
 
Chapter 6 

Rigid Body Dynamics 
 
6.1 Introduction 
 
In practice, it is often not possible to idealize a system as a particle.   In this section, we construct a more 
sophisticated description of the world, in which objects rotate, in addition to translating.  This general 
branch of physics is called ‘Rigid Body Dynamics.’ 
 
Rigid body dynamics has many applications.   In vehicle dynamics, we are often more worried about 
controlling the orientation of our vehicle than its path – an aircraft must keep its shiny side up, and we don’t 
want a spacecraft tumbling uncontrollably.   Rigid body mechanics is used extensively to design power 
generation and transmission systems, from jet engines, to the internal combustion engine, to gearboxes.  A 
typical problem is to convert rotational motion to linear motion, and vice-versa. Rigid body motion is also 
of great interest to people who design prosthetic devices, implants, or coach athletes: here, the goal is to 
understand human motion, to protect athletes from injury or improve their performance, or to design 
devices that replicate the complicated motion of a human joint correctly.   For example, Professor Crisco’s 
orthopaedics lab at Brown studies human motion and the forces they generate at human joints, to help 
understand how injuries occur and how they can be prevented.   
 
The motion of a rigid body is often very counter-intuitive.   That’s why there are so many toys that exploit 
the properties of rigid bodies: the motion of a spinning top; a boomerang; the ‘rattleback’ and a Frisbee can 
all be explained using the equations derived in this section. 
 
Here is a quick outline of how we analyze motion of rigid bodies. 

1. A rigid body is idealized as an infinite number of small particles, connected by two-force members. 
2. We already know the equations of motion for a system of particles (Section 4 of the notes):  

The force-momentum equation 
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3. These equations tell us how a rigid body moves.   But to use them, we would need to keep track 
track of an infinite number of particles!   To simplify the problem, we set up some mathematical 
methods that allow us to express the position and velocity of every point in a rigid body in terms of 
the position Gr  , velocity Gv   and acceleration Ga  of its center of mass, and its rotation tensor 
R(quantifying its orientation) and its angular velocity ω  , and angular acceleration α .  This allows 
us to write the linear momentum, angular momentum, and kinetic energy of a rigid body in the form 

GM=p v       G G GM= × +h r v I ω          1 1
2 2G G GT M= ⋅ + ⋅v v ω I ω  

where M is the total mass of the body and GI  is its mass moment of inertia. 
4. We can then derive the rigid body equations of motion: 

[ ]ext ext
i G i i G G G G

i i
M M= × = × + + ×∑ ∑F a r F r a I α ω I ω  

https://www.brown.edu/academics/medical/about/departments/orthopaedics/bioengineering/research
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6.2 Describing Motion of a Rigid Body 
 
We describe motion of a particle using its position, velocity and acceleration.   We can describe the position 
of a rigid body in the same way -  we could specify the position, velocity and acceleration of any convenient 
point in the body (we usually use the center of mass).  But we also need a way to describe the orientation of 
a rigid body, and its rotational motion.   
 
In this section, we define the various mathematical quantities that we use to describe rotation, angular 
velocity, and angular acceleration. 
 
 
6.2.1 Describing rotations: The Rotation Tensor (or matrix) 
 
Rotations are quantified by a mathematical object called a rotation 
tensor.  It is defined as follows: 
1. Choose some convenient initial orientation of the rigid body (eg 

for the rectangular prism in the figure, we chose to make the faces 
perpendicular to the { , , }i j k  directions. 

2. When the body is rotated, every line in the body (eg the sides) 
moves to a new orientation, without changing its length.   We can 
describe this orientation change as a mapping.  Let A and B be two 
arbitrary points in the body.   Let ,A Bp p  be the initial positions of 
these points, and let ,A Br r  be their final positions.   We introduce 
the ‘rotation tensor1’ R which has the property that  

( )B A B A− = −r r R p p  
   

When we solve problems, we always express vectors as components in 
some basis.   When we do this, R becomes a matrix.  For example, if 

0 0 0B A B Ax y z x y z− = + + − = + +p p i j k r r i j k  
we would write 

0

0

0

xx xy xz

yx yy yz

yz zy zz

R R Rx x
y R R R y
z zR R R

          =               

 

Here, 11 12, ,...R R   are a set of nine numbers (or sometimes formulas).  Following the usual rules of matrix-
vector multiplication, this is just a short-hand notation for 

0 0 0

0 0 0

0 0 0

xx xy xz

yx yy yz

zx zy zz

x R x R y R z

y R x R y R z

z R x R y R z

= + +

= + +

= + +

 

The subscripts on R are meant to you help remember what each element in the matrix does – for example, 
xxR  maps the 0x  onto x, xyR  maps the 0y  onto x, and so on. 

