.  Note, for example, that:

·         The mass moment of inertia always has the form mass*length2.   It has units of kg-m2

·         The mass moment of inertia is a measure of how mass is distributed about the center of mass.  An object has a large inertia if the mass is far from the COM, and a small one if the mass is close to the COM.

·         The matrix-vector products in the formulas for h and T are really just a way of calculating the velocity of each particle in the system in a quick way.   For example, suppose we rotate our assembly of masses about the k axis with angular velocity ω z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOEaaqabaaaaa@386B@  (see the animation).   Let’s calculate the kinetic energy of the system, but without using the rigid body formulas.   The two blue masses are stationary, so they have no KE.   The red and green mass are both moving in a circle about the origin.   The circular motion formula says their speed is V=R ω z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbGaeyypa0 JaamOuaiabeM8a3naaBaaaleaacaWG6baabeaaaaa@3B22@  We can calculate the total kinetic energy using the usual formula

T= i 1 2 m i V i 2 = 1 2 2 m x L x ω z 2 + 1 2 2 m y L y ω z 2 = m x L x 2 + m y L y 2 ω z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadsfacq GH9aqpdaaeqbqaamaalaaabaGaaGymaaqaaiaaikdaaaaaleaacaWG PbaabeqdcqGHris5aOGaamyBamaaBaaaleaacaWGPbaabeaakiaadA fadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakeaacqGH9aqpdaWcaaqa aiaaigdaaeaacaaIYaaaaiaaikdacaWGTbWaaSbaaSqaaiaadIhaae qaaOWaaeWaaeaacaWGmbWaaSbaaSqaaiaadIhaaeqaaOGaeqyYdC3a aSbaaSqaaiaadQhaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIYaGa amyBamaaBaaaleaacaWG5baabeaakmaabmaabaGaamitamaaBaaale aacaWG5baabeaakiabeM8a3naaBaaaleaacaWG6baabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9maabmaabaGaam yBamaaBaaaleaacaWG4baabeaakiaadYeadaqhaaWcbaGaamiEaaqa aiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaadMhaaeqaaOGaam itamaaDaaaleaacaWG5baabaGaaGOmaaaaaOGaayjkaiaawMcaaiab eM8a3naaDaaaleaacaWG6baabaGaaGOmaaaaaaaa@6B7E@  

This explains why the formula for I Gzz MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaaaaa@3937@   contains L x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaSbaaS qaaiaadIhaaeqaaaaa@376D@  and L y MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaSbaaS qaaiaadMhaaeqaaaaa@376E@   - the I Gzz MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaaaaa@3937@  component keeps track of how much energy or momentum is produced by a rotation about the z axis.   The energy and momentum depend on the distances of the masses from the z axis MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  which of course depends on L x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaSbaaS qaaiaadIhaaeqaaaaa@376D@  and L y MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaSbaaS qaaiaadMhaaeqaaaaa@376E@ .

 

Finally, note that we can interpret the two terms in the formulas for momentum and KE as quantifying (separately) the effects of translation and rotation

Angular momentum h= r G ×M v G + I G ω Translational + Rotational MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCiAai abg2da9abbaaaaaG+acXwDLbWdbiaahkhadaWgaaWcbaGaam4raaqa baGccqGHxdaTcaWGnbGaaCODamaaBaaaleaacaWGhbaabeaak8aacq GHRaWkqqa6daaaaaGuLrgapiGaaCysamaaBaaaleaacaWGhbaabeaa kiaahM8aaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7pe GaaeivaiaabkhacaqGHbGaaeOBaiaabohacaqGSbGaaeyyaiaabsha caqGPbGaae4Baiaab6gacaqGHbGaaeiBaiaabccacaqGRaGaaeiia8 GacaqGsbGaae4BaiaabshacaqGHbGaaeiDaiaabMgacaqGVbGaaeOB aiaabggacaqGSbaaaaa@688D@

 

Kinetic energy is T= 1 2 M v G v G + 1 2 ω I G ω Translational + Rotational MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivai abg2da9abbaaaaaG+acXwDLbWdbmaalaaabaGaaGymaaqaaiaaikda aaGaamytaiaahAhadaWgaaWcbaGaam4raaqabaGccqGHflY1caWH2b WaaSbaaSqaaiaadEeaaeqaaOWdaiabgUcaRabbOpaaaaaasvgza8Ga daWcaaqaaiaaigdaaeaacaaIYaaaaiaahM8acqGHflY1caWHjbWaaS baaSqaaiaadEeaaeqaaOGaaCyYdaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaV=qacaqGubGaaeOCaiaabggacaqGUbGaae4Cai aabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabggacaqGSbGa aeiiaiaabUcacaqGGaWdciaabkfacaqGVbGaaeiDaiaabggacaqG0b GaaeyAaiaab+gacaqGUbGaaeyyaiaabYgaaaaa@6F59@

This helps explain why we can often idealize a system as a particle.  If the rotational term is negligible, the angular momentum and kinetic energy of a rigid body is just the same as that of a particle located at the COM.

 

6.4.1 Deriving the linear momentum formula

By definition p= i=1 N m i v i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahchacqGH9a qpdaaeWbqaaiaad2gadaWgaaWcbaGaamyAaaqabaGccaWH2bWaaSba aSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaa qdcqGHris5aaaa@421D@ .   We can re-write this as follows:

p= i=1 N m i v i = i=1 N m i d r i dt = d dt i=1 N m i r i = d dt M r G =M v G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahchacqGH9a qpdaaeWbqaaiaad2gadaWgaaWcbaGaamyAaaqabaGccaWH2bWaaSba aSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaa qdcqGHris5aOGaeyypa0ZaaabCaeaacaWGTbWaaSbaaSqaaiaadMga aeqaaOWaaSaaaeaacaWGKbGaaCOCamaaBaaaleaacaWGPbaabeaaaO qaaiaadsgacaWG0baaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWG obaaniabggHiLdGccqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGaam iDaaaadaaeWbqaaiaad2gadaWgaaWcbaGaamyAaaqabaGccaWHYbWa aSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaWGKbaabaGaam izaiaadshaaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0Ga eyyeIuoakmaabmaabaGaamytaiaahkhadaWgaaWcbaGaam4raaqaba aakiaawIcacaGLPaaacqGH9aqpcaWGnbGaaCODamaaBaaaleaacaWG hbaabeaaaaa@69F7@

(we used the definition of the COM to get the last result)

 

 

6.4.2 Deriving the angular momentum formula

Start with the definition:  h= i=1 N r i × m i v i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIgacqGH9a qpdaaeWbqaaiaahkhadaWgaaWcbaGaamyAaaqabaGccqGHxdaTcaWG TbWaaSbaaSqaaiaadMgaaeqaaOGaaCODamaaBaaaleaacaWGPbaabe aaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@464C@

Note that r i = r G + d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWHYbWaaSbaaSqaaiaadEeaaeqa aOGaey4kaSIaaCizamaaBaaaleaacaWGPbaabeaaaaa@3E42@   and recall the relative velocity formula v i v G =ω×( r i r G )=ω× d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamyAaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadEeaaeqa aOGaeyypa0JaaCyYdiabgEna0kaacIcacaWHYbWaaSbaaSqaaiaadM gaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGhbaabeaakiaacMca cqGH9aqpcaWHjpGaey41aqRaaCizamaaBaaaleaacaWGPbaabeaaaa a@4C95@  .  This means we can re-write the angular momentum as

h= i=1 N ( r G + d i )× m i ( v G +ω× d i ) = i=1 N m i r G × v G + i=1 N m i d i × v G + r G ×ω× i=1 N m i d i + i=1 N m i d i × ω× d i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCiAai abg2da9maaqahabaGaaiikaiaahkhadaWgaaWcbaGaam4raaqabaGc cqGHRaWkcaWHKbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabgEna0k aad2gadaWgaaWcbaGaamyAaaqabaGccaGGOaGaaCODamaaBaaaleaa caWGhbaabeaakiabgUcaRiaahM8acqGHxdaTcaWHKbWaaSbaaSqaai aadMgaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWG obaaniabggHiLdaakeaacqGH9aqpdaqadaqaamaaqahabaGaamyBam aaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaa d6eaa0GaeyyeIuoaaOGaayjkaiaawMcaaiaahkhadaWgaaWcbaGaam 4raaqabaGccqGHxdaTcaWH2bWaaSbaaSqaaiaadEeaaeqaaOGaey4k aSYaaeWaaeaadaaeWbqaaiaad2gadaWgaaWcbaGaamyAaaqabaGcca WHKbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOtaaqdcqGHris5aaGccaGLOaGaayzkaaGaey41aqRaaCODam aaBaaaleaacaWGhbaabeaakiabgUcaRiaahkhadaWgaaWcbaGaam4r aaqabaGccqGHxdaTcaWHjpGaey41aq7aaeWaaeaadaaeWbqaaiaad2 gadaWgaaWcbaGaamyAaaqabaGccaWHKbWaaSbaaSqaaiaadMgaaeqa aaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aaGcca GLOaGaayzkaaGaey4kaSYaaabCaeaacaWGTbWaaSbaaSqaaiaadMga aeqaaOGaaCizamaaBaaaleaacaWGPbaabeaakiabgEna0cWcbaGaam yAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccaaMc8UaaCyY diabgEna0kaahsgadaWgaaWcbaGaamyAaaqabaaaaaa@9ABE@

Note that

i=1 N m i d i = i=1 N m i r i r G = i=1 N m i r i r G i=1 N m i =M r G M r G =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqahabaGaam yBamaaBaaaleaacaWGPbaabeaakiaahsgadaWgaaWcbaGaamyAaaqa baaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccq GH9aqpdaaeWbqaaiaad2gadaWgaaWcbaGaamyAaaqabaGcdaqadaqa aiaahkhadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWHYbWaaSbaaS qaaiaadEeaaeqaaaGccaGLOaGaayzkaaaaleaacaWGPbGaeyypa0Ja aGymaaqaaiaad6eaa0GaeyyeIuoakiabg2da9maaqahabaGaamyBam aaBaaaleaacaWGPbaabeaakiaahkhadaWgaaWcbaGaamyAaaqabaaa baGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccqGHsi slcaWHYbWaaSbaaSqaaiaadEeaaeqaaOWaaabCaeaacaWGTbWaaSba aSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaa qdcqGHris5aOGaeyypa0JaamytaiaahkhadaWgaaWcbaGaam4raaqa baGccqGHsislcaWGnbGaaCOCamaaBaaaleaacaWGhbaabeaakiabg2 da9iaaicdaaaa@6E90@

 

Finally, recall the dreaded triple cross product formula

a×b×c=(ac)b(ab)c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggacqGHxd aTcaWHIbGaey41aqRaaC4yaiabg2da9iaacIcacaWHHbGaeyyXICTa aC4yaiaacMcacaWHIbGaeyOeI0IaaiikaiaahggacqGHflY1caWHIb Gaaiykaiaahogaaaa@4BE1@

This means that

d i ×ω× d i =( d i d i )ω d i ( d i ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahsgadaWgaa WcbaGaamyAaaqabaGccqGHxdaTcaWHjpGaey41aqRaaCizamaaBaaa leaacaWGPbaabeaakiabg2da9iaacIcacaWHKbWaaSbaaSqaaiaadM gaaeqaaOGaeyyXICTaaCizamaaBaaaleaacaWGPbaabeaakiaacMca caWHjpGaeyOeI0IaaCizamaaBaaaleaacaWGPbaabeaakiaacIcaca WHKbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTaaCyYdiaacMcaaaa@5402@

This gives us the result in compact notation directly

i=1 N m i d i × ω× d i = i=1 N m i ( d i d i )ω m i d i ( d i ω) + i=1 N m i d i 2 1 m i d i d i ω= I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeWbqaaiaad2 gadaWgaaWcbaGaamyAaaqabaGccaWHKbWaaSbaaSqaaiaadMgaaeqa aOGaey41aqlaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0Gaey yeIuoakiaaykW7caWHjpGaey41aqRaaCizamaaBaaaleaacaWGPbaa beaakiabg2da9maaqahabaWaaeWaaeaacaWGTbWaaSbaaSqaaiaadM gaaeqaaOGaaiikaiaahsgadaWgaaWcbaGaamyAaaqabaGccqGHflY1 caWHKbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiaahM8acqGHsislca WGTbWaaSbaaSqaaiaadMgaaeqaaOGaaCizamaaBaaaleaacaWGPbaa beaakiaacIcacaWHKbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTaaC yYdiaacMcaaiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaa baGaamOtaaqdcqGHris5aOGaey4kaSYaamWaaeaadaaeWbqaamaabm aabaGaamyBamaaBaaaleaacaWGPbaabeaakmaaemaabaGaaCizamaa BaaaleaacaWGPbaabeaaaOGaay5bSlaawIa7amaaCaaaleqabaGaaG OmaaaakiaahgdacqGHsislcaWGTbWaaSbaaSqaaiaadMgaaeqaaOGa aCizamaaBaaaleaacaWGPbaabeaakiabgEPielaahsgadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaI XaaabaGaamOtaaqdcqGHris5aaGccaGLBbGaayzxaaGaeyyXICTaaC yYdiabg2da9iaahMeadaWgaaWcbaGaam4raaqabaGccaWHjpaaaa@8C4E@

 

where we used the compact formula for the mass moment of inertia about the COM:

I G = i=1 N m i d i 2 1 m i d i d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0ZaaabCaeaadaqadaqaaiaad2gadaWg aaWcbaGaamyAaaqabaGcdaabdaqaaiaahsgadaWgaaWcbaGaamyAaa qabaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccaWHXaGa eyOeI0IaamyBamaaBaaaleaacaWGPbaabeaakiaahsgadaWgaaWcba GaamyAaaqabaGccqGHxkcXcaWHKbWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0 GaeyyeIuoaaaa@51BE@

 

If you don’t like the compact formula, we can also get the matrix version by expand out the triple cross product

( d i d i )ω d i ( d i ω)= ω x ( d ix 2 + d iy 2 + d iz 2 ) ω y ( d ix 2 + d iy 2 + d iz 2 ) ω z ( d ix 2 + d iy 2 + d iz 2 ) d ix d iy d iz ω x d ix + ω y d iy + ω z d iz = d iy 2 + d iz 2 d ix d iy d ix d iz d ix d iy d ix 2 + d iz 2 d iy d iz d ix d iz d iy d iz d ix 2 + d iy 2 ω x ω y ω z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaiikai aahsgadaWgaaWcbaGaamyAaaqabaGccqGHflY1caWHKbWaaSbaaSqa aiaadMgaaeqaaOGaaiykaiaahM8acqGHsislcaWHKbWaaSbaaSqaai aadMgaaeqaaOGaaiikaiaahsgadaWgaaWcbaGaamyAaaqabaGccqGH flY1caWHjpGaaiykaiabg2da9maadmaabaqbaeqabmqaaaqaaiabeM 8a3naaBaaaleaacaWG4baabeaakiaacIcacaWGKbWaa0baaSqaaiaa dMgacaWG4baabaGaaGOmaaaakiabgUcaRiaadsgadaqhaaWcbaGaam yAaiaadMhaaeaacaaIYaaaaOGaey4kaSIaamizamaaDaaaleaacaWG PbGaamOEaaqaaiaaikdaaaGccaGGPaaabaGaeqyYdC3aaSbaaSqaai aadMhaaeqaaOGaaiikaiaadsgadaqhaaWcbaGaamyAaiaadIhaaeaa caaIYaaaaOGaey4kaSIaamizamaaDaaaleaacaWGPbGaamyEaaqaai aaikdaaaGccqGHRaWkcaWGKbWaa0baaSqaaiaadMgacaWG6baabaGa aGOmaaaakiaacMcaaeaacqaHjpWDdaWgaaWcbaGaamOEaaqabaGcca GGOaGaamizamaaDaaaleaacaWGPbGaamiEaaqaaiaaikdaaaGccqGH RaWkcaWGKbWaa0baaSqaaiaadMgacaWG5baabaGaaGOmaaaakiabgU caRiaadsgadaqhaaWcbaGaamyAaiaadQhaaeaacaaIYaaaaOGaaiyk aaaaaiaawUfacaGLDbaacqGHsisldaWadaqaauaabeqadeaaaeaaca WGKbWaaSbaaSqaaiaadMgacaWG4baabeaaaOqaaiaadsgadaWgaaWc baGaamyAaiaadMhaaeqaaaGcbaGaamizamaaBaaaleaacaWGPbGaam OEaaqabaaaaaGccaGLBbGaayzxaaWaaeWaaeaacqaHjpWDdaWgaaWc baGaamiEaaqabaGccaWGKbWaaSbaaSqaaiaadMgacaWG4baabeaaki abgUcaRiabeM8a3naaBaaaleaacaWG5baabeaakiaadsgadaWgaaWc baGaamyAaiaadMhaaeqaaOGaey4kaSIaeqyYdC3aaSbaaSqaaiaadQ haaeqaaOGaamizamaaBaaaleaacaWGPbGaamOEaaqabaaakiaawIca caGLPaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaamWaaeaafa qabeWadaaabaGaamizamaaDaaaleaacaWGPbGaamyEaaqaaiaaikda aaGccqGHRaWkcaWGKbWaa0baaSqaaiaadMgacaWG6baabaGaaGOmaa aaaOqaaiabgkHiTiaadsgadaWgaaWcbaGaamyAaiaadIhaaeqaaOGa amizamaaBaaaleaacaWGPbGaamyEaaqabaaakeaacqGHsislcaWGKb WaaSbaaSqaaiaadMgacaWG4baabeaakiaadsgadaWgaaWcbaGaamyA aiaadQhaaeqaaaGcbaGaeyOeI0IaamizamaaBaaaleaacaWGPbGaam iEaaqabaGccaWGKbWaaSbaaSqaaiaadMgacaWG5baabeaaaOqaaiaa dsgadaqhaaWcbaGaamyAaiaadIhaaeaacaaIYaaaaOGaey4kaSIaam izamaaDaaaleaacaWGPbGaamOEaaqaaiaaikdaaaaakeaacqGHsisl caWGKbWaaSbaaSqaaiaadMgacaWG5baabeaakiaadsgadaWgaaWcba GaamyAaiaadQhaaeqaaaGcbaGaeyOeI0IaamizamaaBaaaleaacaWG PbGaamiEaaqabaGccaWGKbWaaSbaaSqaaiaadMgacaWG6baabeaaaO qaaiabgkHiTiaadsgadaWgaaWcbaGaamyAaiaadMhaaeqaaOGaamiz amaaBaaaleaacaWGPbGaamOEaaqabaaakeaacaWGKbWaa0baaSqaai aadMgacaWG4baabaGaaGOmaaaakiabgUcaRiaadsgadaqhaaWcbaGa amyAaiaadMhaaeaacaaIYaaaaaaaaOGaay5waiaaw2faamaadmaaba qbaeqabmqaaaqaaiabeM8a3naaBaaaleaacaWG4baabeaaaOqaaiab eM8a3naaBaaaleaacaWG5baabeaaaOqaaiabeM8a3naaBaaaleaaca WG6baabeaaaaaakiaawUfacaGLDbaaaaaa@43FE@

 

This again shows that

i=1 N m i d i × ω× d i = I G ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqahabaGaam yBamaaBaaaleaacaWGPbaabeaakiaahsgadaWgaaWcbaGaamyAaaqa baGccqGHxdaTaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcq GHris5aOGaaGPaVlaahM8acqGHxdaTcaWHKbWaaSbaaSqaaiaadMga aeqaaOGaeyypa0JaaCysamaaBaaaleaacaWGhbaabeaakiaahM8aaa a@4D79@

 

Finally collecting terms gives the required answer

h= i=1 N m i r G × v G + i=1 N m i d i × v G + i=1 N m i d i × ω× d i = r G ×M v G + I G ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIgacqGH9a qpdaqadaqaamaaqahabaGaamyBamaaBaaaleaacaWGPbaabeaaaeaa caWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaOGaayjkai aawMcaaiaahkhadaWgaaWcbaGaam4raaqabaGccqGHxdaTcaWH2bWa aSbaaSqaaiaadEeaaeqaaOGaey4kaSYaaeWaaeaadaaeWbqaaiaad2 gadaWgaaWcbaGaamyAaaqabaGccaWHKbWaaSbaaSqaaiaadMgaaeqa aaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aaGcca GLOaGaayzkaaGaey41aqRaaCODamaaBaaaleaacaWGhbaabeaakiab gUcaRmaaqahabaGaamyBamaaBaaaleaacaWGPbaabeaakiaahsgada WgaaWcbaGaamyAaaqabaGccqGHxdaTaSqaaiaadMgacqGH9aqpcaaI XaaabaGaamOtaaqdcqGHris5aOGaaGPaVlaahM8acqGHxdaTcaWHKb WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaaCOCamaaBaaaleaacaWG hbaabeaakiabgEna0kaad2eacaWH2bWaaSbaaSqaaiaadEeaaeqaaO Gaey4kaSIaaCysamaaBaaaleaacaWGhbaabeaakiaahM8aaaa@77EB@

 

 

6.4.3 Deriving the kinetic energy formula

T= i=1 N 1 2 m i v i v i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaaeWbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaamyBamaaBaaa leaacaWGPbaabeaakiaahAhadaWgaaWcbaGaamyAaaqabaaabaGaam yAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccqGHflY1caWH 2bWaaSbaaSqaaiaadMgaaeqaaaaa@47F2@

We can use v i v G =ω×( r i r G )=ω× d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamyAaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaadEeaaeqa aOGaeyypa0JaaCyYdiabgEna0kaacIcacaWHYbWaaSbaaSqaaiaadM gaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGhbaabeaakiaacMca cqGH9aqpcaWHjpGaey41aqRaaCizamaaBaaaleaacaWGPbaabeaaaa a@4C95@

i=1 N 1 2 m i v i v i = i=1 N 1 2 m i ( v G +ω× d i )( v G +ω× d i ) =( v G v G ) i=1 N 1 2 m i + v G ω× i=1 N m i d i + 1 2 i=1 N m i (ω× d i )(ω× d i ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaabCae aadaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2gadaWgaaWcbaGaamyA aaqabaGccaWH2bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9a qpcaaIXaaabaGaamOtaaqdcqGHris5aOGaeyyXICTaaCODamaaBaaa leaacaWGPbaabeaakiabg2da9maaqahabaWaaSaaaeaacaaIXaaaba GaaGOmaaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGH ris5aOGaamyBamaaBaaaleaacaWGPbaabeaakiaacIcacaWH2bWaaS baaSqaaiaadEeaaeqaaOGaey4kaSIaaCyYdiabgEna0kaahsgadaWg aaWcbaGaamyAaaqabaGccaGGPaGaeyyXICTaaiikaiaahAhadaWgaa WcbaGaam4raaqabaGccqGHRaWkcaWHjpGaey41aqRaaCizamaaBaaa leaacaWGPbaabeaakiaacMcaaeaacqGH9aqpcaGGOaGaaCODamaaBa aaleaacaWGhbaabeaakiabgwSixlaahAhadaWgaaWcbaGaam4raaqa baGccaGGPaWaaabCaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaWcba GaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccaWGTbWa aSbaaSqaaiaadMgaaeqaaOGaey4kaSIaaCODamaaBaaaleaacaWGhb aabeaakiabgwSixlaahM8acqGHxdaTdaqadaqaamaaqahabaGaamyB amaaBaaaleaacaWGPbaabeaakiaahsgadaWgaaWcbaGaamyAaaqaba aabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaakiaa wIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaaqa habaGaamyBamaaBaaaleaacaWGPbaabeaakiaacIcacaWHjpGaey41 aqRaaCizamaaBaaaleaacaWGPbaabeaakiaacMcacqGHflY1caGGOa GaaCyYdiabgEna0kaahsgadaWgaaWcbaGaamyAaaqabaGccaGGPaaa leaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaaa@A6A1@

Recall that

i=1 N m i d i =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaa bCaeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaOGaaCizamaaBaaaleaa caWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0Gaey yeIuoaaOGaayjkaiaawMcaaiabg2da9iaahcdaaaa@435E@

and expand the dot product of two cross products using the formula

(a×b)(c×d)=(ac)(bd)(bc)(ad) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWHHb Gaey41aqRaaCOyaiaacMcacqGHflY1caGGOaGaaC4yaiabgEna0kaa hsgacaGGPaGaeyypa0JaaiikaiaahggacqGHflY1caWHJbGaaiykai aacIcacaWHIbGaeyyXICTaaCizaiaacMcacqGHsislcaGGOaGaaCOy aiabgwSixlaahogacaGGPaGaaiikaiaahggacqGHflY1caWHKbGaai ykaaaa@5AEA@

This shows that

(ω× d i )(ω× d i )= ωω d i d i ω d i 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWHjp Gaey41aqRaaCizamaaBaaaleaacaWGPbaabeaakiaacMcacqGHflY1 caGGOaGaaCyYdiabgEna0kaahsgadaWgaaWcbaGaamyAaaqabaGcca GGPaGaeyypa0ZaaeWaaeaacaWHjpGaeyyXICTaaCyYdaGaayjkaiaa wMcaamaabmaabaGaaCizamaaBaaaleaacaWGPbaabeaakiabgwSixl aahsgadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHsisl daqadaqaaiaahM8acqGHflY1caWHKbWaaSbaaSqaaiaadMgaaeqaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@5EB3@

As for the derivation of the angular momentum, this can be rearranged using the compact notation as

 

i=1 N m i (ω× d i )(ω× d i ) = i=1 N m i ( d i d i )ωω m i ( d i ω) 2 +ω i=1 N m i d i 2 1 m i d i d i ω =ω I G ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaaqahaba GaamyBamaaBaaaleaacaWGPbaabeaakiaacIcacaWHjpGaey41aqRa aCizamaaBaaaleaacaWGPbaabeaakiaacMcacqGHflY1caGGOaGaaC yYdiabgEna0kaahsgadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaa caWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabg2da9m aaqahabaWaaeWaaeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaOGaaiik aiaahsgadaWgaaWcbaGaamyAaaqabaGccqGHflY1caWHKbWaaSbaaS qaaiaadMgaaeqaaOGaaiykaiaahM8acqGHflY1caWHjpGaeyOeI0Ia amyBamaaBaaaleaacaWGPbaabeaakiaacIcacaWHKbWaaSbaaSqaai aadMgaaeqaaOGaeyyXICTaaCyYdiaacMcadaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaam OtaaqdcqGHris5aOGaey4kaSIaaCyYdiabgwSixpaadmaabaWaaabC aeaadaqadaqaaiaad2gadaWgaaWcbaGaamyAaaqabaGcdaabdaqaai aahsgadaWgaaWcbaGaamyAaaqabaaakiaawEa7caGLiWoadaahaaWc beqaaiaaikdaaaGccaWHXaGaeyOeI0IaamyBamaaBaaaleaacaWGPb aabeaakiaahsgadaWgaaWcbaGaamyAaaqabaGccqGHxkcXcaWHKbWa aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGPbGaey ypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaOGaay5waiaaw2faaiaa hM8aaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpca WHjpGaeyyXICTaaCysamaaBaaaleaacaWGhbaabeaakiaahM8aaaaa @EBE1@

 

Alternatively, we can get the matrix version of the formula as

(ω× d i )(ω× d i )= ωω d i d i ω d i 2 = ω x ω y ω z d ix 2 + d iy 2 + d iz 2 0 0 0 d ix 2 + d iy 2 + d iz 2 0 0 0 d ix 2 + d iy 2 + d iz 2 ω x ω y ω z ω x ω y ω z d ix 2 d ix d iy d ix d iz d ix d iy d iy 2 d iy d iz d ix d iz d iy d iz d iz 2 ω x ω y ω z = ω x ω y ω z d iy 2 + d iz 2 d ix d iy d ix d iz d ix d iy d ix 2 + d iz 2 d iy d iz d ix d iz d iy d iz d ix 2 + d iy 2 ω x ω y ω z =ω I G ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaiikai aahM8acqGHxdaTcaWHKbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiab gwSixlaacIcacaWHjpGaey41aqRaaCizamaaBaaaleaacaWGPbaabe aakiaacMcacqGH9aqpdaqadaqaaiaahM8acqGHflY1caWHjpaacaGL OaGaayzkaaWaaeWaaeaacaWHKbWaaSbaaSqaaiaadMgaaeqaaOGaey yXICTaaCizamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiab gkHiTmaabmaabaGaaCyYdiabgwSixlaahsgadaWgaaWcbaGaamyAaa qabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacqGH 9aqpdaWadaqaauaabeqadeaaaeaacqaHjpWDdaWgaaWcbaGaamiEaa qabaaakeaacqaHjpWDdaWgaaWcbaGaamyEaaqabaaakeaacqaHjpWD daWgaaWcbaGaamOEaaqabaaaaaGccaGLBbGaayzxaaGaeyyXIC9aam WaaeaafaqabeWadaaabaGaamizamaaDaaaleaacaWGPbGaamiEaaqa aiaaikdaaaGccqGHRaWkcaWGKbWaa0baaSqaaiaadMgacaWG5baaba GaaGOmaaaakiabgUcaRiaadsgadaqhaaWcbaGaamyAaiaadQhaaeaa caaIYaaaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamizam aaDaaaleaacaWGPbGaamiEaaqaaiaaikdaaaGccqGHRaWkcaWGKbWa a0baaSqaaiaadMgacaWG5baabaGaaGOmaaaakiabgUcaRiaadsgada qhaaWcbaGaamyAaiaadQhaaeaacaaIYaaaaaGcbaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaamizamaaDaaaleaacaWGPbGaamiEaaqaai aaikdaaaGccqGHRaWkcaWGKbWaa0baaSqaaiaadMgacaWG5baabaGa aGOmaaaakiabgUcaRiaadsgadaqhaaWcbaGaamyAaiaadQhaaeaaca aIYaaaaaaaaOGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiab eM8a3naaBaaaleaacaWG4baabeaaaOqaaiabeM8a3naaBaaaleaaca WG5baabeaaaOqaaiabeM8a3naaBaaaleaacaWG6baabeaaaaaakiaa wUfacaGLDbaacqGHsisldaWadaqaauaabeqadeaaaeaacqaHjpWDda WgaaWcbaGaamiEaaqabaaakeaacqaHjpWDdaWgaaWcbaGaamyEaaqa baaakeaacqaHjpWDdaWgaaWcbaGaamOEaaqabaaaaaGccaGLBbGaay zxaaGaeyyXIC9aamWaaeaafaqabeWadaaabaGaamizamaaDaaaleaa caWGPbGaamiEaaqaaiaaikdaaaaakeaacaWGKbWaaSbaaSqaaiaadM gacaWG4baabeaakiaadsgadaWgaaWcbaGaamyAaiaadMhaaeqaaaGc baGaamizamaaBaaaleaacaWGPbGaamiEaaqabaGccaWGKbWaaSbaaS qaaiaadMgacaWG6baabeaaaOqaaiaadsgadaWgaaWcbaGaamyAaiaa dIhaaeqaaOGaamizamaaBaaaleaacaWGPbGaamyEaaqabaaakeaaca WGKbWaa0baaSqaaiaadMgacaWG5baabaGaaGOmaaaaaOqaaiaadsga daWgaaWcbaGaamyAaiaadMhaaeqaaOGaamizamaaBaaaleaacaWGPb GaamOEaaqabaaakeaacaWGKbWaaSbaaSqaaiaadMgacaWG4baabeaa kiaadsgadaWgaaWcbaGaamyAaiaadQhaaeqaaaGcbaGaamizamaaBa aaleaacaWGPbGaamyEaaqabaGccaWGKbWaaSbaaSqaaiaadMgacaWG 6baabeaaaOqaaiaadsgadaqhaaWcbaGaamyAaiaadQhaaeaacaaIYa aaaaaaaOGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiabeM8a 3naaBaaaleaacaWG4baabeaaaOqaaiabeM8a3naaBaaaleaacaWG5b aabeaaaOqaaiabeM8a3naaBaaaleaacaWG6baabeaaaaaakiaawUfa caGLDbaaaeaacqGH9aqpdaWadaqaauaabeqadeaaaeaacqaHjpWDda WgaaWcbaGaamiEaaqabaaakeaacqaHjpWDdaWgaaWcbaGaamyEaaqa baaakeaacqaHjpWDdaWgaaWcbaGaamOEaaqabaaaaaGccaGLBbGaay zxaaGaeyyXIC9aamWaaeaafaqabeWadaaabaGaamizamaaDaaaleaa caWGPbGaamyEaaqaaiaaikdaaaGccqGHRaWkcaWGKbWaa0baaSqaai aadMgacaWG6baabaGaaGOmaaaaaOqaaiabgkHiTiaadsgadaWgaaWc baGaamyAaiaadIhaaeqaaOGaamizamaaBaaaleaacaWGPbGaamyEaa qabaaakeaacqGHsislcaWGKbWaaSbaaSqaaiaadMgacaWG4baabeaa kiaadsgadaWgaaWcbaGaamyAaiaadQhaaeqaaaGcbaGaeyOeI0Iaam izamaaBaaaleaacaWGPbGaamiEaaqabaGccaWGKbWaaSbaaSqaaiaa dMgacaWG5baabeaaaOqaaiaadsgadaqhaaWcbaGaamyAaiaadIhaae aacaaIYaaaaOGaey4kaSIaamizamaaDaaaleaacaWGPbGaamOEaaqa aiaaikdaaaaakeaacqGHsislcaWGKbWaaSbaaSqaaiaadMgacaWG5b aabeaakiaadsgadaWgaaWcbaGaamyAaiaadQhaaeqaaaGcbaGaeyOe I0IaamizamaaBaaaleaacaWGPbGaamiEaaqabaGccaWGKbWaaSbaaS qaaiaadMgacaWG6baabeaaaOqaaiabgkHiTiaadsgadaWgaaWcbaGa amyAaiaadMhaaeqaaOGaamizamaaBaaaleaacaWGPbGaamOEaaqaba aakeaacaWGKbWaa0baaSqaaiaadMgacaWG4baabaGaaGOmaaaakiab gUcaRiaadsgadaqhaaWcbaGaamyAaiaadMhaaeaacaaIYaaaaaaaaO Gaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiabeM8a3naaBaaa leaacaWG4baabeaaaOqaaiabeM8a3naaBaaaleaacaWG5baabeaaaO qaaiabeM8a3naaBaaaleaacaWG6baabeaaaaaakiaawUfacaGLDbaa aeaacqGH9aqpcaWHjpGaeyyXICTaaCysamaaBaaaleaacaWGhbaabe aakiaahM8aaaaa@5792@

 

Finally, collecting all the terms gives the required answer

T= i=1 N 1 2 m i v i v i = 1 2 M v G v G + 1 2 ω I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaaeWbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaamyBamaaBaaa leaacaWGPbaabeaakiaahAhadaWgaaWcbaGaamyAaaqabaaabaGaam yAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccqGHflY1caWH 2bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaaba GaaGOmaaaacaWGnbGaaCODamaaBaaaleaacaWGhbaabeaakiabgwSi xlaahAhadaWgaaWcbaGaam4raaqabaGccqGHRaWkdaWcaaqaaiaaig daaeaacaaIYaaaaiaahM8acqGHflY1caWHjbWaaSbaaSqaaiaadEea aeqaaOGaaCyYdaaa@5AD8@

 

 

6.4.4 Calculating the center of mass and inertia of a general rigid body

 

It is not hard to extend the results for a system of N particles to a general rigid body.   We simply regard the body to be made up of an infinite number of vanishingly small particles, and take the limit of the sums as the particle volume goes to zero.    The sums all turn into integrals.