 
 
 

                                                           
1 By definition, a ‘second order tensor’ maps a vector onto another vector.   In actual calculations R is always just a 
matrix, but ‘tensor’ sounds better. 
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So when we solve a problem, how do we go about finding R?  Let me count the ways: 
 
 
Rotations in two dimensions: 
 
Life is simple in 2D.   In this case our rigid body must lie in the i,j plane, so 
we can only rotate it about an axis parallel to the k direction.  A counter-
clockwise rotation through an angle θ  about the k axis is produced by2 

cos sin
sin cos

θ θ
θ θ

− 
=  
 

R  

For example, a vector Li  that start parallel to the i axis is mapped to 
cos sin cos

cos sin
sin cos 0 sin

L L
L L

L
θ θ θ

θ θ
θ θ θ

−     
= = +     

     
i j  

 
 
Rotation about a known axis 
 
3D is a bit more difficult.   Any rotation can always be expressed as a rotation through some angle θ  about 
some axis parallel to a unit vector n (we always use the right hand screw convention).  In some problems 
you can see what n and θ are: then you can write down a unit vector parallel to n  

x y zn n n= + +n i j k  
and then use the ‘Rodriguez Formula’ 

2

2

2

cos (1 cos ) (1 cos ) sin (1 cos ) sin

(1 cos ) sin cos (1 cos ) (1 cos ) sin

(1 cos ) sin (1 cos ) sin cos (1 cos )

x x y z x z y

x y z y y z x

x z y y z x z

n n n n n n n

n n n n n n n

n n n n n n n

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

 + − − − − +
 
 = − + + − − − 
 − − − + + −  

R  

(This formula is impossible to remember – that’s what Google is 
for). 
 
If you are given a rotation matrix R, and need to find n and θ  , you 
can use the formulas: 

( ) ( ) ( )
1 2cos

1
2sin

xx yy zz

zy yz xz zx yx xy

R R R

R R R R R R

θ

θ

+ = + +

 = − + − + − n i j k
 

The second formula blows up if sin( ) 0θ =  .  If θ  is zero or 2π  you 
can simply set =R 1  (the identity), and n can be anything you like.  
For θ π=  you can use  

coscos cos
1 cos 1 cos 1 cos

yyxx zzRR Rθθ θ
θ θ θ

−− −
= ± ±

− − −
n i j k  

The signs of the square roots have to be chosen so that / 2 / 2 / 2x y xy x z xz y z yzn n R n n R n n R= = =   

                                                           
2 (Tip: it’s easy to remember this but it’s hard to remember where to put the negative sign.   You can always 
figure this out by noting that a 90 degree counter-clockwise rotation maps a vector parallel to the i direction 
onto a vector parallel to the j direction.)     
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In robotics, game engines, and vehicle dynamics the axis-angle representation of a rotation is often stored as 
a quaternion.  We won’t use that here, but mention it in passing in case you come across it in practice.   A 
quaternion is four numbers 0[ , , , ]x y xq q q q  that are related to n and θ  through the formulas: 

( )
0 cos( / 2)

sin( / 2) sin( / 2) sin / 2x x y y z z

q
q n q n q n

θ

θ θ θ

=

= = =
 

 
 
Mapping the coordinate axes 
 
In some problems we might know what happens to vectors that are 
parallel to the {i,j,k} directions in the initial rigid body (eg we might 
know what happens to the sides of our rectangular prism).  For 
example, we might know that { , , }i j k  map to (unit) vectors  , ,a b c  .   
In that case we can write down each of , ,a b c  as components in 
{ , , }i j k  

x y z x y z x y za a a b b b c c c= + + = + + = + +a i j k b i j k c i j k  
and use the formula 

x x x

y y y

z z z

a b c
a b c

a b c

 
 

=  
 
 

R  

 
 
 
 
 
A sequence of rotations 
 
Suppose we rotate an object twice (perhaps about two different axes).   How do we describe the result of 
two rotations?   That’s not hard.   Suppose we do the first rotation with one mapping 

(1) ( )B A B A− = −r r R p p  
Now we rotate our body again – this maps B A−r r  onto some new vector B A−u u : 

(2)( ) ( )B A B A− = −u u R r r  
We can therefore write 

(2) (1)( ) ( )B A B A− = −u u R R p p  
We see that Sequential rotations are matrix products 

(2) (1)=R R R  
 
Health warning: Matrix products (and hence sequences of rotations) do not commute  

(1) (2) (2) (1)≠R R R R  
For example, the figure below shows the change in orientation caused by (a) a 90 degree positive rotation 
about i followed by a 90 degree positive rotation about k (the figure on the left); and (b) a 90 degree 
positive rotation about k followed by a 90 degree positive rotation about i (the figure on the right). 
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(1) k rotation
(2) i rotation

(1) i rotation
(2) k rotation

 
 
 
 
 
 
Orthogonality of R 
 
The rotation tensor (matrix) has a very important property:  

If you multiply R by its transpose, the result is always the identity matrix.     
Another way to say this is that  

The transpose of R is equal to its inverse 
 
Let’s try this with the 2D rotation matrix 

2 2

2 2

cos sin cos sin cos sin 0 1 0
sin cos sin cos 0 10 sin cos

cos sin cos sin 1 0
sin cos sin cos 0 1

T

T

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ
θ θ θ θ

 − +     
 = = =     −       + 

−     
= =     −     

RR

R R

 

A matrix or tensor with this property is said to be orthogonal. 
 
Why is this?   It turns out that a length-preserving mapping must be an orthogonal tensor.  To see this, let’s 
calculate the length of the rotated vector ( )B A B A− = −r r R p p .  We need to remember two vector/matrix 
operations: 

1. We can calculate the length of a vector by dotting it with itself and taking the square root 
2. For a vector u and a matrix R, we know (or can show!) that ( ) ( ) ( )T⋅ = ⋅Ru Ru u R Ru   

This means 

( ) ( ) { } { } { }( ) ( ) ( ) ( )T
B A B A B A B A B A B A− ⋅ − = − ⋅ − = − ⋅ −r r r r R p p R p p p p R R p p  

But we want the length of B A−r r  to equal the length of B A−p p , which means we need R to satisfy 
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{ }
{ } { }

( ){ }

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

( ) ( ) 0

T
B A B A B A B A

T
B A B A B A B A

T
B A B A

− ⋅ − = − ⋅ −

⇒ − ⋅ − − − ⋅ − =

⇒ − ⋅ − − =

p p R R p p p p p p

p p R R p p p p 1 p p

p p R R 1 p p

 

where 1  is the identity tensor (we normally use I for the identity tensor, but rigid body dynamics uses I to 
denote the mass moment of inertia so it’s already been taken….). With a bit of busy work, we can show that 
the last line can only be satisfied if T =R R 1  .   In fact, a rigorous mathematical derivation of rotations 
starts with the statement that R must preserve the length of all vectors, and then derives all the other 
material in this section from that statement.   This is not easy to follow the first time around, but will 
probably be the approach used in more advanced courses. 
 
 
Examples: 
 
1. Write down the rotation matrix for the 2D rotation shown in 
the figure  
 
The object rotates 90 degree counterclockwise about the k axis, 
so 
 

cos sin 0 1
sin cos 1 0

θ θ
θ θ

− −   
= =   
   

R  

 
 
 
 
2. The object shown in the figure is first rotated 90 degrees 
about the i axis, and then 180 degrees about the j axis.   Find 
the rotation tensor. 
 
We can construct the two rotations using the Rodriguez 
formula.  For the first rotation / 2θ π=  

1 0x y zn n n= ⇒ = = =n i   

(1)
1 0 0
0 0 1
0 1 0

 
 = − 
  

R  

For the second rotation θ π= 1 0y x zn n n= ⇒ = = =n j  
 

(2)
1 0 0

0 1 0
0 0 1

− 
 =  
 − 

R  

The total rotation is therefore 

j

i
A

BpB-pA j

i
A

B
rB-rA
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(2) (1)
1 0 0 1 0 0 1 0 0

0 1 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1 0

− −     
     = = − = −     
     − −     

R R R  

 
 
3. Find the axis-angle representation for the combined rotation in problem (2). 
 
We can calculate the axis and angle of this rotation using the 
formulas 

( )

1 2cos 2cos 2

coscos cos
1 cos 1 cos 1 cos
1 ( 1) 0 ( 1) 0 ( 1) 1

1 ( 1) 1 ( 1) 1 ( 1) 2

xx yy zz

yyxx zz

R R R

RR R

θ θ θ π

θθ θ
θ θ θ

+ = + + ⇒ = − ⇒ =

−− −
= ± ±

− − −

− − − − − − −
= ± ± = ±

− − − − − −

n i j k

i j k j k

 

 
To decide which of these two choices to use we notice that 

1yzR = −  , which tells us that 0y zn n <  .  The answer is 
therefore 

1, ( )
2

θ π= = −n j k  

It is incredibly difficult to visualize the effect of a rotation about an arbitrary axis (at least for me).  In fact 
this formula looks wrong – how can a 180 degree rotation end up tipping the box on its side?    But the 
answer is right, as the animation (which will only show up in the html version of the notes) shows. 

 
 
6.2.2 Describing rotational motion: The angular velocity vector and spin tensor 
 
 
We described the location of a particle in space using its 
position vector, and its motion using velocity.  We need to 
come up with something similar to velocity for rotations. 
 
Definition of an angular velocity vector  Visualize a 
spinning object, like the cube shown in the figure.  The box 
rotates about an axis – in the example, the axis is the line 
connecting two cube diagonals.  In addition, the object turns 
through some number of revolutions every minute.   We 
would specify the angular velocity of the shaft as a vector 
ω , with the following properties: 
 

1. The direction of the vector is parallel to the axis of 
the shaft (the axis of rotation). This direction would 
be specified by a unit vector n parallel to the shaft. 

 
2.  There are, of course, two possible directions for n.  

By convention, we always choose a direction such 
that, when viewed in a direction parallel to n (so the vector points away from you) the shaft appears 

 

n Axis of
rotation
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to rotate clockwise.  Or conversely, if n points towards you, the shaft appears to rotate 
counterclockwise. (This is the `right hand screw convention’) 

  
Viewed along n Viewed in direction opposite to n 

 
3. The magnitude of the vector is the angular speed /d dtθ  of the object, in radians per second.  If 

you know the revs per minute n turned by the shaft, the number of radians per sec follows as 
/ 120d dt nθ π= .  The magnitude of the angular velocity is often denoted by /d dtω θ=  

 

The angular velocity vector is then 
d
dt
θ ω= =ω n n .    