 

3D problems:  For a body with mass density ρ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYbaa@37F7@  (mass per unit volume) we have that

* The total mass is M= V ρdV MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWdrbqaaiabeg8aYjaadsgacaWGwbaaleaacaWGwbaabeqdcqGH RiI8aaaa@3EB8@  

* The position of the center of mass is r G = 1 M V rρdV MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGnbaa amaapefabaGaaCOCaiabeg8aYjaadsgacaWGwbaaleaacaWGwbaabe qdcqGHRiI8aaaa@427B@

 

* The mass moment of inertia about the center of mass is

I G = V ρ d y 2 + d z 2 d x d y d x d z d x d y d x 2 + d z 2 d y d z d x d z d y d z d x 2 + d y 2 dV MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWdrbqaaiabeg8aYnaadmaabaqb aeqabmWaaaqaaiaadsgadaqhaaWcbaGaamyEaaqaaiaaikdaaaGccq GHRaWkcaWGKbWaa0baaSqaaiaadQhaaeaacaaIYaaaaaGcbaGaeyOe I0IaamizamaaBaaaleaacaWG4baabeaakiaadsgadaWgaaWcbaGaam yEaaqabaaakeaacqGHsislcaWGKbWaaSbaaSqaaiaadIhaaeqaaOGa amizamaaBaaaleaacaWG6baabeaaaOqaaiabgkHiTiaadsgadaWgaa WcbaGaamiEaaqabaGccaWGKbWaaSbaaSqaaiaadMhaaeqaaaGcbaGa amizamaaDaaaleaacaWG4baabaGaaGOmaaaakiabgUcaRiaadsgada qhaaWcbaGaamOEaaqaaiaaikdaaaaakeaacqGHsislcaWGKbWaaSba aSqaaiaadMhaaeqaaOGaamizamaaBaaaleaacaWG6baabeaaaOqaai abgkHiTiaadsgadaWgaaWcbaGaamiEaaqabaGccaWGKbWaaSbaaSqa aiaadQhaaeqaaaGcbaGaeyOeI0IaamizamaaBaaaleaacaWG5baabe aakiaadsgadaWgaaWcbaGaamOEaaqabaaakeaacaWGKbWaa0baaSqa aiaadIhaaeaacaaIYaaaaOGaey4kaSIaamizamaaDaaaleaacaWG5b aabaGaaGOmaaaaaaaakiaawUfacaGLDbaacaWGKbGaamOvaaWcbaGa amOvaaqab0Gaey4kIipaaaa@746F@

where d=r r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahsgacqGH9a qpcaWHYbGaeyOeI0IaaCOCamaaBaaaleaacaWGhbaabeaaaaa@3C05@

 

 

 

 

 

For 2D problems: We know the COM must lie in the i,j plane and we don’t need to calculate the whole matrix. 

 

For a body with mass per unit area μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBaaa@3729@  we can therefore use the formulas

 

* The total mass is M= A μdA MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWdrbqaaiabeY7aTjaadsgacaWGbbaaleaacaWGbbaabeqdcqGH RiI8aaaa@3E84@  

* The position of the center of mass is r G = 1 M A rμdA MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGnbaa amaapefabaGaaCOCaiabeY7aTjaadsgacaWGbbaaleaacaWGbbaabe qdcqGHRiI8aaaa@4247@

* The mass moment of inertia about the center of mass is I Gzz = 1 M A μ( d x 2 + d y 2 )dA MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaam4raiaadQhacaWG6baabeaakiabg2da9maalaaabaGaaGym aaqaaiaad2eaaaWaa8quaeaacqaH8oqBcaGGOaGaamizamaaDaaale aacaWG4baabaGaaGOmaaaakiabgUcaRiaadsgadaqhaaWcbaGaamyE aaqaaiaaikdaaaGccaGGPaGaamizaiaadgeaaSqaaiaadgeaaeqani abgUIiYdaaaa@4B0B@

where d=r r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahsgacqGH9a qpcaWHYbGaeyOeI0IaaCOCamaaBaaaleaacaWGhbaabeaaaaa@3C05@

 

 

Example 1: To show how to use these, let’s calculate the total mass, center of mass, and mass moment of inertia of a rectangular prism with faces perpendicular to the i,j,k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMgacaGGSa GaaCOAaiaacYcacaWHRbaaaa@3A70@  axes:

 

First the total mass (sort of trivial)

M= 0 c 0 b 0 a ρdxdydz =ρabc MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWdXbqaamaapehabaWaa8qCaeaacqaHbpGCcaWGKbGaamiEaiaa dsgacaWG5bGaamizaiaadQhaaSqaaiaaicdaaeaacaWGHbaaniabgU IiYdGccqGH9aqpcqaHbpGCcaWGHbGaamOyaiaadogaaSqaaiaaicda aeaacaWGIbaaniabgUIiYdaaleaacaaIWaaabaGaam4yaaqdcqGHRi I8aaaa@5127@

 

 

Now the COM

r G = 1 ρabc 0 c 0 b 0 a (xi+yj+zk)ρdxdydz = 1 abc 1 2 a 2 bci+a 1 2 b 2 cj+ab 1 2 c 2 k = 1 2 (ai+bj+ck) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacqaHbpGC caWGHbGaamOyaiaadogaaaWaa8qCaeaadaWdXbqaamaapehabaGaai ikaiaadIhacaWHPbGaey4kaSIaamyEaiaahQgacqGHRaWkcaWG6bGa aC4AaiaacMcacqaHbpGCcaWGKbGaamiEaiaadsgacaWG5bGaamizai aadQhaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGccqGH9aqpaSqa aiaaicdaaeaacaWGIbaaniabgUIiYdaaleaacaaIWaaabaGaam4yaa qdcqGHRiI8aOWaaSaaaeaacaaIXaaabaGaamyyaiaadkgacaWGJbaa amaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGHbWaaWbaaS qabeaacaaIYaaaaOGaamOyaiaadogacaWHPbGaey4kaSIaamyyamaa laaabaGaaGymaaqaaiaaikdaaaGaamOyamaaCaaaleqabaGaaGOmaa aakiaadogacaWHQbGaey4kaSIaamyyaiaadkgadaWcaaqaaiaaigda aeaacaaIYaaaaiaadogadaahaaWcbeqaaiaaikdaaaGccaWHRbaaca GLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGG OaGaamyyaiaahMgacqGHRaWkcaWGIbGaaCOAaiabgUcaRiaadogaca WHRbGaaiykaaaa@8082@

 

And finally the mass moment of inertia

I G = 0 c 0 b 0 a (yb/2) 2 + (zc/2) 2 (xa/2)(yb/2) (xa/2)(zc/2) sym (xa/2) 2 + (zc/2) 2 (yb/2)(zc/2) sym sym (xa/2) 2 + (yb/2) 2 ρdxdydz =ρ 1 12 a b 3 c+ 1 12 ab c 3 0 0 0 1 12 a 3 bc+ 1 12 ab c 3 0 0 0 1 12 a 3 bc+ 1 12 a b 3 c = M 12 b 2 + c 2 0 0 0 a 2 + c 2 0 0 0 a 2 + b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCysam aaBaaaleaacaWGhbaabeaakiabg2da9maapehabaWaa8qCaeaadaWd XbqaamaadmaabaqbaeqabmWaaaqaaiaacIcacaWG5bGaeyOeI0Iaam Oyaiaac+cacaaIYaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUca RiaacIcacaWG6bGaeyOeI0Iaam4yaiaac+cacaaIYaGaaiykamaaCa aaleqabaGaaGOmaaaaaOqaaiabgkHiTiaacIcacaWG4bGaeyOeI0Ia amyyaiaac+cacaaIYaGaaiykaiaacIcacaWG5bGaeyOeI0IaamOyai aac+cacaaIYaGaaiykaaqaaiabgkHiTiaacIcacaWG4bGaeyOeI0Ia amyyaiaac+cacaaIYaGaaiykaiaacIcacaWG6bGaeyOeI0Iaam4yai aac+cacaaIYaGaaiykaaqaaiaadohacaWG5bGaamyBaaqaaiaacIca caWG4bGaeyOeI0Iaamyyaiaac+cacaaIYaGaaiykamaaCaaaleqaba GaaGOmaaaakiabgUcaRiaacIcacaWG6bGaeyOeI0Iaam4yaiaac+ca caaIYaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiabgkHiTiaacI cacaWG5bGaeyOeI0IaamOyaiaac+cacaaIYaGaaiykaiaacIcacaWG 6bGaeyOeI0Iaam4yaiaac+cacaaIYaGaaiykaaqaaiaadohacaWG5b GaamyBaaqaaiaadohacaWG5bGaamyBaaqaaiaacIcacaWG4bGaeyOe I0Iaamyyaiaac+cacaaIYaGaaiykamaaCaaaleqabaGaaGOmaaaaki abgUcaRiaacIcacaWG5bGaeyOeI0IaamOyaiaac+cacaaIYaGaaiyk amaaCaaaleqabaGaaGOmaaaaaaaakiaawUfacaGLDbaacqaHbpGCca WGKbGaamiEaiaadsgacaWG5bGaamizaiaadQhaaSqaaiaaicdaaeaa caWGHbaaniabgUIiYdaaleaacaaIWaaabaGaamOyaaqdcqGHRiI8aa WcbaGaaGimaaqaaiaadogaa0Gaey4kIipaaOqaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcqaHbpGCdaWada qaauaabeqadmaaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaaGOmaaaa caWGHbGaamOyamaaCaaaleqabaGaaG4maaaakiaadogacqGHRaWkda WcaaqaaiaaigdaaeaacaaIXaGaaGOmaaaacaWGHbGaamOyaiaadoga daahaaWcbeqaaiaaiodaaaaakeaacaaIWaaabaGaaGimaaqaaiaaic daaeaadaWcaaqaaiaaigdaaeaacaaIXaGaaGOmaaaacaWGHbWaaWba aSqabeaacaaIZaaaaOGaamOyaiaadogacqGHRaWkdaWcaaqaaiaaig daaeaacaaIXaGaaGOmaaaacaWGHbGaamOyaiaadogadaahaaWcbeqa aiaaiodaaaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaadaWcaa qaaiaaigdaaeaacaaIXaGaaGOmaaaacaWGHbWaaWbaaSqabeaacaaI ZaaaaOGaamOyaiaadogacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXa GaaGOmaaaacaWGHbGaamOyamaaCaaaleqabaGaaG4maaaakiaadoga aaaacaGLBbGaayzxaaaabaGaeyypa0ZaaSaaaeaacaWGnbaabaGaaG ymaiaaikdaaaWaamWaaeaafaqabeWadaaabaGaamOyamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadogadaahaaWcbeqaaiaaikdaaaaake aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaam4yamaaCaaaleqabaGaaGOmaaaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaadggadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGIbWaaWbaaSqabeaacaaIYaaaaaaaaOGaay 5waiaaw2faaaaaaa@F773@

 

 

 

Example 2: As a second example, let’s calculate the mass moment of inertia of a cylinder with mass density ρ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaaa@3733@  , length L and radius a.  We have to do the integrals with polar coordinates. For example, the inertia matrix is

 

I G Cylinder = L/2 L/2 0 2π 0 a d y 2 + d z 2 d x d y d x d z d x d y d x 2 + d z 2 d y d z d x d z d y d z d x 2 + d y 2 ρrdrdθdz MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaqhaa WcbaGaam4raaqaaiaadoeacaWG5bGaamiBaiaadMgacaWGUbGaamiz aiaadwgacaWGYbaaaOGaeyypa0Zaa8qCaeaadaWdXbqaamaapehaba WaamWaaeaafaqabeWadaaabaGaamizamaaDaaaleaacaWG5baabaGa aGOmaaaakiabgUcaRiaadsgadaqhaaWcbaGaamOEaaqaaiaaikdaaa aakeaacqGHsislcaWGKbWaaSbaaSqaaiaadIhaaeqaaOGaamizamaa BaaaleaacaWG5baabeaaaOqaaiabgkHiTiaadsgadaWgaaWcbaGaam iEaaqabaGccaWGKbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOeI0Ia amizamaaBaaaleaacaWG4baabeaakiaadsgadaWgaaWcbaGaamyEaa qabaaakeaacaWGKbWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaey4k aSIaamizamaaDaaaleaacaWG6baabaGaaGOmaaaaaOqaaiabgkHiTi aadsgadaWgaaWcbaGaamyEaaqabaGccaWGKbWaaSbaaSqaaiaadQha aeqaaaGcbaGaeyOeI0IaamizamaaBaaaleaacaWG4baabeaakiaads gadaWgaaWcbaGaamOEaaqabaaakeaacqGHsislcaWGKbWaaSbaaSqa aiaadMhaaeqaaOGaamizamaaBaaaleaacaWG6baabeaaaOqaaiaads gadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccqGHRaWkcaWGKbWaa0ba aSqaaiaadMhaaeaacaaIYaaaaaaaaOGaay5waiaaw2faaiabeg8aYj aadkhacaWGKbGaamOCaiaadsgacqaH4oqCcaWGKbGaamOEaaWcbaGa aGimaaqaaiaadggaa0Gaey4kIipaaSqaaiaaicdaaeaacaaIYaGaeq iWdahaniabgUIiYdaaleaacqGHsislcaWGmbGaai4laiaaikdaaeaa caWGmbGaai4laiaaikdaa0Gaey4kIipaaaa@8FC2@

Now (in polar coordinates, and assuming that the COM is located at the center of the cylinder) d x =rcosθ d y =rsinθ d z =z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamiEaaqabaGccqGH9aqpcaWGYbGaci4yaiaac+gacaGGZbGa eqiUdeNaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaadsgadaWgaaWcbaGaamyEaaqabaGccqGH 9aqpcaWGYbGaci4CaiaacMgacaGGUbGaeqiUdeNaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadsgadaWgaaWcbaGaamOEaaqabaGccqGH9a qpcaWG6baaaa@6F21@  . 

 

We can have Matlab do all the integrals for us:

 

 

 

 

 

 

Example 3: Let’s finish up with a 2D example.   Find the mass, center of mass, and out of plane mass moment of inertia of the triangle shown in the figure.

 

The total mass is M= 0 b 0 a(1y/b) μdxdy = 1 2 μab MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 Zaa8qCaeaadaWdXbqaaiabeY7aTjaadsgacaWG4bGaamizaiaadMha aSqaaiaaicdaaeaacaWGHbGaaiikaiaaigdacqGHsislcaWG5bGaai 4laiaadkgacaGGPaaaniabgUIiYdGccqGH9aqpdaWcaaqaaiaaigda aeaacaaIYaaaaiabeY7aTjaadggacaWGIbaaleaacaaIWaaabaGaam OyaaqdcqGHRiI8aaaa@5094@  

The position of the COM is

r G = 2 μab 0 b 0 a(1y/b) (xi+yj)μdxdy = 1 3 (ai+bj) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaeqiVd0Ma amyyaiaadkgaaaWaa8qCaeaadaWdXbqaaiaacIcacaWG4bGaaCyAai abgUcaRiaadMhacaWHQbGaaiykaiabeY7aTjaadsgacaWG4bGaamiz aiaadMhaaSqaaiaaicdaaeaacaWGHbGaaiikaiaaigdacqGHsislca WG5bGaai4laiaadkgacaGGPaaaniabgUIiYdGccqGH9aqpdaWcaaqa aiaaigdaaeaacaaIZaaaaiaacIcacaWGHbGaaCyAaiabgUcaRiaadk gacaWHQbGaaiykaaWcbaGaaGimaaqaaiaadkgaa0Gaey4kIipaaaa@5E94@

The 2D mass moment of inertia is

I Gzz = 0 b 0 a(1y/b) (x a 3 ) 2 + (y b 3 ) 2 μdxdy = abμ 36 a 2 + b 2 = M 18 ( a 2 + b 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaGccqGH9aqpdaWdXbqaamaapeha baWaaeWaaeaacaGGOaGaamiEaiabgkHiTmaalaaabaGaamyyaaqaai aaiodaaaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaacIca caWG5bGaeyOeI0YaaSaaaeaacaWGIbaabaGaaG4maaaacaGGPaWaaW baaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaeqiVd0Maamizaiaa dIhacaWGKbGaamyEaaWcbaGaaGimaaqaaiaadggacaGGOaGaaGymai abgkHiTiaadMhacaGGVaGaamOyaiaacMcaa0Gaey4kIipakiabg2da 9aWcbaGaaGimaaqaaiaadkgaa0Gaey4kIipakmaalaaabaGaamyyai aadkgacqaH8oqBaeaacaaIZaGaaGOnaaaadaqadaqaaiaadggadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaWGIbWaaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGnbaabaGaaGym aiaaiIdaaaGaaiikaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaWGIbWaaWbaaSqabeaacaaIYaaaaOGaaiykaaaa@7150@

 

 

 

This is all a big pain, and you may be contemplating a life of crime instead of an engineering career.   Fortunately, it is very rare to have to do these sorts of integrals in practice, because all the integrals for common shapes have already been done.   You can google most of them.   The tables below give a short list of all the objects we will encounter in this course.

 

 

 

 

 

Table of mass moment of inertia tensors for selected 3D objects

 

Prism

M=ρabc MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 JaeqyWdiNaamyyaiaadkgacaWGJbaaaa@3BC0@  

M 12 b 2 + c 2 0 0 0 a 2 + c 2 0 0 0 a 2 + b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaaqaaiaaigdacaaIYaaaamaadmaabaqbaeqabmWaaaqaaiaadkga daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGJbWaaWbaaSqabeaaca aIYaaaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyyamaa CaaaleqabaGaaGOmaaaakiabgUcaRiaadogadaahaaWcbeqaaiaaik daaaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaamOyamaaCaaaleqabaGaaGOmaa aaaaaakiaawUfacaGLDbaaaaa@4CB6@

Solid Cylinder

M=πρ a 2 L MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 JaeqiWdaNaeqyWdiNaamyyamaaCaaaleqabaGaaGOmaaaakiaadYea aaa@3D72@  

M L 2 12 1+3 a 2 / L 2 0 0 0 1+3 a 2 / L 2 0 0 0 6 a 2 / L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaiaadYeadaahaaWcbeqaaiaaikdaaaaakeaacaaIXaGaaGOmaaaa daWadaqaauaabeqadmaaaeaacaaIXaGaey4kaSIaaG4maiaadggada ahaaWcbeqaaiaaikdaaaGccaGGVaGaamitamaaCaaaleqabaGaaGOm aaaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdacqGHRa WkcaaIZaGaamyyamaaCaaaleqabaGaaGOmaaaakiaac+cacaWGmbWa aWbaaSqabeaacaaIYaaaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGOnaiaadggadaahaaWcbeqaaiaaikdaaaGccaGGVaGaamit amaaCaaaleqabaGaaGOmaaaaaaaakiaawUfacaGLDbaaaaa@531D@

Solid Cone

M= π 3 ρ a 2 h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 ZaaSaaaeaacqaHapaCaeaacaaIZaaaaiabeg8aYjaadggadaahaaWc beqaaiaaikdaaaGccaWGObaaaa@3E5B@

3M a 2 20 1+ h 2 /(4 a 2 ) 0 0 0 1+ h 2 /(4 a 2 ) 0 0 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaaio dacaWGnbGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaaI WaaaamaadmaabaqbaeqabmWaaaqaaiaaigdacqGHRaWkcaWGObWaaW baaSqabeaacaaIYaaaaOGaai4laiaacIcacaaI0aGaamyyamaaCaaa leqabaGaaGOmaaaakiaacMcaaeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacaaIXaGaey4kaSIaamiAamaaCaaaleqabaGaaGOmaaaakiaa c+cacaGGOaGaaGinaiaadggadaahaaWcbeqaaiaaikdaaaGccaGGPa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOmaaaaaiaawUfa caGLDbaaaaa@51C2@

Solid Sphere

M= 4 3 πρ a 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 ZaaSaaaeaacaaI0aaabaGaaG4maaaacqaHapaCcqaHbpGCcaWGHbWa aWbaaSqabeaacaaIZaaaaaaa@3E23@

2M a 2 5 1 0 0 0 1 0 0 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG Omaiaad2eacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGynaaaa daWadaqaauaabeqadmaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaigdaaaaacaGLBbGaayzxaaaaaa@4302@

Solid Ellipsoid

M= 4 3 πρabc MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 ZaaSaaaeaacaaI0aaabaGaaG4maaaacqaHapaCcqaHbpGCcaWGHbGa amOyaiaadogaaaa@3F08@

M 5 b 2 + c 2 0 0 0 a 2 + c 2 0 0 0 a 2 + b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaaqaaiaaiwdaaaWaamWaaeaafaqabeWadaaabaGaamOyamaaCaaa leqabaGaaGOmaaaakiabgUcaRiaadogadaahaaWcbeqaaiaaikdaaa aakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaam4yamaaCaaaleqabaGaaGOmaaaaaO qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadggadaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaWGIbWaaWbaaSqabeaacaaIYaaaaaaaaO Gaay5waiaaw2faaaaa@4BFE@

Hollow Cylinder

M=πρ( b 2 a 2 )L MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 JaeqiWdaNaeqyWdiNaaiikaiaadkgadaahaaWcbeqaaiaaikdaaaGc cqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaadYeaaa a@4192@

M 12 L 2 +3( a 2 + b 2 ) 0 0 0 L 2 +3( a 2 + b 2 ) 0 0 0 6( a 2 + b 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaajaayba GaamytaaqaaiaaigdacaaIYaaaaOWaamWaaKaaGfaafaqabeWadaaa baGaamitaOWaaWbaaKqaGfqabaGaaGOmaaaajaaycqGHRaWkcaaIZa GaaiikaiaadggakmaaCaaajeaybeqaaiaaikdaaaqcaaMaey4kaSIa amOyaOWaaWbaaKqaGfqabaGaaGOmaaaajaaycaGGPaaabaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaamitaOWaaWbaaKqaGfqabaGaaGOm aaaajaaycqGHRaWkcaaIZaGaaiikaiaadggakmaaCaaajeaybeqaai aaikdaaaqcaaMaey4kaSIaamOyaOWaaWbaaKqaGfqabaGaaGOmaaaa jaaycaGGPaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOnai aacIcacaWGHbGcdaahaaqcbawabeaacaaIYaaaaKaaGjabgUcaRiaa dkgakmaaCaaajeaybeqaaiaaikdaaaqcaaMaaiykaaaaaiaawUfaca GLDbaaaaa@5F61@

 

 

 

 

 

 

 

 

 

 

 

Table of mass moment of inertia about perpendicular axis for selected 2D objects

 

Square

I Gzz = M 12 ( a 2 + b 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaGccqGH9aqpdaWcaaqaaiaad2ea aeaacaaIXaGaaGOmaaaacaGGOaGaamyyamaaCaaaleqabaGaaGOmaa aakiabgUcaRiaadkgadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@428E@

Disk

I Gzz = M 2 R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaGccqGH9aqpdaWcaaqaaiaad2ea aeaacaaIYaaaaiaadkfadaahaaWcbeqaaiaaikdaaaaaaa@3DA5@

Thin ring

I Gzz =M R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaGccqGH9aqpcaWGnbGaamOuamaa CaaaleqabaGaaGOmaaaaaaa@3CD9@

Hollow disk

I Gzz = M 2 a 2 + b 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaGccqGH9aqpdaWcaaqaaiaad2ea aeaacaaIYaaaamaabmaabaGaamyyamaaCaaaleqabaGaaGOmaaaaki abgUcaRiaadkgadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaa aaa@4203@

Slender rod

I Gzz = M 12 L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaGccqGH9aqpdaWcaaqaaiaad2ea aeaacaaIXaGaaGOmaaaacaWGmbWaaWbaaSqabeaacaaIYaaaaaaa@3E5A@

 

 

 

 

 

 

6.4.5 The Parallel Axis Theorem

 

In all the previous calculations we have been calculating the mass moment of inertia about the center of mass.   This is what always appears in the general angular momentum formula.   But we sometimes want to find the mass moment of inertia about a different point (not the COM).   For example, if a body happens to be rotating about a fixed point, we can sometimes find its angular momentum and kinetic energy more quickly by first finding the mass moment of inertia about the fixed point, and then using special simpler formulas the angular momentum and kinetic energy (see section 6.4.10).  We also sometimes want to find the combned mass moment of inertia of several bodies that are connected together.   When we do this, we usually find the center of mass of the collection of bodies, and then add up the mass moments of inertia of all the separate bodies about the COM of the assembly (see section 6.4.6).   To be able to do this, we need to be able to calculate the mass moment of inertia of a body about and arbitrary point, i.e. not the COM of the body.

 

The mass moment of inertia about an arbitrary point is defined exactly the same way as the inertia about the COM, except that we use the distances from our arbitrary point instead of the distance from the COM. 

I O = V ρ r y 2 + r z 2 r x r y r x r z r x r y r x 2 + r z 2 r y r z r x r z r y r z r x 2 + r y 2 dV MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4taaqabaGccqGH9aqpdaWdrbqaaiabeg8aYnaadmaabaqb aeqabmWaaaqaaiaadkhadaqhaaWcbaGaamyEaaqaaiaaikdaaaGccq GHRaWkcaWGYbWaa0baaSqaaiaadQhaaeaacaaIYaaaaaGcbaGaeyOe I0IaamOCamaaBaaaleaacaWG4baabeaakiaadkhadaWgaaWcbaGaam yEaaqabaaakeaacqGHsislcaWGYbWaaSbaaSqaaiaadIhaaeqaaOGa amOCamaaBaaaleaacaWG6baabeaaaOqaaiabgkHiTiaadkhadaWgaa WcbaGaamiEaaqabaGccaWGYbWaaSbaaSqaaiaadMhaaeqaaaGcbaGa amOCamaaDaaaleaacaWG4baabaGaaGOmaaaakiabgUcaRiaadkhada qhaaWcbaGaamOEaaqaaiaaikdaaaaakeaacqGHsislcaWGYbWaaSba aSqaaiaadMhaaeqaaOGaamOCamaaBaaaleaacaWG6baabeaaaOqaai abgkHiTiaadkhadaWgaaWcbaGaamiEaaqabaGccaWGYbWaaSbaaSqa aiaadQhaaeqaaaGcbaGaeyOeI0IaamOCamaaBaaaleaacaWG5baabe aakiaadkhadaWgaaWcbaGaamOEaaqabaaakeaacaWGYbWaa0baaSqa aiaadIhaaeaacaaIYaaaaOGaey4kaSIaamOCamaaDaaaleaacaWG5b aabaGaaGOmaaaaaaaakiaawUfacaGLDbaacaWGKbGaamOvaaWcbaGa amOvaaqab0Gaey4kIipaaaa@7573@

 

It’s painful to have to re-do all these integrals, however.   If we already know I G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaaaa@373D@  , the parallel axis theorem lets us calculate I O MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaad+eaaeqaaaaa@3745@  directly.  Define the vector d that points from G to O

d= r O r G = d x i+ d y j+ d z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahsgacqGH9a qpcaWHYbWaaSbaaSqaaiaad+eaaeqaaOGaeyOeI0IaaCOCamaaBaaa leaacaWGhbaabeaakiabg2da9iaadsgadaWgaaWcbaGaamiEaaqaba GccaWHPbGaey4kaSIaamizamaaBaaaleaacaWG5baabeaakiaahQga cqGHRaWkcaWGKbWaaSbaaSqaaiaadQhaaeqaaOGaaC4Aaaaa@4913@

Then for a 3D object with mass M

I O = I G +M d y 2 + d z 2 d x d y d x d z d x d y d x 2 + d z 2 d y d z d x d z d y d z d x 2 + d y 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4taaqabaGccqGH9aqpcaWHjbWaaSbaaSqaaiaadEeaaeqa aOGaey4kaSIaamytamaadmaabaqbaeqabmWaaaqaaiaadsgadaqhaa WcbaGaamyEaaqaaiaaikdaaaGccqGHRaWkcaWGKbWaa0baaSqaaiaa dQhaaeaacaaIYaaaaaGcbaGaeyOeI0IaamizamaaBaaaleaacaWG4b aabeaakiaadsgadaWgaaWcbaGaamyEaaqabaaakeaacqGHsislcaWG KbWaaSbaaSqaaiaadIhaaeqaaOGaamizamaaBaaaleaacaWG6baabe aaaOqaaiabgkHiTiaadsgadaWgaaWcbaGaamiEaaqabaGccaWGKbWa aSbaaSqaaiaadMhaaeqaaaGcbaGaamizamaaDaaaleaacaWG4baaba GaaGOmaaaakiabgUcaRiaadsgadaqhaaWcbaGaamOEaaqaaiaaikda aaaakeaacqGHsislcaWGKbWaaSbaaSqaaiaadMhaaeqaaOGaamizam aaBaaaleaacaWG6baabeaaaOqaaiabgkHiTiaadsgadaWgaaWcbaGa amiEaaqabaGccaWGKbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOeI0 IaamizamaaBaaaleaacaWG5baabeaakiaadsgadaWgaaWcbaGaamOE aaqabaaakeaacaWGKbWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaey 4kaSIaamizamaaDaaaleaacaWG5baabaGaaGOmaaaaaaaakiaawUfa caGLDbaaaaa@7156@

 

For 2D we have a simpler result

 

I Ozz = I Gzz +M( d x 2 + d y 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaad+eacaWG6bGaamOEaaqabaGccqGH9aqpcaWGjbWaaSbaaSqa aiaadEeacaWG6bGaamOEaaqabaGccqGHRaWkcaWGnbGaaiikaiaads gadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccqGHRaWkcaWGKbWaa0ba aSqaaiaadMhaaeaacaaIYaaaaOGaaiykaaaa@47BF@

 

 

 

 

 

Example: Let’s find the mass moment of inertia of a cylinder about axes that pass through one end of the cylinder (O), instead of the COM.