 
Since angular velocity is a vector, it has components x y zω ω ω= + +ω i j k  in a fixed Cartesian basis. 
 
As always, in two dimensions, everything is very simple.   In this case objects can only rotate about the k 
axis, and we can write the angular velocity vector as 

d
dt
θ

=ω k  

where θ  is the counterclockwise angle of rotation of any line embedded in the body. 
 
 
Writing down angular velocities: 
 
For 2D problems, we always know the direction of the angular velocity and can just use zω=ω k  to write it 
down (of course if we know the value or a formula for zω  we can use it). 
 
For 3D problems, we can often use vector addition to write down  ω .     We can illustrate this with a simple 
example: 
 
Example: The propeller on the aircraft shown in the 
figure spins (about its axis) at 2000 rpm.   The 
aircraft travels at speed 200 km/hr in a turn with 
radius 1 km.    What is the angular velocity vector 
of (i) the body of the aircraft, and (ii) the propeller?  
Express your answer in the normal-tangential-
vertical basis. 
 
(i) The circumference of the circle is 

2 2 kms Rπ π= =  .   The airplane completes a full circle in / (2 / 200) 3600 36 sect s V π π= = × =  .   A full 
turn is 2π  radians, so the aircraft body turns at a rate 2 / (36 ) (1 /18) rad/sπ π = k  about the k axis. 



 9 

 
(ii) The propeller turns at 2000 rpm relative to the body of the plane.   The angular velocity of the prop with 
respect to a stationary observer is therefore the vector sum of the 2000 rpm about the t axis, plus the angular 
velocity of the body.  This gives 

[ ] 1 10 12000 2 / 3600 rad/s
18 9 18prop

ππ= × + = +ω t k t k  

 
 
 
 
Relation between the rotation matrix and the angular velocity vector: the spin tensor 
 
We might guess that the angular velocity vector is the derivative of the rotation tensor.   This is sort of 
correct, but the full story is a bit more complicated.  The relationship between R and ω  is constructed as 
follows: 

1. We define the spin tensor W as 
Td

dt
=

RW R  

2. The spin tensor is always skew ( T= −W W  ), and we can read off the angular velocity vector by 
looking at its components.  Specifically, if x y zω ω ω= + +ω i j k  then 

0

0
0

z y

z x

y x

ω ω

ω ω
ω ω

− 
 

= − 
 − 

W  

We can use this formula in two ways: (1) Given R, we can calculate W and then read off the angular 
velocity vector components.  Alternatively, if we know ω , we can calculate R by first constructing W, then 
integrating the formula 

d
dt

=
R WR  

 
 
Angular velocity-rotation relations in 2D 
 
We can check this for the special case of a 2D rotation: 

sin cos 0cos sin cos sin
sin cos sin coscos sin 0

T

d d d
d dt dt dt

d d ddt
dt dt dt

θ θ θθ θθ θ θ θ
θ θ θ θ θ θ θθ θ

   − − −   −   
= ⇒ = =      −       −      

RR R  

 

As expected, we find that z
d
dt
θω =  . 

 
This means that in 2D, angular velocity and the angle of rotation θ  are related by the same formulas as 
distance traveled and speed for position.   We can use all the same rules of calculus to go back and forth 
between them. 
 
 
Angular velocity-Spin tensor formula 
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There is an important formula relating W and ω .    Let B A−r r  be a vector joining any two points in a rigid 
body.   Then 

( ) ( )B A B A− = × −W r r ω r r  
 
You can see this by just multiplying out the definition of W and comparing the result to the cross product: if 

B A x y z− = + +r r i j k , then 
 

0

( ) 0
0

z y y z

B A z x z x

y x x y

z xx
y x z
z y x

ω ω ω ω

ω ω ω ω
ω ω ω ω

− −    
    − = − = −    
    − −    

W r r  

Hopefully you can see that this is the same as the cross product! 
 
 
6.2.3 The angular acceleration vector 
 
Angular acceleration is the time derivative of angular velocity 

d
dt

=
ωα  

For 3D, we can use 
yx z

x y z
dd d

dt dt dt
ωω ω

α α α= = =  

For 3D, we can’t express the angular accelerations or velocities as derivatives of rotation angles, because 
these can’t be defined for a general motion. 
 
For a 2D problem, the direction of angular velocity and acceleration are known, so we have 

z zα ω= =α k ω k  
The components are related by 

2

2
z z

z z
d dd
dt ddt
ω ωθα ω

θ
= = =  

For 2D problems, we can use all the usual rules of calculus to go from angular acceleration to angular 
velocity to angle, and vice-versa (just like distance-speed-acceleration formulas for straight line motion). 
 
 
 
 
6.2.3 Relative velocity and acceleration of two points in a rigid body 
 
We now know how to describe rotational motion.   Our next order of business is to discuss a couple of very 
important formulas that we use to analyze the motion of a system of 
rigid bodies, and also to derive formulas for the angular momentum 
and kinetic energy of a rigid body.. 
 