 

Here, d= L 2 k d x = d y =0 d z = L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHKbGaeyypa0 ZaaSaaaeaacaWGmbaabaGaaGOmaaaacaWHRbGaeyO0H4Taamizamaa BaaaleaacaWG4baabeaakiabg2da9iaadsgadaWgaaWcbaGaamyEaa qabaGccqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadsgadaWgaaWcbaGaamOEaaqabaGccqGH9aqpda WcaaqaaiaadYeaaeaacaaIYaaaaaaa@52E1@  

 

The formula gives

I O = I G +M d y 2 + d z 2 d x d y d x d z d x d y d x 2 + d z 2 d y d z d x d z d y d z d x 2 + d y 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4taaqabaGccqGH9aqpcaWHjbWaaSbaaSqaaiaadEeaaeqa aOGaey4kaSIaamytamaadmaabaqbaeqabmWaaaqaaiaadsgadaqhaa WcbaGaamyEaaqaaiaaikdaaaGccqGHRaWkcaWGKbWaa0baaSqaaiaa dQhaaeaacaaIYaaaaaGcbaGaeyOeI0IaamizamaaBaaaleaacaWG4b aabeaakiaadsgadaWgaaWcbaGaamyEaaqabaaakeaacqGHsislcaWG KbWaaSbaaSqaaiaadIhaaeqaaOGaamizamaaBaaaleaacaWG6baabe aaaOqaaiabgkHiTiaadsgadaWgaaWcbaGaamiEaaqabaGccaWGKbWa aSbaaSqaaiaadMhaaeqaaaGcbaGaamizamaaDaaaleaacaWG4baaba GaaGOmaaaakiabgUcaRiaadsgadaqhaaWcbaGaamOEaaqaaiaaikda aaaakeaacqGHsislcaWGKbWaaSbaaSqaaiaadMhaaeqaaOGaamizam aaBaaaleaacaWG6baabeaaaOqaaiabgkHiTiaadsgadaWgaaWcbaGa amiEaaqabaGccaWGKbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOeI0 IaamizamaaBaaaleaacaWG5baabeaakiaadsgadaWgaaWcbaGaamOE aaqabaaakeaacaWGKbWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaey 4kaSIaamizamaaDaaaleaacaWG5baabaGaaGOmaaaaaaaakiaawUfa caGLDbaaaaa@7156@

= M L 2 12 1+3 a 2 / L 2 0 0 0 1+3 a 2 / L 2 0 0 0 6 a 2 / L 2 +M L 2 /4 0 0 0 L 2 /4 0 0 0 0 = M L 2 12 4+3 a 2 / L 2 0 0 0 4+3 a 2 / L 2 0 0 0 6 a 2 / L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyypa0 ZaaSaaaeaacaWGnbGaamitamaaCaaaleqabaGaaGOmaaaaaOqaaiaa igdacaaIYaaaamaadmaabaqbaeqabmWaaaqaaiaaigdacqGHRaWkca aIZaGaamyyamaaCaaaleqabaGaaGOmaaaakiaac+cacaWGmbWaaWba aSqabeaacaaIYaaaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGymaiabgUcaRiaaiodacaWGHbWaaWbaaSqabeaacaaIYaaaaOGa ai4laiaadYeadaahaaWcbeqaaiaaikdaaaaakeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaI2aGaamyyamaaCaaaleqabaGaaGOmaaaa kiaac+cacaWGmbWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5waiaaw2 faaiabgUcaRiaad2eadaWadaqaauaabeqadmaaaeaacaWGmbWaaWba aSqabeaacaaIYaaaaOGaai4laiaaisdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaWGmbWaaWbaaSqabeaacaaIYaaaaOGaai4laiaa isdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaaaGaay 5waiaaw2faaaqaaiabg2da9maalaaabaGaamytaiaadYeadaahaaWc beqaaiaaikdaaaaakeaacaaIXaGaaGOmaaaadaWadaqaauaabeqadm aaaeaacaaI0aGaey4kaSIaaG4maiaadggadaahaaWcbeqaaiaaikda aaGccaGGVaGaamitamaaCaaaleqabaGaaGOmaaaaaOqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaisdacqGHRaWkcaaIZaGaamyyamaa CaaaleqabaGaaGOmaaaakiaac+cacaWGmbWaaWbaaSqabeaacaaIYa aaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOnaiaadgga daahaaWcbeqaaiaaikdaaaGccaGGVaGaamitamaaCaaaleqabaGaaG OmaaaaaaaakiaawUfacaGLDbaaaaaa@8159@

 

 

Proof of the parallel axis theorem

 

Let r O MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOCamaaBa aaleaacaWGpbaabeaaaaa@37EF@  be some arbitrary point in space, and let r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOCamaaBa aaleaacaWGhbaabeaaaaa@37E7@  be the position of the COM.  Define d= r O r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCizaiabg2 da9iaahkhadaWgaaWcbaGaam4taaqabaGccqGHsislcaWHYbWaaSba aSqaaiaadEeaaeqaaaaa@3CCC@  as the vector from the COM to O, as shown in the figure.

 

Then let r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOCaaaa@36EF@  denote the position vector of an infinitesimal volume element in the rigid body relative to O, and let b MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyaaaa@36DF@  denote the position vector of the same volume element relative to the COM G. Then r=bd MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOCaiabg2 da9iaahkgacqGHsislcaWHKbaaaa@3ABA@ .

 

We also know that (by definition)

I O = V ρ r 2 1rr dV I G = V ρ b 2 1bb dV V ρbdV =0 V ρdV =M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHjb WaaSbaaSqaaiaad+eaaeqaaOGaeyypa0Zaa8quaeaacqaHbpGCdaqa daqaamaaemaabaGaaCOCaaGaay5bSlaawIa7amaaCaaaleqabaGaaG OmaaaakiaahgdacqGHsislcaWHYbGaey4LIqSaaCOCaaGaayjkaiaa wMcaaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaGcbaGaaC ysamaaBaaaleaacaWGhbaabeaakiabg2da9maapefabaGaeqyWdi3a aeWaaeaadaabdaqaaiaahkgaaiaawEa7caGLiWoadaahaaWcbeqaai aaikdaaaGccaWHXaGaeyOeI0IaaCOyaiabgEPielaahkgaaiaawIca caGLPaaacaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaOqaam aapefabaGaeqyWdiNaaCOyaiaadsgacaWGwbaaleaacaWGwbaabeqd cqGHRiI8aOGaeyypa0JaaCimaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWdrbqaaiabeg8a YjaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0Jaam ytaaaaaa@82C2@

We can make use of r 2 =rr MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca WHYbaacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyypa0Ja aCOCaiabgwSixlaahkhaaaa@404A@  and then substitute  r=bd MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOCaiabg2 da9iaahkgacqGHsislcaWHKbaaaa@3ABA@  into (1).   Expand the dot and dyadic product of bd MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyaiabgk HiTiaahsgaaaa@38B9@ , note d is a constant and use the identities on the last line above, as follows

I O = V ρ r 2 1rr dV = V ρ (bd)(bd)(bd)(bd) dV = V ρ (bb)1bb dV + V ρdV (dd)1dd 2d V ρbdV 1+ V ρbdV d+d V ρbdV = V ρ b 2 1bb dV +M d 2 1dd = I G +M d 2 1dd MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHjb WaaSbaaSqaaiaad+eaaeqaaOGaeyypa0Zaa8quaeaacqaHbpGCdaqa daqaamaaemaabaGaaCOCaaGaay5bSlaawIa7amaaCaaaleqabaGaaG OmaaaakiaahgdacqGHsislcaWHYbGaey4LIqSaaCOCaaGaayjkaiaa wMcaaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0 Zaa8quaeaacqaHbpGCdaqadaqaaiaacIcacaWHIbGaeyOeI0IaaCiz aiaacMcacqGHflY1caGGOaGaaCOyaiabgkHiTiaahsgacaGGPaGaey OeI0IaaiikaiaahkgacqGHsislcaWHKbGaaiykaiabgEPielaacIca caWHIbGaeyOeI0IaaCizaiaacMcaaiaawIcacaGLPaaacaWGKbGaam OvaaWcbaGaamOvaaqab0Gaey4kIipaaOqaaiabg2da9maapefabaGa eqyWdi3aaeWaaeaacaGGOaGaaCOyaiabgwSixlaahkgacaGGPaGaaC ymaiabgkHiTiaahkgacqGHxkcXcaWHIbaacaGLOaGaayzkaaGaamiz aiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaai abeg8aYjaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOWaaeWa aeaacaGGOaGaaCizaiabgwSixlaahsgacaGGPaGaaCymaiabgkHiTi aahsgacqGHxkcXcaWHKbaacaGLOaGaayzkaaaabaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGHsisldaqadaqaaiaaikdacaWHKbGaey yXIC9aa8quaeaacqaHbpGCcaWHIbGaamizaiaadAfaaSqaaiaadAfa aeqaniabgUIiYdaakiaawIcacaGLPaaacaWHXaGaey4kaSYaaeWaae aadaWdrbqaaiabeg8aYjaahkgacaWGKbGaamOvaaWcbaGaamOvaaqa b0Gaey4kIipaaOGaayjkaiaawMcaaiabgEPielaahsgacqGHRaWkca WHKbGaey4LIq8aaeWaaeaadaWdrbqaaiabeg8aYjaahkgacaWGKbGa amOvaaWcbaGaamOvaaqab0Gaey4kIipaaOGaayjkaiaawMcaaaqaai abg2da9maapefabaGaeqyWdi3aaeWaaeaadaabdaqaaiaahkgaaiaa wEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccaWHXaGaeyOeI0IaaC OyaiabgEPielaahkgaaiaawIcacaGLPaaacaWGKbGaamOvaaWcbaGa amOvaaqab0Gaey4kIipakiabgUcaRiaad2eadaqadaqaamaaemaaba GaaCizaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiaahgda cqGHsislcaWHKbGaey4LIqSaaCizaaGaayjkaiaawMcaaiabg2da9i aahMeadaWgaaWcbaGaam4raaqabaGccqGHRaWkcaWGnbWaaeWaaeaa daabdaqaaiaahsgaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaa GccaWHXaGaeyOeI0IaaCizaiabgEPielaahsgaaiaawIcacaGLPaaa aaaa@F5DB@

 

 

 

 

 

 

6.4.6 Calculating moments of inertia of complex shapes by summation

 

The most important application of the parallel axis theorem is in calculating the mass moment of inertia of complicated objects (which don’t appear in our table) by adding together moments of inertia for simple shapes.   We can illustrate this with a couple of simple examples.

Example 1:  Two spheres with radius 3a are connected by a rigid cylinder with length 6a and radius a to create a dumbbell.   All objects have the same mass density ρ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaaa@3733@  .   Calculate the total mass moment of inertia of the dumbbell.

 

The general approach is

(1)    Find the COM of the entire assembly

(2)    Find the mass moment of inertia of each shape (the spheres and the cylinder) about its own COM

(3)    Use the parallel axis theorem to find the moment of inertia of each shape about the combined COM

(4)    Add all the moments of inertia

 

For our problem

(1)    We know the COM is at the origin by symmetry, so we don’t need to calculate it

(2)    The inertia matrices of each object (cylinder + sphere) about their own COM are:

I G sphere = 2 5 4π 3 3a 3 ρ 3a 2 0 0 0 3a 2 0 0 0 3a 2 I G cylinder = 1 12 6π a 3 ρ (6a) 2 +3 a 2 0 0 0 (6a) 2 +3 a 2 0 0 0 6 a 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahMeada qhaaWcbaGaam4raaqaaiaadohacaWGWbGaamiAaiaadwgacaWGYbGa amyzaaaakiabg2da9maalaaabaGaaGOmaaqaaiaaiwdaaaWaaeWaae aadaWcaaqaaiaaisdacqaHapaCaeaacaaIZaaaamaabmaabaGaaG4m aiaadggaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccqaHbp GCaiaawIcacaGLPaaadaWadaqaauaabeqadmaaaeaadaqadaqaaiaa iodacaWGHbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcba GaaGimaaqaaiaaicdaaeaacaaIWaaabaWaaeWaaeaacaaIZaGaamyy aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaaicdaae aacaaIWaaabaGaaGimaaqaamaabmaabaGaaG4maiaadggaaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaGaaG PaVlaaykW7aeaacaWHjbWaa0baaSqaaiaadEeaaeaacaWGJbGaamyE aiaadYgacaWGPbGaamOBaiaadsgacaWGLbGaamOCaaaakiabg2da9m aalaaabaGaaGymaaqaaiaaigdacaaIYaaaaiaaykW7daqadaqaaiaa iAdacqaHapaCcaWGHbWaaWbaaSqabeaacaaIZaaaaOGaeqyWdiNaaG PaVdGaayjkaiaawMcaamaadmaabaqbaeqabmWaaaqaaiaacIcacaaI 2aGaamyyaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZa GaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaacIcacaaI2aGaamyyaiaacMcadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIZaGaamyyamaaCaaaleqabaGaaGOmaaaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaiAdacaWGHbWaaW baaSqabeaacaaIYaaaaaaaaOGaay5waiaaw2faaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aa aa@9EA3@

(3)    We don’t need to use the parallel axis theorem for the cylinder, because its COM is already at the same place as the COM of the assembly.   For the spheres, we need to move the COM a distance 6a parallel to the k direction.  This means that d x = d y =0, d z =6a MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaSbaaS qaaiaadIhaaeqaaOGaeyypa0JaamizamaaBaaaleaacaWG5baabeaa kiabg2da9iaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamizamaaBaaaleaacaWG6baabeaakiabg2da9iaaiAda caWGHbaaaa@4B2E@  in our formula.  Therefore

I COM sphere = 2 5 4π 3 3a 3 ρ 3a 2 0 0 0 3a 2 0 0 0 3a 2 + 4π 3 3a 3 ρ 0 0 0 0 0 0 0 0 6a 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaa0baaS qaaiaadoeacaWGpbGaamytaaqaaiaadohacaWGWbGaamiAaiaadwga caWGYbGaamyzaaaakiabg2da9maalaaabaGaaGOmaaqaaiaaiwdaaa WaaeWaaeaadaWcaaqaaiaaisdacqaHapaCaeaacaaIZaaaamaabmaa baGaaG4maiaadggaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaa GccqaHbpGCaiaawIcacaGLPaaadaWadaqaauaabeqadmaaaeaadaqa daqaaiaaiodacaWGHbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaWaaeWaaeaacaaI ZaGaamyyaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaamaabmaabaGaaG4maiaadgga aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaGccaGLBbGaay zxaaGaaGPaVlaaykW7cqGHRaWkdaqadaqaamaalaaabaGaaGinaiab ec8aWbqaaiaaiodaaaWaaeWaaeaacaaIZaGaamyyaaGaayjkaiaawM caamaaCaaaleqabaGaaG4maaaakiabeg8aYbGaayjkaiaawMcaamaa dmaabaqbaeqabmWaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaWa aeWaaeaacaaI2aGaamyyaaGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaaaaaakiaawUfacaGLDbaaaaa@7937@

 

(4)    We can add everything up (note that there are two spheres).  Its best to use Mupad. The answer is

I COM = 1 140 M 929 a 2 0 0 0 929 a 2 0 0 0 9514 a 2 M=42π a 3 ρ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadoeacaWGpbGaamytaaqabaGccqGH9aqpdaWcaaqaaiaaigda aeaacaaIXaGaaGinaiaaicdaaaGaamytamaadmaabaqbaeqabmWaaa qaaiaaiMdacaaIYaGaaGyoaiaadggadaahaaWcbeqaaiaaikdaaaaa keaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI5aGaaGOmaiaaiM dacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGyoaiaaiwdacaaIXaGaaGinaiaadggadaahaa WcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaamytaiabg2da9iaaisdacaaI YaGaeqiWdaNaamyyamaaCaaaleqabaGaaG4maaaakiabeg8aYbaa@70FC@

 

Example 2:  Things are a lot simpler in 2D.  The procedure is the same, but we only need to calculate I zz MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadQhacaWG6baabeaaaaa@386B@  .    For example, to calculate the mass moment of inertia for a square 2ax2a plate with a hole with an axa square cut out from the top corner we would use the following approach.

 

Start by calculating the total mass and the position of the COM.  We can regard the cut-out section as a square with negative density inside a larger 2ax2a square. 

 

The total mass is therefore M=ρ 2a 2 ρ a 2 =3ρ a 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 JaeqyWdi3aaeWaaeaacaaIYaGaamyyaaGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaakiabgkHiTiabeg8aYjaadggadaahaaWcbeqaai aaikdaaaGccqGH9aqpcaaIZaGaeqyWdiNaamyyamaaCaaaleqabaGa aGOmaaaaaaa@4701@  

The position of the COM is r G = 1 M 4 a 2 ρ(ai+aj) a 2 ρ( 3a 2 i+ 3a 2 j) = 5 6 a(i+j) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamytaaaa daqadaqaaiaaisdacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeqyWdi NaaiikaiaadggacaWHPbGaey4kaSIaamyyaiaahQgacaGGPaGaeyOe I0IaamyyamaaCaaaleqabaGaaGOmaaaakiabeg8aYjaacIcadaWcaa qaaiaaiodacaWGHbaabaGaaGOmaaaacaWHPbGaey4kaSYaaSaaaeaa caaIZaGaamyyaaqaaiaaikdaaaGaaCOAaiaacMcaaiaawIcacaGLPa aacqGH9aqpdaWcaaqaaiaaiwdaaeaacaaI2aaaaiaadggacaGGOaGa aCyAaiabgUcaRiaahQgacaGGPaaaaa@5AFE@  

 

The mass moment of inertia of the 2ax2a square and the axa square are

Large square I Gzz = 1 12 4ρ a 2 (4 a 2 +4 a 2 )= 8 3 ρ a 4 (COM at a(i+j)) Small square I Gzz = 1 12 ρ a 2 ( a 2 + a 2 )= 1 6 ρ a 4 (COM at  3 2 a(i+j)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaabYeaca qGHbGaaeOCaiaabEgacaqGLbGaaeiiaiaabohacaqGXbGaaeyDaiaa bggacaqGYbGaaeyzaiaaykW7caaMc8UaaGPaVlaaykW7caWGjbWaaS baaSqaaiaadEeacaWG6bGaamOEaaqabaGccqGH9aqpdaWcaaqaaiaa igdaaeaacaaIXaGaaGOmaaaacaaI0aGaeqyWdiNaamyyamaaCaaale qabaGaaGOmaaaakiaacIcacaaI0aGaamyyamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaisdacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaai ykaiabg2da9maalaaabaGaaGioaaqaaiaaiodaaaGaeqyWdiNaamyy amaaCaaaleqabaGaaGinaaaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa bIcacaqGdbGaae4taiaab2eacaqGGaGaaeyyaiaabshacaqGGaGaam yyaiaacIcacaWHPbGaey4kaSIaaCOAaiaacMcacaGGPaaabaGaae4u aiaab2gacaqGHbGaaeiBaiaabYgacaqGGaGaae4CaiaabghacaqG1b GaaeyyaiaabkhacaqGLbGaaGPaVlaaykW7caaMc8UaaGPaVlaadMea daWgaaWcbaGaam4raiaadQhacaWG6baabeaakiabg2da9iabgkHiTm aalaaabaGaaGymaaqaaiaaigdacaaIYaaaaiabeg8aYjaadggadaah aaWcbeqaaiaaikdaaaGccaGGOaGaamyyamaaCaaaleqabaGaaGOmaa aakiabgUcaRiaadggadaahaaWcbeqaaiaaikdaaaGccaGGPaGaeyyp a0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOnaaaacqaHbpGCcaWGHb WaaWbaaSqabeaacaaI0aaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGOaGaae 4qaiaab+eacaqGnbGaaeiiaiaabggacaqG0bGaaeiiamaalaaabaGa aG4maaqaaiaaikdaaaGaamyyaiaacIcacaWHPbGaey4kaSIaaCOAai aacMcacaGGPaaaaaa@C5DB@  

 

We now use the parallel axis theorem to find the moment of inertia of each square about the combined COM.   For the large square: d x = 1 6 a d y = 1 6 a MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaSbaaS qaaiaadIhaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOnaaaa caWGHbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGKbWaaSbaaS qaaiaadMhaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOnaaaa caWGHbaaaa@4851@  .    For the small square,  d x = 2 3 a d y = 2 3 a MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaSbaaS qaaiaadIhaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaa caWGHbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGKbWaaSbaaS qaaiaadMhaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaa caWGHbaaaa@484D@ .  The total mass moment of inertia is therefore

I Gzz total = 8 3 ρ a 4 +4 a 2 ρ 1 36 a 2 + 1 36 a 2 1 6 ρ a 4 ρ a 2 4 9 a 2 + 4 9 a 2 = 11 6 ρ a 4 = 11 18 M a 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaa0baaS qaaiaadEeacaWG6bGaamOEaaqaaiaadshacaWGVbGaamiDaiaadgga caWGSbaaaOGaeyypa0ZaaSaaaeaacaaI4aaabaGaaG4maaaacqaHbp GCcaWGHbWaaWbaaSqabeaacaaI0aaaaOGaaGPaVlaaykW7caaMc8Ua ey4kaSIaaGinaiaadggadaahaaWcbeqaaiaaikdaaaGccqaHbpGCda qadaqaamaalaaabaGaaGymaaqaaiaaiodacaaI2aaaaiaadggadaah aaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIZa GaaGOnaaaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzk aaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOnaaaacqaHbpGCcaWGHb WaaWbaaSqabeaacaaI0aaaaOGaeyOeI0IaeqyWdiNaamyyamaaCaaa leqabaGaaGOmaaaakmaabmaabaWaaSaaaeaacaaI0aaabaGaaGyoaa aacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaI 0aaabaGaaGyoaaaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGccaGLOa GaayzkaaGaeyypa0ZaaSaaaeaacaaIXaGaaGymaaqaaiaaiAdaaaGa eqyWdiNaamyyamaaCaaaleqabaGaaGinaaaakiabg2da9maalaaaba GaaGymaiaaigdaaeaacaaIXaGaaGioaaaacaWGnbGaamyyamaaCaaa leqabaGaaGOmaaaaaaa@7A1F@

 

 

6.4.7 Rotating the inertia tensor

 

All the curious properties of spinning objects MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  a gyroscope; a boomerang; the rattleback MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  are consequences of the fact that the mass moment of inertia of an object changes when it is rotated.  We can see this very easily by re-visiting our assembly of masses.  In the original calculation, the red, green and blue masses were located on the i,j,k axes.  We calculated the inertia tensor to be

 

I G = 2 m y L y 2 + m z L z 2 0 0 0 2 m x L x 2 + m z L z 2 0 0 0 2 m x L x 2 + m y L y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWadaqaauaabeqadmaaaeaacaaI YaWaaeWaaeaacaWGTbWaaSbaaSqaaiaadMhaaeqaaOGaamitamaaDa aaleaacaWG5baabaGaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGa amOEaaqabaGccaWGmbWaa0baaSqaaiaadQhaaeaacaaIYaaaaaGcca GLOaGaayzkaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOm amaabmaabaGaamyBamaaBaaaleaacaWG4baabeaakiaadYeadaqhaa WcbaGaamiEaaqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaa dQhaaeqaaOGaamitamaaDaaaleaacaWG6baabaGaaGOmaaaaaOGaay jkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikda daqadaqaaiaad2gadaWgaaWcbaGaamiEaaqabaGccaWGmbWaa0baaS qaaiaadIhaaeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaWG 5baabeaakiaadYeadaqhaaWcbaGaamyEaaqaaiaaikdaaaaakiaawI cacaGLPaaaaaaacaGLBbGaayzxaaaaaa@665A@

 

Now suppose we rotate the assembly through 90 degrees about the k axis.  The red masses now lie on the j axis, and the green ones line up with the i axis.   It is not hard to see that the new mass moment of inertia is now

 

I G = 2 m x L x 2 + m z L z 2 0 0 0 2 m y L y 2 + m z L z 2 0 0 0 2 m x L x 2 + m y L y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaWgaa WcbaGaam4raaqabaGccqGH9aqpdaWadaqaauaabeqadmaaaeaacaaI YaWaaeWaaeaacaWGTbWaaSbaaSqaaiaadIhaaeqaaOGaamitamaaDa aaleaacaWG4baabaGaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGa amOEaaqabaGccaWGmbWaa0baaSqaaiaadQhaaeaacaaIYaaaaaGcca GLOaGaayzkaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOm amaabmaabaGaamyBamaaBaaaleaacaWG5baabeaakiaadYeadaqhaa WcbaGaamyEaaqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaa dQhaaeqaaOGaamitamaaDaaaleaacaWG6baabaGaaGOmaaaaaOGaay jkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikda daqadaqaaiaad2gadaWgaaWcbaGaamiEaaqabaGccaWGmbWaa0baaS qaaiaadIhaaeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaWG 5baabeaakiaadYeadaqhaaWcbaGaamyEaaqaaiaaikdaaaaakiaawI cacaGLPaaaaaaacaGLBbGaayzxaaaaaa@665A@  ( I xx , I yy MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadIhacaWG4baabeaakiaacYcacaWGjbWaaSbaaSqaaiaadMha caWG5baabeaaaaa@3C17@  have switched positions)

 

 

This seems like a huge problem MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  if we needed to re-calculate the mass moment of inertia from scratch every time a rigid body moves, analyzing rigid body motion would be nearly impossible.

 

Fortunately, we can derive a formula that tells us how the mass moment of inertia of a body changes when it is rotated.  

 

 

Rotation formula for moments of inertia: Consider the rectangular prism shown in the figure.  Let I G 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaa0baaS qaaiaadEeaaeaacaaIWaaaaaaa@37F8@  denote the mass moment of inertia with the prism oriented so the faces are perpendicular to i,j,k (i.e. the inertia given in the table in Sect 6.4.5). 

 

Suppose the body is then rotated by a tensor R.

 

The mass moment of inertia after rotation is given by

I G =R I G 0 R T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0JaaCOuaiaahMeadaqhaaWcbaGaam4r aaqaaiaaicdaaaGccaWHsbWaaWbaaSqabeaacaWGubaaaaaa@3D98@

 

 

Example: The prism shown in the figure is rotated by 45 degrees about the k axis.   Calculate the mass moment of inertia after the rotation

 

Start by calculating the rotation (use the formulas from 6.2.1)

R= cos(45) sin(45) 0 sin(45) cos(45) 0 0 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaeyypa0 ZaamWaaeaafaqabeWadaaabaGaci4yaiaac+gacaGGZbGaaiikaiaa isdacaaI1aGaaiykaaqaaiabgkHiTiGacohacaGGPbGaaiOBaiaacI cacaaI0aGaaGynaiaacMcaaeaacaaIWaaabaGaci4CaiaacMgacaGG UbGaaiikaiaaisdacaaI1aGaaiykaaqaaiGacogacaGGVbGaai4Cai aacIcacaaI0aGaaGynaiaacMcaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIXaaaaaGaay5waiaaw2faaaaa@549B@

 

We know the inertia tensor of the prism before it is rotated is

I G 0 = M 12 b 2 + c 2 0 0 0 a 2 + c 2 0 0 0 a 2 + b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahMeadaqhaa WcbaGaam4raaqaaiaaicdaaaGccqGH9aqpdaWcaaqaaiaad2eaaeaa caaIXaGaaGOmaaaadaWadaqaauaabeqadmaaaeaacaWGIbWaaWbaaS qabeaacaaIYaaaaOGaey4kaSIaam4yamaaCaaaleqabaGaaGOmaaaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadggadaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaWGJbWaaWbaaSqabeaacaaIYaaaaaGc baGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyyamaaCaaaleqaba GaaGOmaaaakiabgUcaRiaadkgadaahaaWcbeqaaiaaikdaaaaaaaGc caGLBbGaayzxaaaaaa@504B@

 

We can use Matlab to do the tedious matrix multiplications

 

Note that the inertia tensor is no longer diagonal.

 

 

 

Rotation formula for 2D motion:  Fortunately,  2D is simple

 

Rotating a 2D object about the k axis does not change I Gzz MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaiaadEeacaWG6bGaamOEaaqabaaaaa@3937@    

 

 

 

 

 

Proof of the rotation formula: Consider a system of N particles.  Suppose that before rotation, the particles are at positions d i 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHKbWaa0baaS qaaiaadMgaaeaacaaIWaaaaaaa@3835@  relative to the COM.    The initial inertia tensor is

I G 0 = i=1 N m i d i 0 2 1 m i d i 0 d i 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaa0baaS qaaiaadEeaaeaacaaIWaaaaOGaeyypa0ZaaabCaeaadaqadaqaaiaa d2gadaWgaaWcbaGaamyAaaqabaGcdaabdaqaaiaahsgadaqhaaWcba GaamyAaaqaaiaaicdaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaa ikdaaaGccaWHXaGaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaaki aahsgadaqhaaWcbaGaamyAaaqaaiaaicdaaaGccqGHxkcXcaWHKbWa a0baaSqaaiaadMgaaeaacaaIWaaaaaGccaGLOaGaayzkaaaaleaaca WGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@54AA@

Now rotate the system, so the particle s move to new positions d i =R d i 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHKbWaaSbaaS qaaiaadMgaaeqaaOGaeyypa0JaaCOuaiaahsgadaqhaaWcbaGaamyA aaqaaiaaicdaaaaaaa@3C27@ .  The new inertia tensor is

I G = i=1 N m i d i 2 1 m i d i d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0ZaaabCaeaadaqadaqaaiaad2gadaWg aaWcbaGaamyAaaqabaGcdaabdaqaaiaahsgadaWgaaWcbaGaamyAaa qabaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccaWHXaGa eyOeI0IaamyBamaaBaaaleaacaWGPbaabeaakiaahsgadaWgaaWcba GaamyAaaqabaGccqGHxkcXcaWHKbWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0 GaeyyeIuoaaaa@51BE@

Recall that R R T =1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaaCOuam aaCaaaleqabaGaamivaaaakiabg2da9iaahgdaaaa@39F9@  and recall that a rotation R does not change lengths so d i 0 = d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahs gadaqhaaWcbaGaamyAaaqaaiaaicdaaaaakiaawEa7caGLiWoacqGH 9aqpdaabdaqaaiaahsgadaWgaaWcbaGaamyAaaqabaaakiaawEa7ca GLiWoaaaa@419A@ .  Therefore

I G = i=1 N m i d i 0 2 R R T m i (R d i 0 )(R d i 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0ZaaabCaeaadaqadaqaaiaad2gadaWg aaWcbaGaamyAaaqabaGcdaabdaqaaiaahsgadaqhaaWcbaGaamyAaa qaaiaaicdaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGc caWHsbGaaCOuamaaCaaaleqabaGaamivaaaakiabgkHiTiaad2gada WgaaWcbaGaamyAaaqabaGccaGGOaGaaCOuaiaahsgadaqhaaWcbaGa amyAaaqaaiaaicdaaaGccaGGPaGaey4LIqSaaiikaiaahkfacaWHKb Waa0baaSqaaiaadMgaaeaacaaIWaaaaOGaaiykaaGaayjkaiaawMca aaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaaaa@5A63@

It is easy to show (just write out the matrix products) (R d i 0 )(R d i 0 )=R( d i 0 d i 0 ) R T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaCOuai aahsgadaqhaaWcbaGaamyAaaqaaiaaicdaaaGccaGGPaGaey4LIqSa aiikaiaahkfacaWHKbWaa0baaSqaaiaadMgaaeaacaaIWaaaaOGaai ykaiabg2da9iaahkfacaGGOaGaaCizamaaDaaaleaacaWGPbaabaGa aGimaaaakiabgEPielaahsgadaqhaaWcbaGaamyAaaqaaiaaicdaaa GccaGGPaGaaCOuamaaCaaaleqabaGaamivaaaaaaa@4E38@ , which shows that

I G = i=1 N m i d i 0 2 R R T m i R( d i 0 d i 0 ) R T =R i=1 N m i d i 0 2 1 m i d i 0 d i 0 R T =R I G 0 R T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0ZaaabCaeaadaqadaqaaiaad2gadaWg aaWcbaGaamyAaaqabaGcdaabdaqaaiaahsgadaqhaaWcbaGaamyAaa qaaiaaicdaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGc caWHsbGaaCOuamaaCaaaleqabaGaamivaaaakiabgkHiTiaad2gada WgaaWcbaGaamyAaaqabaGccaWHsbGaaiikaiaahsgadaqhaaWcbaGa amyAaaqaaiaaicdaaaGccqGHxkcXcaWHKbWaa0baaSqaaiaadMgaae aacaaIWaaaaOGaaiykaiaahkfadaahaaWcbeqaaiaadsfaaaaakiaa wIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcq GHris5aOGaeyypa0JaaCOuamaaqahabaWaaeWaaeaacaWGTbWaaSba aSqaaiaadMgaaeqaaOWaaqWaaeaacaWHKbWaa0baaSqaaiaadMgaae aacaaIWaaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGa aCymaiabgkHiTiaad2gadaWgaaWcbaGaamyAaaqabaGccaWHKbWaa0 baaSqaaiaadMgaaeaacaaIWaaaaOGaey4LIqSaaCizamaaDaaaleaa caWGPbaabaGaaGimaaaaaOGaayjkaiaawMcaaiaahkfadaahaaWcbe qaaiaadsfaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniab ggHiLdGccqGH9aqpcaWHsbGaaCysamaaDaaaleaacaWGhbaabaGaaG imaaaakiaahkfadaahaaWcbeqaaiaadsfaaaaaaa@7FD7@

 

 

 

6.4.8 Time derivative of the inertia tensor

 

When we analyze motion of a rigid body, we will need to calculate the time derivatives of the linear and angular momentum.   Linear momentum is no problem, but for angular momentum, we will need to know how to differentiate I G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaaaa@373D@  with respect to time.  There is a formula for this:

d I G dt =W I G I G W MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaads gacaWHjbWaaSbaaSqaaiaadEeaaeqaaaGcbaGaamizaiaadshaaaGa eyypa0JaaC4vaiaahMeadaWgaaWcbaGaam4raaqabaGccqGHsislca WHjbWaaSbaaSqaaiaadEeaaeqaaOGaaC4vaaaa@417D@

where W= dR dt R T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHxbGaeyypa0 ZaaSaaaeaacaWGKbGaaCOuaaqaaiaadsgacaWG0baaaiaahkfadaah aaWcbeqaaiaadsfaaaaaaa@3CF0@   is the spin tensor (see sect 6.2.2)