Consider a rigid body: 

Let ω  be the (instantaneous) angular velocity of the body, 
and W the corresponding spin tensor 

A

B

k

j
i

rB-rA

ω,α

vA,aA

vB,aB
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Let A and B be two arbitrary points in a rigid body, and let ,A Br r  and ,A Bv v  , ,A Ba a  be their 
(instantaneous) position, velocity and acceleration vectors.   

 
Then the relative position and velocity of A and B are related by 

( )
( )

B A B A

B A B A

− = × −
− = −

v v ω r r
v v W r r

 

 
The relative acceleration of A and B are related their relative positions and velocity by 

  [ ]( ) ( ) ( ) ( )B A B A B A B A B A− = × − + × − = × − + × × −a a α r r ω v v α r r ω ω r r  
 
 
For 2D problems only: we can simplify these, because we know ω  is 
always parallel to the k direction.  Therefore 

( )B A z B Aω− = × −v v k r r  
2( ) ( )B A z B A z B Aα ω− = × − − −a a k r r r r  

 
 
 
Proof: These fornulas are easy to prove. Remember the mapping: 

( ) ( ) ( )B A B A B A B A B A
d d
dt dt

− = − ⇒ − = − = −
Rr r R p p v v r r p p  

  Also,  
( ) ( ) ( ) ( )T T

B A B A B A B A B A− = − ⇒ − = − = −r r R p p R r r R R p p p p  
Hence 

( ) ( )T
B A B A B A

d
dt

− = − = −
Rv v R r r W r r  

Remember that ( ) ( )B A B A− = × −W r r ω r r , so the acceleration formula then follows as 

( ) ( ) ( ) ( ) ( )B A B A B A B A B A B A
d d d
dt dt dt

− = − = × − + × − = × − + × −
ωa a v v r r ω r r α r r ω v v  

 
 
 
 
6.3 Analyzing motion in connected rigid bodies 
 
 
The formulas in 6.2.3 are used to analyze motion in 
machines.   A typical problem is illustrated in the figure.  
An actuator moves point B on the car jack shown in the 
figure horizontally with constant velocity V.  What are the 
velocity and acceleration of the platform (CF)? 
 
You could probably solve this rather simple example with 
elementary trig, but we need a more systematic method for 
general problems, especially to analyze 3D motion.   Here’s 
the general procedure 

1. Define variables to denote the unknown angular 

j

iA

B

rB-rA
θ ω αz z

vA,aA

vB,aB

j
iA B

CD
F

V
L

L

θ
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velocities and angular accelerations of each rigid body in the system 
2. Write down all the known velocities in the system 
3. Use the rigid body formulas 

( )B A B A− = × −v v ω r r  
to write down equations relating velocities of the connections, joints, or contacts on each rigid body  

4. Write down constraint equations relating velocities of the two connected rigid bodies at each 
connection, joint, or contact 

5. Solve the equations for unknown velocities of connections, and the angular velocities of the rigid 
bodies. 

6. Finally, once the velocities are known,  write down equations for the accelerations of pairs of 
joints/contacts/connections on each rigid body   

( ) ( )B A B A B A− = × − + × −a a α r r ω v v  
7. Write down constraints equations for accelerations at connected points 
8. Solve the equations in 6,7 for unknown accelerations and angular accelerations. 

 
 
This all sounds terribly complicated, so let’s solve a few examples to show how it works in practice.    
 
Example 1:  In the figure shown the link AB rotates counter-
clockwise with constant angular speed 4 rad/s.     Point C on 
member BC is constrained to move horizontally.  Calculate the 
velocity and acceleration of point C. 
 

Calculating the velocity: 

• We know A is stationary, and are given the angular velocity of 
AB.  We can use the rigid body formula to find the velocity of 
B: 

( ) 4 2
8

B A zAB B A

B

ω− = × − = ×
⇒ = −
v v k r r k j

v i
 

• We don’t know the angular velocity of BC, so we introduce zBCω  as an unknown, and use the rigid 
body formula for member BC to write down an equation for the velocity of C 

( ) (2 2 ) 2 2
8 2 2

C B zBC C B zBC BC BC

C BC BC

ω ω ω ω
ω ω

− = × − = × − = +

⇒ = − + +

v v k r r k i j i j
v i i j

 

• We know that C can only move horizontally.   This means that its j component of velocity must be 
zero.   This shows that  

0, 8BC Cω = = −v i  

Calculating the acceleration: 

• We know A is stationary, and are given the angular velocity and angular acceleration of AB.  We 
can use the rigid body formula to find the acceleration of B: 

2( ) ( ) 32
32

B A zAB B A zAB B A

B

α ω− = × − − − = −
⇒ = −
a a k r r r r j

a j
 

2m

2m

i
j

A

B

C
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• We don’t know the angular acceleration of BC, so we introduce zBCα  as an unknown and use the 
rigid body formula for member BC to write down an equation for the acceleration of C 

2( ) ( ) (2 2 )
32 2 2

C B zBC C B zAB C B zBC

C BC zBC

α ω α
α α

− = × − − − = × − −

⇒ = − + +

a a k r r r r k i j 0
a j i j

 

• Point C can only move horizontally, so it can’t have any vertical acceleration.  This means 
that the j component of acceleration is zero: 

2 32 0 16
32

zBC zBC

C

α α− = ⇒ =

⇒ =a i
 

Example 2: For a more complicated example, we can solve 
the car jack problem posed at the start of this section. An 
actuator moves point B on the car jack shown in the figure 
horizontally with constant velocity V.  What are the velocity 
and acceleration of the platform (CF)? 
 