 

Proof:

  • Start with I G =R I G 0 R T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0JaaCOuaiaahMeadaqhaaWcbaGaam4r aaqaaiaaicdaaaGccaWHsbWaaWbaaSqabeaacaWGubaaaaaa@3D98@  and take the time derivative

d I G dt = dR dt I G 0 R T +R I G 0 d R T dt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaads gacaWHjbWaaSbaaSqaaiaadEeaaeqaaaGcbaGaamizaiaadshaaaGa eyypa0ZaaSaaaeaacaWGKbGaaCOuaaqaaiaadsgacaWG0baaaiaahM eadaqhaaWcbaGaam4raaqaaiaaicdaaaGccaWHsbWaaWbaaSqabeaa caWGubaaaOGaey4kaSIaaCOuaiaahMeadaqhaaWcbaGaam4raaqaai aaicdaaaGcdaWcaaqaaiaadsgacaWHsbWaaWbaaSqabeaacaWGubaa aaGcbaGaamizaiaadshaaaaaaa@4C6A@

 

  • Recall that R R T =1 dR dt R T +R d R T dt =0 d R T dt = R T dR dt R T = R T W MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHsbGaaCOuam aaCaaaleqabaGaamivaaaakiabg2da9iaahgdacqGHshI3daWcaaqa aiaadsgacaWHsbaabaGaamizaiaadshaaaGaaCOuamaaCaaaleqaba GaamivaaaakiabgUcaRiaahkfadaWcaaqaaiaadsgacaWHsbWaaWba aSqabeaacaWGubaaaaGcbaGaamizaiaadshaaaGaeyypa0JaaCimai abgkDiEpaalaaabaGaamizaiaahkfadaahaaWcbeqaaiaadsfaaaaa keaacaWGKbGaamiDaaaacqGH9aqpcqGHsislcaWHsbWaaWbaaSqabe aacaWGubaaaOWaaSaaaeaacaWGKbGaaCOuaaqaaiaadsgacaWG0baa aiaahkfadaahaaWcbeqaaiaadsfaaaGccqGH9aqpcqGHsislcaWHsb WaaWbaaSqabeaacaWGubaaaOGaaC4vaaaa@5F99@  
  • Finally note that dR/dt=WR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaCOuai aac+cacaWGKbGaamiDaiabg2da9iaahEfacaWHsbaaaa@3C8D@  and therefore

d I G dt =WR I G 0 R T +R I G 0 R T W=W I G I G W MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaads gacaWHjbWaaSbaaSqaaiaadEeaaeqaaaGcbaGaamizaiaadshaaaGa eyypa0JaaC4vaiaahkfacaWHjbWaa0baaSqaaiaadEeaaeaacaaIWa aaaOGaaCOuamaaCaaaleqabaGaamivaaaakiabgUcaRiaahkfacaWH jbWaa0baaSqaaiaadEeaaeaacaaIWaaaaOGaaCOuamaaCaaaleqaba GaamivaaaakiaahEfacqGH9aqpcaWHxbGaaCysamaaBaaaleaacaWG hbaabeaakiabgkHiTiaahMeadaWgaaWcbaGaam4raaqabaGccaWHxb aaaa@4FCF@

 

 

 

6.4.9 Time derivative of angular momentum

 

To use the angular momentum conservation equation, we will need to know how to calculate the time derivative of the angular momentum.   When we do this for a 3D problem, we need to take into account that the mass moment of inertia changes as the body rotates.   We will prove the following formula:

dh dt = r G ×M a G + I G α+ω× I G ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaahIgaaeaacaWGKbGaamiDaaaacqGH9aqpcaWHYbWaaSbaaSqa aiaadEeaaeqaaOGaey41aqRaamytaiaahggadaWgaaWcbaGaam4raa qabaGccqGHRaWkcaWHjbWaaSbaaSqaaiaadEeaaeqaaOGaaCySdiab gUcaRiaahM8acqGHxdaTdaqadaqaaiaahMeadaWgaaWcbaGaam4raa qabaGccaWHjpaacaGLOaGaayzkaaaaaa@4ECD@

For 2D planar problems this can be simplified to:

dh dt = r G ×M a G + I Gzz α z k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaahIgaaeaacaWGKbGaamiDaaaacqGH9aqpcaWHYbWaaSbaaSqa aiaadEeaaeqaaOGaey41aqRaamytaiaahggadaWgaaWcbaGaam4raa qabaGccqGHRaWkcaWGjbWaaSbaaSqaaiaadEeacaWG6bGaamOEaaqa baGccqaHXoqydaWgaaWcbaGaamOEaaqabaGccaWHRbaaaa@4A52@

 

 

Proof: We start by taking the time derivative of the general definition of h

dh dt = d dt r G ×M v G + I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaahIgaaeaacaWGKbGaamiDaaaacqGH9aqpdaWcaaqaaiaadsga aeaacaWGKbGaamiDaaaadaqadaqaaiaahkhadaWgaaWcbaGaam4raa qabaGccqGHxdaTcaWGnbGaaCODamaaBaaaleaacaWGhbaabeaakiab gUcaRiaahMeadaWgaaWcbaGaam4raaqabaGccaWHjpaacaGLOaGaay zkaaaaaa@4A5F@

 

We can go ahead and do the derivative with the product rule:

dh dt = d r G dt ×M v G + r G ×M d v G dt + d I G dt ω+ I G dω dt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaahIgaaeaacaWGKbGaamiDaaaacqGH9aqpdaWcaaqaaiaadsga caWHYbWaaSbaaSqaaiaadEeaaeqaaaGcbaGaamizaiaadshaaaGaey 41aqRaamytaiaahAhadaWgaaWcbaGaam4raaqabaGccqGHRaWkcaWH YbWaaSbaaSqaaiaadEeaaeqaaOGaey41aqRaamytamaalaaabaGaam izaiaahAhadaWgaaWcbaGaam4raaqabaaakeaacaWGKbGaamiDaaaa cqGHRaWkdaWcaaqaaiaadsgacaWHjbWaaSbaaSqaaiaadEeaaeqaaa GcbaGaamizaiaadshaaaGaaCyYdiabgUcaRiaahMeadaWgaaWcbaGa am4raaqabaGcdaWcaaqaaiaadsgacaWHjpaabaGaamizaiaadshaaa aaaa@5D3B@

We can simplify this by noting that d r G /dt= v G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaCOCam aaBaaaleaacaWGhbaabeaakiaac+cacaWGKbGaamiDaiabg2da9iaa hAhadaWgaaWcbaGaam4raaqabaaaaa@3DEB@  and of course the cross product of v G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadEeaaeqaaaaa@376A@  with itself is zero.  We can also use the definition of angular acceleration: dω/dt=α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaCyYdi aac+cacaWGKbGaamiDaiabg2da9iaahg7aaaa@3C89@  .   This gives

dh dt = r G ×M a G + d I G dt ω+ I G α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaahIgaaeaacaWGKbGaamiDaaaacqGH9aqpcaWHYbWaaSbaaSqa aiaadEeaaeqaaOGaey41aqRaamytaiaahggadaWgaaWcbaGaam4raa qabaGccqGHRaWkdaWcaaqaaiaadsgacaWHjbWaaSbaaSqaaiaadEea aeqaaaGcbaGaamizaiaadshaaaGaaCyYdiabgUcaRiaahMeadaWgaa WcbaGaam4raaqabaGccaWHXoaaaa@4CB4@

Finally, substitute for d I G /dt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaahM eadaWgaaWcbaGaam4raaqabaGccaGGVaGaamizaiaadshaaaa@3B46@  from the formula in the previous section, and recall that Wu=ω×u MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4vaiaahw hacqGH9aqpcaWHjpGaey41aqRaaCyDaaaa@3D42@  for all vectors u, and that a vector crossed with itself is zero to see that:

dh dt = r G ×M a G + W I G I G W ω+ I G α = r G ×M a G + I G α+ω× I G ω I G ω×ω = r G ×M a G + I G α+ω× I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbGaaCiAaaqaaiaadsgacaWG0baaaiabg2da9iaahkhadaWg aaWcbaGaam4raaqabaGccqGHxdaTcaWGnbGaaCyyamaaBaaaleaaca WGhbaabeaakiabgUcaRmaabmaabaGaaC4vaiaahMeadaWgaaWcbaGa am4raaqabaGccqGHsislcaWHjbWaaSbaaSqaaiaadEeaaeqaaOGaaC 4vaaGaayjkaiaawMcaaiaahM8acqGHRaWkcaWHjbWaaSbaaSqaaiaa dEeaaeqaaOGaaCySdaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaahkhadaWgaaWcbaGa am4raaqabaGccqGHxdaTcaWGnbGaaCyyamaaBaaaleaacaWGhbaabe aakiabgUcaRiaahMeadaWgaaWcbaGaam4raaqabaGccaWHXoGaey4k aSIaaCyYdiabgEna0kaahMeadaWgaaWcbaGaam4raaqabaGccaWHjp GaeyOeI0IaaCysamaaBaaaleaacaWGhbaabeaakiaahM8acqGHxdaT caWHjpaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqGH9aqpcaWHYbWaaSbaaSqaaiaadEeaaeqaaOGaey41 aqRaamytaiaahggadaWgaaWcbaGaam4raaqabaGccqGHRaWkcaWHjb WaaSbaaSqaaiaadEeaaeqaaOGaaCySdiabgUcaRiaahM8acqGHxdaT caWHjbWaaSbaaSqaaiaadEeaaeqaaOGaaCyYdaaaaa@982C@

 

 

6.4.10 Special equations for angular momentum and KE of bodies that rotate about a stationary point

 

We often want to predict the motion of a system that rotates about a fixed pivot MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  a pendulum is a simple example.   These problems can be be solved using a useful short-cut for the angular momentum or KE of a body rotating about a fixed point.   The short-cut will give the same answer as the general formulas.

 

For an object that rotates about a fixed pivot at the origin:

 

* The total angular momentum (about the origin) is h= I O ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIgacqGH9a qpcaWHjbWaaSbaaSqaaiaad+eaaeqaaOGaaCyYdaaa@3B5F@

* The total kinetic energy is T= 1 2 ω I O ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaahM8acqGHflY1caWHjbWa aSbaaSqaaiaad+eaaeqaaOGaaCyYdaaa@406D@

 

Here I O MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaad+eaaeqaaaaa@3745@  is the mass moment of inertia about O (calculated, eg, using the parallel axis theorem).  Note that the special formulas do not include the term involving the velocity of the COM MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  that’s been automatically included by using I O MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaad+eaaeqaaaaa@3745@  instead of I G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHjbWaaSbaaS qaaiaadEeaaeqaaaaa@373D@ .

 

For 2D rotation about a fixed point at the origin we can simplify these to

* The total angular momentum (about the origin) is h= I Ozz ω z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIgacqGH9a qpcaWGjbWaaSbaaSqaaiaad+eacaWG6bGaamOEaaqabaGccqaHjpWD daWgaaWcbaGaamOEaaqabaGccaWHRbaaaa@3FFA@

* The total kinetic energy is T= 1 2 I Ozz ω z 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadMeadaWgaaWcbaGaam4t aiaadQhacaWG6baabeaakiabeM8a3naaDaaaleaacaWG6baabaGaaG Omaaaaaaa@4128@

 

Proof:  It is straightforward to show these formulas.  Let’s show the two dimensional version of the kinetic energy formulas as an example. For fixed axis rotation, we can use the rigid body formulas to calculate the velocity of the center of mass (O is stationary and at the origin)

v G =ω× r G = ω z k× r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bWaaSbaaS qaaiaadEeaaeqaaOGaeyypa0JaaCyYdiabgEna0kaahkhadaWgaaWc baGaam4raaqabaGccaaMc8Uaeyypa0JaeqyYdC3aaSbaaSqaaiaadQ haaeqaaOGaaC4AaiabgEna0kaahkhadaWgaaWcbaGaam4raaqabaaa aa@4874@

The general formula for kinetic energy can therefore be re-written as

T= 1 2 M v G v G + 1 2 I Gzz ω z 2 = 1 2 M ω z 2 (k× r G )(k× r G )+ 1 2 I Gzz ω z 2 = 1 2 M r G 2 + I Gzz ω z 2 = 1 2 I Ozz ω z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivai abg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamytaiaahAhadaWg aaWcbaGaam4raaqabaGccqGHflY1caWH2bWaaSbaaSqaaiaadEeaae qaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGjbWaaSba aSqaaiaadEeacaWG6bGaamOEaaqabaGccqaHjpWDdaqhaaWcbaGaam OEaaqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaa aiaad2eacqaHjpWDdaqhaaWcbaGaamOEaaqaaiaaikdaaaGccaGGOa GaaC4AaiabgEna0kaahkhadaWgaaWcbaGaam4raaqabaGccaGGPaGa eyyXICTaaiikaiaahUgacqGHxdaTcaWHYbWaaSbaaSqaaiaadEeaae qaaOGaaiykaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaamys amaaBaaaleaacaWGhbGaamOEaiaadQhaaeqaaOGaeqyYdC3aa0baaS qaaiaadQhaaeaacaaIYaaaaaGcbaGaeyypa0ZaaSaaaeaacaaIXaaa baGaaGOmaaaadaqadaqaaiaad2eadaabdaqaaiaahkhadaWgaaWcba Gaam4raaqabaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaWGjbWaaSbaaSqaaiaadEeacaWG6bGaamOEaaqabaaaki aawIcacaGLPaaacqaHjpWDdaqhaaWcbaGaamOEaaqaaiaaikdaaaGc cqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadMeadaWgaaWcba Gaam4taiaadQhacaWG6baabeaakiabeM8a3naaDaaaleaacaWG6baa baGaaGOmaaaaaaaa@8858@

The other formulas can be proved with the same method MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  we simply express the velocity or acceleration of the COM in the general formulas in terms of angular velocity and acceleration, and notice that we can re-arrange the result in terms of the mass moment of inertia about O.

 

The 3D proof is the same.  Start with the general formula

T= 1 2 M v G v G + 1 2 ω I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2eacaWH2bWaaSbaaSqa aiaadEeaaeqaaOGaeyyXICTaaCODamaaBaaaleaacaWGhbaabeaaki abgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaCyYdiabgwSixlaa hMeadaWgaaWcbaGaam4raaqabaGccaWHjpaaaa@49EC@

 

and use the kinematics formula to find v G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCODamaaBa aaleaacaWGhbaabeaaaaa@37EB@   (noting that O is stationary and at the origin)

v G =ω× r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCODamaaBa aaleaacaWGhbaabeaakiabg2da9iaahM8acqGHxdaTcaWHYbWaaSba aSqaaiaadEeaaeqaaaaa@3E5A@

T= 1 2 M ω× r G ω× r G + 1 2 ω I G ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2eadaqadaqaaiaahM8a cqGHxdaTcaWHYbWaaSbaaSqaaiaadEeaaeqaaaGccaGLOaGaayzkaa GaeyyXIC9aaeWaaeaacaWHjpGaey41aqRaaCOCamaaBaaaleaacaWG hbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqaai aaikdaaaGaaCyYdiabgwSixlaahMeadaWgaaWcbaGaam4raaqabaGc caWHjpaaaa@53CE@

Remember the vector formula (a×b)(c×d)=(ac)(bd)(bc)(ad) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWHHb Gaey41aqRaaCOyaiaacMcacqGHflY1caGGOaGaaC4yaiabgEna0kaa hsgacaGGPaGaeyypa0JaaiikaiaahggacqGHflY1caWHJbGaaiykai aacIcacaWHIbGaeyyXICTaaCizaiaacMcacqGHsislcaGGOaGaaCOy aiabgwSixlaahogacaGGPaGaaiikaiaahggacqGHflY1caWHKbGaai ykaaaa@5AEA@ , which shows that

(ω× r G )(ω× r G )= ωω r G r G ω r G 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWHjp Gaey41aqRaaCOCamaaBaaaleaacaWGhbaabeaakiaacMcacqGHflY1 caGGOaGaaCyYdiabgEna0kaahkhadaWgaaWcbaGaam4raaqabaGcca GGPaGaeyypa0ZaaeWaaeaacaWHjpGaeyyXICTaaCyYdaGaayjkaiaa wMcaamaabmaabaGaaCOCamaaBaaaleaacaWGhbaabeaakiabgwSixl aahkhadaWgaaWcbaGaam4raaqabaaakiaawIcacaGLPaaacqGHsisl daqadaqaaiaahM8acqGHflY1caWHYbWaaSbaaSqaaiaadEeaaeqaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@5E4F@

We can re-write the kinetic energy as

T= 1 2 M ( r G r G )ωω ( r G ω) 2 + 1 2 ω I G ω = 1 2 ωM r G 2 1 r G r G ω+ 1 2 ω I G ω= 1 2 ω I O ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadsfacq GH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2eadaqadaqaaiaa cIcacaWHYbWaaSbaaSqaaiaadEeaaeqaaOGaeyyXICTaaCOCamaaBa aaleaacaWGhbaabeaakiaacMcacaWHjpGaeyyXICTaaCyYdiabgkHi TiaacIcacaWHYbWaaSbaaSqaaiaadEeaaeqaaOGaeyyXICTaaCyYdi aacMcadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWk daWcaaqaaiaaigdaaeaacaaIYaaaaiaahM8acqGHflY1caWHjbWaaS baaSqaaiaadEeaaeqaaOGaaCyYdaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaWHjp GaeyyXICTaamytamaadmaabaWaaqWaaeaacaWHYbWaaSbaaSqaaiaa dEeaaeqaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaaC ymaiabgkHiTiaahkhadaWgaaWcbaGaam4raaqabaGccqGHxkcXcaWH YbWaaSbaaSqaaiaadEeaaeqaaaGccaGLBbGaayzxaaGaaCyYdiabgU caRmaalaaabaGaaGymaaqaaiaaikdaaaGaaCyYdiabgwSixlaahMea daWgaaWcbaGaam4raaqabaGccaWHjpGaeyypa0ZaaSaaaeaacaaIXa aabaGaaGOmaaaacaWHjpGaeyyXICTaaCysamaaBaaaleaacaWGpbaa beaakiaahM8aaaaa@8C17@

using the parallel axis theorem.