The system contains 3 rigid bodies (AC, BD, CF3).  We 
don’t know the angular velocities or accelerations of any of 
them, so we denote them by unknowns zACω , 

zBDω zCFω , zACα , zBDα zCFα  
 

Calculating the velocity: 
• We start at point(s) with known velocity: A is stationary, and the velocity of B is given: 

A B V= =v 0 v i  
• Point E lies on both member AC and on member BD.   We use the rigid body formulas to write 

down an equation for the velocity of E on each member (notice we use the 2D equations): 
( )
( )

E A zAC E A

E B zBD E B

ω
ω

− = × −

− = × −

v v k r r
v v k r r

 

• The two members AC and BD are pinned together at E and so must have the same velocity.  We 
can eliminate Ev  and write out the position vectors in i,j components 

( cos30 sin30 ) ( cos30 sin30 )
( sin30 ) cos30 sin30 cos30

zAC zBD

zAC zAC zBD zBD

L L V L L
L V L L L

ω ω
ω ω ω ω

× + − = × − +

− − + = − −

k i j i k i j
i j i j

 

The i,j components give two equations for zACω , zBDω  
sin sin

cos cos
2 sin cos cos 0

/ (2 sin ) / (2 sin )

zAC zBD

zAC zBD

zAC

zAC zBD

L V L
L L

L V
V L V L

ω θ ω θ
ω θ ω θ

ω θ θ θ
ω θ ω θ

− − = −

= −

⇒ − − =

⇒ = − =

 

 
• We can now use the rigid body formulas for members AC and BD to find the velocities of C and D 

                                                           
3 You may be wondering why only a single point was defined at C and E, but there are two points at D and F.  That’s 
because at C and E the members are pinned together, but there is a roller at D.  At E, members AC, BD always have 
the same velocity and acceleration – we can just use a single variable to denote the velocity of this point.  The same is 
true at C.  Members CF and BD touch at F and D, but  point D on AB does not have the same horizontal velocity as 
point F CF, so we need to be able to distinguish between them. 

j
iA B

CD
F

V
L

L

θ
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( ) (2 cos 2 sin ) cot
2 sin

( ) (2 cos 2 sin ) cot
2 sin

C A zAC C A C

D B zBD D B D

V L L V V
L

VV L L V
L

ω θ θ θ
θ

ω θ θ θ
θ

−
− = × − ⇒ = × + = −

− = × − ⇒ = + × + = −

v v k r r v k i j i j

v v k r r v i k i j j
 

 
• We can use the rigid body formula for CF to relate the velocities of C and F 

( )
cot 2 cos

F C zCF F C

F zCFV V L
ω

θ ω θ
− = × −

= − −

v v k r r
v i j j

  

• Point D on CD and point F on CF must have the same vertical velocity (the roller at D allows their 
horizontal velocities to differ).  This can be expressed as  

cot 2 cos cot
0

F D zCF

zCF

V L Vθ ω θ θ
ω

⋅ = ⋅ ⇒ − − = −

⇒ =

v j v j
 

• All points on CF therefore have the same velocity (equal to the velocity of C)  
cotCF V V θ= −v i j  

 
Calculating the acceleration. 

• We can now calculate the accelerations.  We start at a known point: Points A and B have zero 
acceleration.   

• We can use the rigid body formula to calculate the acceleration of E on each of AC and BD: 
2

2

( ) ( )

( ) ( )
E A zAC E A zAC E A

E B zAD E B zAD E B

α ω

α ω

− = × − − −

− = × − − −

a a k r r r r

a a k r r r r
 

• The two members are connected at E and so must have the same acceleration there.   This shows 
that 

2

2

2

2

( cos sin ) ( cos sin )

( cos sin ) ( cos sin )

( cos sin ) ( cos sin )

( cos sin ) ( cos sin )

zAC zAC

zAD zAD

zAC zAC

zAD zAD

L L L L

L L L L

L L L L

L L L L

α θ θ ω θ θ

α θ θ ω θ θ

α θ θ ω θ θ

α θ θ ω θ θ

× + − +

= × − + − − +

⇒ − − +

= − − − − +

k i j i j

k i j i j

j i i j

j i i j

 

• The i,j components give two equations for the unknown angular accelerations: 
2 2

2 2

2 2 2 2 2 2 3

2 2 3

sin cos sin cos

cos sin cos sin

2 sin cos (cos sin ) cos / (4 sin )

cos / (4 sin )

zAC zAC zAD zAD

zAC zAC zAD zAD

zAC zAD zAC zAC

zAD zAC

L L L L

L L L L

L L L V L

V L

α θ ω θ α θ ω θ

α θ ω θ α θ ω θ

α θ θ ω θ θ ω α θ θ

α α θ θ

− − = − +

− = − −

⇒ − = − + ⇒ = −

= − =

 

• We can use the rigid body acceleration formulas to calculate the velocities of D and C: 
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2

2 2

2 3 2

2 2

2 3

2
2

3

( ) ( )

cos (2 cos 2 sin ) (2 cos 2 sin )
4 sin 4 sin

cos 1
2sin sin

1( ) ( )
2 sin

C A zAC C A zAC D A

C

C

D B zAD D B zAD D B D

V VL L L L
L L

V V
L L

V
L

α ω

θ θ θ θ θ
θ θ
θ
θ θ

α ω
θ

2

− = × − − −

= − − − +

= − −

− = × − − − ⇒ = −

a a k r r r r

a j i i j

a i j

a a k r r r r a j

 

• We can use the rigid body formula to relate the accelerations of C and F 
2

2 2

2 3

( ) ( )

cos 1 ( 2 cos )
2sin sin

F C zCF F C zCF F C

F zCF
V V L
L L

α ω

θ α θ
θ θ

− = × − − −

⇒ = − − + × −

a a k r r r r

a i j k i
 

• Finally, we know that D and F must have the same vertical acceleration (so they remain in contact).  
Their horizontal accelerations may differ, because of the roller attached to D.   This gives 

2 2

3 3
1 12 cos 0

2 2sin sin

D F

zCF CF
V VL

L L
α θ α

θ θ

⋅ = ⋅

⇒ − − = − ⇒ =

a j a j
 

• Since CF has zero angular velocity and angular acceleration, all points on CF have the same 
acceleration (which must equal that of point C).   Therefore 

2 2

2 3
cos 1

2sin sin
CF

V V
L L

θ
θ θ

= − −a i j  

 
6.3.1 Summary of constraint equations at joints and contacts 
 
As the examples in the preceding section show, the keys to analyzing motion in a system of connected rigid 
bodies are: (1) the formulas for relative velocity and acceleration of two points in a rigid body, and (2) 
constraints that relate the velocities and accelerations on two bodies at points where they touch. 
 
There are three common types of connection between rigid bodies: 
 
 
1. A pin joint: the two connected members must have the same 

velocity and acceleration at the connected point 
B A B A= =v v a a  

A B

 
2. A slider joint: the two connected members must have the 

same velocity and acceleration normal to the slider 
B A B A⋅ = ⋅ ⋅ = ⋅v n v n a n a n  

nA

B
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3. Contact between two objects without relative slip (sliding) at 
the contact (friction forces must act to prevent the slip, in 
general):  The velocities of the touching objects must be 
equal at the contact point.   The tangential components of 
acceleration must also be equal (the normal components of 
acceleration differ) 

B A B A= ⋅ = ⋅v v a t a t  

nA B

t

 

 
 

 
 

 
6.3.2 The Rolling Wheel 
 
Wheels are everywhere.   They can be analyzed using the general rigid body equations, but it’s helpful to be 
able to avoid all the tedious cross products.   In this section we summarize special formulas for velocity and 
acceleration of points on a wheel. 
 

 
 

Motion of a wheel rolling without slip on a stationary surface 
 
It is surprisingly difficult to visualize the motion of a wheel.  The figure above might help: it shows the 
trajectory of one point on the circumference of the wheel.  The point traces quite a complicated path.   The 
important thing to notice is: 
 

If a wheel rolls without slip on a stationary surface, the point touching the surface is stationary 
 
Each point is only in contact with the ground for an instant, and while it touches the ground it has a large 
vertical acceleration, but it is instantaneously stationary.   We know this from the list of constraints in Sect 
6.3.1, of course, but it’s still not an easy thing to visualize. 
 
More generally, the ground need not necessarily be stationary (or the wheel could touch another surface).  
In this case we know that the contacting points on two bodies in rolling contact have equal velocity at the 
contact. 
 
Angular velocity-linear velocity formula: With this insight, we can use 
the rigid body formulas to calculate the instantaneous velocity vector for 
any point on the wheel.  Assume that 

• The wheel rolls with angular velocity zω=ω k   counterclockwise 
rotation is positive. 

• The center of the wheel moves with velocity O xOv=v i   
The rolling wheel formula gives 

xO zv Rω= −  
 

j

i

O

C

ωz

R vxO
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To see this, you can simply use the rigid body formula to go from the contact point (which is stationary) to 
O 

( ) ( )O C O C O z zR Rω ω− = × − ⇒ = × = −v v ω r r v k j i  
 
More generally, we can calculate the velocity of any point on the wheel 
we might be interested in.  In fact, we can just write down the velocity 
of any point in the wheel by noticing that instantaneously all points are 
in circular motion about the contact point (just imagine the disk is 
rotating about C).  See if you can show all the following: 

• ( )A z Rω= − +v i j   
• 2D z Rω= −v i  
• ( )B z Rω= − −v i j  

Notice that the direction of the velocity at each point is always 
perpendicular to the line connecting to the point to C.  
 
Angular acceleration-linear acceleration formula: Assume that 

• The wheel rolls with angular acceleration zα=α k   
counterclockwise rotation is positive. 