 

Another way to prove the result is just to calculate the KE of the body from scratch, by summing the KE of the infinitesimal particles in the rigid body, and noting that they are all in circular motion about O.

 

The proof of the angular momentum formula is just the same MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A0@  start with the general formula for h and then simplify it using v G =ω× r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCODamaaBa aaleaacaWGhbaabeaakiabg2da9iaahM8acqGHxdaTcaWHYbWaaSba aSqaaiaadEeaaeqaaaaa@3E5A@ .   You might like to try this as an exercise.

 

 

 

 

 

 

Example:  In the planetary gear system shown, the sun gear has radius R S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGtbaabeaaaaa@37CF@  and mass m , the ring gear has radius 3 R S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadk fadaWgaaWcbaGaam4uaaqabaaaaa@388C@  , while the planet gear has mass m and the planet carrier has mass m/2 .    The sun gear rotates with angular speed ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadQhacaWGtbaabeaaaaa@39C4@  and the ring gear is stationary.   

 

Find a formula for the total angular momentum of the assembly about the center of the sun gear, in terms of ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadQhacaWGtbaabeaaaaa@39C4@ , R S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGtbaabeaaaaa@37CF@  and m.   Treat the gears as disks, the planet carrier as a 1D rod and assume there’s only one planet gear as shown to keep things simple; this would be a rather unusual gear system but adding more gears just makes the problem tedious without illustrating any new concepts...

The 2D formula for angular momentum of a rigid body (about the origin) is

h= r G ×m v G + I Gzz ω z k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiAaiabg2 da9iaahkhadaWgaaWcbaGaam4raaqabaGccqGHxdaTcaWGTbGaaCOD amaaBaaaleaacaWGhbaabeaakiabgUcaRiaadMeadaWgaaWcbaGaam 4raiaadQhacaWG6baabeaakiabeM8a3naaBaaaleaacaWG6baabeaa kiaahUgaaaa@4798@

where r G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOCamaaBa aaleaacaWGhbaabeaaaaa@37E7@  is the position vector of the COM of the body relative to the origin.

 

We need to find the angular speed of all the moving parts: using the gear formulas

ω zP ω zPC ω zS ω zPC = R S R P ω zR ω zPC ω zS ω zPC = R S R R R R = R S +2 R P MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHjpWDdaWgaaWcbaGaamOEaiaadcfaaeqaaOGaeyOeI0IaeqyYdC3a aSbaaSqaaiaadQhacaWGqbGaam4qaaqabaaakeaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaa dQhacaWGqbGaam4qaaqabaaaaOGaeyypa0JaeyOeI0YaaSaaaeaaca WGsbWaaSbaaSqaaiaadofaaeqaaaGcbaGaamOuamaaBaaaleaacaWG qbaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaa cqaHjpWDdaWgaaWcbaGaamOEaiaadkfaaeqaaOGaeyOeI0IaeqyYdC 3aaSbaaSqaaiaadQhacaWGqbGaam4qaaqabaaakeaacqaHjpWDdaWg aaWcbaGaamOEaiaadofaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaai aadQhacaWGqbGaam4qaaqabaaaaOGaeyypa0JaeyOeI0YaaSaaaeaa caWGsbWaaSbaaSqaaiaadofaaeqaaaGcbaGaamOuamaaBaaaleaaca WGsbaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadkfadaWgaaWcbaGaam OuaaqabaGccqGH9aqpcaWGsbWaaSbaaSqaaiaadofaaeqaaOGaey4k aSIaaGOmaiaadkfadaWgaaWcbaGaamiuaaqabaaaaa@948B@

we see that

0 ω zPC ω zS ω zPC = R S R R ω zS R S R R = ω zPC 1+ R S R R ω zS 1 3 = ω zPC 1+ 1 3 ω zPC = 1 4 ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiaaicdacqGHsislcqaHjpWDdaWgaaWcbaGaamOEaiaadcfacaWG dbaabeaaaOqaaiabeM8a3naaBaaaleaacaWG6bGaam4uaaqabaGccq GHsislcqaHjpWDdaWgaaWcbaGaamOEaiaadcfacaWGdbaabeaaaaGc cqGH9aqpcqGHsisldaWcaaqaaiaadkfadaWgaaWcbaGaam4uaaqaba aakeaacaWGsbWaaSbaaSqaaiaadkfaaeqaaaaakiabgkDiElabeM8a 3naaBaaaleaacaWG6bGaam4uaaqabaGcdaWcaaqaaiaadkfadaWgaa WcbaGaam4uaaqabaaakeaacaWGsbWaaSbaaSqaaiaadkfaaeqaaaaa kiabg2da9iabeM8a3naaBaaaleaacaWG6bGaamiuaiaadoeaaeqaaO WaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGsbWaaSbaaSqaaiaa dofaaeqaaaGcbaGaamOuamaaBaaaleaacaWGsbaabeaaaaaakiaawI cacaGLPaaaaeaacqGHshI3cqaHjpWDdaWgaaWcbaGaamOEaiaadofa aeqaaOWaaSaaaeaacaaIXaaabaGaaG4maaaacqGH9aqpcqaHjpWDda WgaaWcbaGaamOEaiaadcfacaWGdbaabeaakmaabmaabaGaaGymaiab gUcaRmaalaaabaGaaGymaaqaaiaaiodaaaaacaGLOaGaayzkaaGaey O0H4TaeqyYdC3aaSbaaSqaaiaadQhacaWGqbGaam4qaaqabaGccqGH 9aqpdaWcaaqaaiaaigdaaeaacaaI0aaaaiabeM8a3naaBaaaleaaca WG6bGaam4uaaqabaaaaaa@81A4@

and

ω zP ω zPC ω zS ω zPC = 2 R S R R R S ω zP ω zPC ω zS ω zPC =1 ω zP = ω zPC ( ω zS ω zPC )= 1 2 ω zS MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiabeM8a3naaBaaaleaacaWG6bGaamiuaaqabaGccqGHsislcqaH jpWDdaWgaaWcbaGaamOEaiaadcfacaWGdbaabeaaaOqaaiabeM8a3n aaBaaaleaacaWG6bGaam4uaaqabaGccqGHsislcqaHjpWDdaWgaaWc baGaamOEaiaadcfacaWGdbaabeaaaaGccqGH9aqpcqGHsisldaWcaa qaaiaaikdacaWGsbWaaSbaaSqaaiaadofaaeqaaaGcbaGaamOuamaa BaaaleaacaWGsbaabeaakiabgkHiTiaadkfadaWgaaWcbaGaam4uaa qabaaaaOGaaGPaVlaaykW7cqGHshI3daWcaaqaaiabeM8a3naaBaaa leaacaWG6bGaamiuaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaam OEaiaadcfacaWGdbaabeaaaOqaaiabeM8a3naaBaaaleaacaWG6bGa am4uaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaamOEaiaadcfaca WGdbaabeaaaaGccqGH9aqpcqGHsislcaaIXaaabaGaeyO0H4TaeqyY dC3aaSbaaSqaaiaadQhacaWGqbaabeaakiabg2da9iabeM8a3naaBa aaleaacaWG6bGaamiuaiaadoeaaeqaaOGaeyOeI0IaaiikaiabeM8a 3naaBaaaleaacaWG6bGaam4uaaqabaGccqGHsislcqaHjpWDdaWgaa WcbaGaamOEaiaadcfacaWGdbaabeaakiaacMcacqGH9aqpcqGHsisl daWcaaqaaiaaigdaaeaacaaIYaaaaiabeM8a3naaBaaaleaacaWG6b Gaam4uaaqabaaaaaa@8BF7@

 

 

The COM of the planet carrier is half way along its length; its COM is in circular motion with speed V= ω zPC R S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 da9iabeM8a3naaBaaaleaacaWG6bGaamiuaiaadoeaaeqaaOGaamOu amaaBaaaleaacaWGtbaabeaaaaa@3E4F@  

 

Similarly the COM of the planet gear is in circular motion with speed V= ω zPC 2 R S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 da9iabeM8a3naaBaaaleaacaWG6bGaamiuaiaadoeaaeqaaOGaaGOm aiaadkfadaWgaaWcbaGaam4uaaqabaaaaa@3F0B@

 

 

Now we can add up all the angular momenta:

1.       Sun h S = 1 2 m R 2 ω zS k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiAamaaBa aaleaacaWGtbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikda aaGaamyBaiaadkfadaahaaWcbeqaaiaaikdaaaGccqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaOGaaC4Aaaaa@420A@  

2.       Planet carrier h PC = R S i×( 1 2 m R S 1 4 ω Zs )j+ 1 12 1 2 m (2 R S ) 2 1 4 ω zS k= 1 6 m R S 2 ω zS k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiAamaaBa aaleaacaWGqbGaam4qaaqabaGccqGH9aqpcaWGsbWaaSbaaSqaaiaa dofaaeqaaOGaaCyAaiabgEna0kaacIcadaWcaaqaaiaaigdaaeaaca aIYaaaaiaad2gacaWGsbWaaSbaaSqaaiaadofaaeqaaOWaaSaaaeaa caaIXaaabaGaaGinaaaacqaHjpWDdaWgaaWcbaGaamOwaiaadohaae qaaOGaaiykaiaahQgacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaGa aGOmaaaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2gacaGGOaGaaG OmaiaadkfadaWgaaWcbaGaam4uaaqabaGccaGGPaWaaWbaaSqabeaa caaIYaaaaOWaaSaaaeaacaaIXaaabaGaaGinaaaacqaHjpWDdaWgaa WcbaGaamOEaiaadofaaeqaaOGaaC4Aaiabg2da9maalaaabaGaaGym aaqaaiaaiAdaaaGaamyBaiaadkfadaqhaaWcbaGaam4uaaqaaiaaik daaaGccqaHjpWDdaWgaaWcbaGaamOEaiaadofaaeqaaOGaaC4Aaaaa @668D@  

Notice that the planet carrier rotates about  the center of the sun.  So, if we want, we could also use the special formula for angular momentum of an object rotating about a fixed point

h PC = I Ozz ω zPC k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiAamaaBa aaleaacaWGqbGaam4qaaqabaGccqGH9aqpcaWGjbWaaSbaaSqaaiaa d+eacaWG6bGaamOEaaqabaGccqaHjpWDdaWgaaWcbaGaamOEaiaadc facaWGdbaabeaakiaahUgaaaa@4327@

where I Ozz MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGpbGaamOEaiaadQhaaeqaaaaa@39C0@  is the mass moment of inertia of the planet carrier about the fixed point, which must be calculated using the parallel axis theorem

I Ozz = I Gzz +M d 2 = 1 12 m 2 (2 R s ) 2 + m 2 R S 2 = 2 3 m R S 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGpbGaamOEaiaadQhaaeqaaOGaeyypa0JaamysamaaBaaa leaacaWGhbGaamOEaiaadQhaaeqaaOGaey4kaSIaamytaiaadsgada ahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI XaGaaGOmaaaadaWcaaqaaiaad2gaaeaacaaIYaaaaiaacIcacaaIYa GaamOuamaaBaaaleaacaWGZbaabeaakiaacMcadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkdaWcaaqaaiaad2gaaeaacaaIYaaaaiaadkfada qhaaWcbaGaam4uaaqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaikda aeaacaaIZaaaaiaad2gacaWGsbWaa0baaSqaaiaadofaaeaacaaIYa aaaaaa@579C@

(where we noted that the length of the bar is 2 R S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadk fadaWgaaWcbaGaam4uaaqabaaaaa@388B@  ).   We know ω zPC = ω zS /4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadQhacaWGqbGaam4qaaqabaGccqGH9aqpcqaHjpWDdaWg aaWcbaGaamOEaiaadofaaeqaaOGaai4laiaaisdaaaa@40E4@  so

h PC = I Ozz ω zPC k= 1 6 m R S 2 ω zS k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiAamaaBa aaleaacaWGqbGaam4qaaqabaGccqGH9aqpcaWGjbWaaSbaaSqaaiaa d+eacaWG6bGaamOEaaqabaGccqaHjpWDdaWgaaWcbaGaamOEaiaadc facaWGdbaabeaakiaahUgacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI 2aaaaiaad2gacaWGsbWaa0baaSqaaiaadofaaeaacaaIYaaaaOGaeq yYdC3aaSbaaSqaaiaadQhacaWGtbaabeaakiaahUgaaaa@4E1A@

as before.

 

3.       Planet gear h P =2 R S i×(m2 R S 1 4 ω Zs )j+ 1 2 m ( R S ) 2 ( 1 2 ω zS )k= 3 4 m R s 2 ω zs k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiAamaaBa aaleaacaWGqbaabeaakiabg2da9iaaikdacaWGsbWaaSbaaSqaaiaa dofaaeqaaOGaaCyAaiabgEna0kaacIcacaWGTbGaaGOmaiaadkfada WgaaWcbaGaam4uaaqabaGcdaWcaaqaaiaaigdaaeaacaaI0aaaaiab eM8a3naaBaaaleaacaWGAbGaam4CaaqabaGccaGGPaGaaCOAaiabgU caRmaalaaabaGaaGymaaqaaiaaikdaaaGaamyBaiaacIcacaWGsbWa aSbaaSqaaiaadofaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaki aacIcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabeM8a3naa BaaaleaacaWG6bGaam4uaaqabaGccaGGPaGaaC4Aaiabg2da9maala aabaGaaG4maaqaaiaaisdaaaGaamyBaiaadkfadaqhaaWcbaGaam4C aaqaaiaaikdaaaGccqaHjpWDdaWgaaWcbaGaamOEaiaadohaaeqaaO GaaC4Aaaaa@653C@  

Note that we can’t use the special formula for rotation about a fixed point for the planet gear, because although there is a fixed point on the planet gear (where it touches the ring), we were asked to find the angular momentum about the center of the sun.   This is not a fixed point on the planet gear.

 

Sum everything h= 17 12 m R S 2 ω zS k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiAaiabg2 da9maalaaabaGaaGymaiaaiEdaaeaacaaIXaGaaGOmaaaacaWGTbGa amOuamaaDaaaleaacaWGtbaabaGaaGOmaaaakiabeM8a3naaBaaale aacaWG6bGaam4uaaqabaGccaWHRbaaaa@4350@  

 

 

 



[1] By definition, a ‘second order tensor’ maps a vector onto another vector.   In actual calculations R is always just a matrix, but ‘tensor’ sounds better.

[2] (Tip: it’s easy to remember this but it’s hard to remember where to put the negative sign.   You can always figure this out by noting that a 90 degree counter-clockwise rotation maps a vector parallel to the i direction onto a vector parallel to the j direction.)   

 

[3] You may be wondering why only a single point was defined at C and E, but there are two points at D and F.  That’s because at C and E the members are pinned together, but there is a roller at D.  At E, members AC, BD always have the same velocity and acceleration MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=nbiaaa@3780@  we can just use a single variable to denote the velocity of this point.  The same is true at C.  Members CF and BD touch at F and D, but  point D on AB does not have the same horizontal velocity as point F CF, so we need to be able to distinguish between them.