• The center of the wheel moves with acceleration O xOa=a i   
The rolling wheel formula gives 

xO za Rα= −  
 
 
You can derive this formula in two different ways: 

(1) Differentiate the velocity formula xO zv Rω= −  with respect to time 
(2) Use the rigid body formula:    

2

2

( ) ( ) ( )O C O C z O C

O C z zR R

ω

α ω

− = × − − −

⇒ = − −

a a α r r r r

a a i j
 

We know that the i component of acceleration at point C has to be the same as the i component of 
acceleration of the ground (i.e. zero).  (The j components don’t have to be equal).   We also know 
that O has no j acceleration, because it remains at the same height above the ground.   Therefore  

2

2
xO yC z z

xO z yC z

a a R R

a R a R

α ω

α ω

= − −

⇒ = − =

i j i j
 

We can calculate the acceleration of any other point on the disk using the rigid body formula. 
 
 
Example: The block AB has horizontal 
acceleration a and horizontal speed v.   
Calculate the angular velocity and angular 
acceleration of the rollers.  Then, calculate 
the linear velocity and acceleration of O 
 
To solve problems like this we use two 
ideas: (1) the formulas relating velocity and 
accelerations of points on the disk; and (2) 
the tangential velocity and acceleration of contacting points are equal. 

j

i

BA O

C

Dωz

θ

R

j

i

O

C

ωz

R
αz

axO

j

i

O

C

ωz

Rα z

O
R
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Here, we know the tangential velocity at C is zero; the tangential velocity at A is vi  .   We can use the 
wheel formulas 

2 / (2 )xA z zv R v Rω ω= − ⇒ = −  
Similarly, the tangential acceleration at A is ai  .   The rolling wheel formula gives 

2 / (2 )xA z za R a Rα α= − ⇒ = −  
 
To find the velocity and acceleration at O, we can use 

/ 2
/ 2

xO z

xO z

v R v
a R a

ω
α

= − =

= − =
 

 
6.3.3 Gears 
 
Gears can be analyzed in much the same way as a rolling 
wheel.   Gears are used to increase or decrease angular 
velocities (they act like mechanical amplifiers): for example, 
in the animation the small gear is rotating at twice the angular 
rate of the large one.   They also modify the torques (or 
moments) applied to the gears: if a gear system increases 
angular velocity, it reduces torque by the same factor (so the 
torque on the small gear in the animation is half that on the 
large one).   Some clever gear systems can even be used to add 
angular velocities (see the discussion of epicyclic gears below. 
 
There are many different gear designs.  Here, we focus only on two-dimensional ‘spur gears’.    Spur gears 
have a rather complicated geometry, which we don’t have time to discuss in detail in this course.   They are 
designed to behave like two wheels which roll against each other with no slip at the contact.   The wheel 
radius is equal to the ‘pitch circle radius’ of the gears (which is slightly smaller than physical diameter of 
the gears, because the teeth have to overlap).   Gear manufacturers often specify the number of teeth on a 
gear instead of its radius.  The number of teeth and the radius have to be related, because the teeth have to 
be the same circumferential distance apart for the gear pair to mesh. 
 
We analyze motion of gears using two ideas: 

(1) Two meshed gears must have equal velocities at the point where they touch. 
(2) The rigid body formula, relating the velocity of points on the 

circumference of the gear to the velocity of its center: 
( )C O z C Oω= + × −v v k r r  

In practice we don’t usually bother doing the cross product, and 
instead just write down the velocity on the circumference 
directly using the figure provided: 

• A O z Rω= +v v j  
• B O z Rω= −v v i  
• C O z Rω= −v v j  
• D O z Rω= +v v i  

You don’t have to remember these – just visualize every point on the gear moving in circular 
motion (counterclockwise) around O, and write down the vectors (be careful with signs!). 
 

j

i

B

AOC

D

ωz

θ
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Example 1:  The left gear in the figure rotates with counterclockwise 
angular velocity 1zω .   The large gear has radius 1R  and 1N  teeth, the 
small one has radius 2R  and 2N  teeth.   Calculate the angular velocity 
of the smaller gear.  
 
Note: 

• The velocities of the two touching gears are equal at C 
• The gear rotation/velocity formula gives 

2
1 1 2 2 2

1
z z z

RR R
R

ω ω ω= − ⇒ = −j j  

Notice that we assume both gears rotate counterclockwise.   The formula tells us that the second gear has a 
negative angular velocity – this means that it is actually rotating clockwise.   The animation at the top of 
this section confirms that this indeed is the case. 
 
 
Example 2: An ‘epicyclic’ gearbox is a special arrangement of gears that 
has many applications.  The sketch shows a simple example.   The 
gearbox can be driven in three different places: one drive shaft is 
connected to the central sun gear (A); the other is attached to the ‘planet 
carrier’, which is joined to the center of the ‘pinion gears’ B,C and D.  
The outer gear (E – called the ‘ring gear’) can also be driven separately. 
 
Epicyclic gearboxes are used in all automatic vehicle transmissions.   
They are also very useful in ‘split power’ drives, where two motors need 
to be connected together to drive a single axle.   Hybrid vehicles, which 
have both an electric motor and an internal combustion engine driving 
the same axle, are one example.   You can find a very nice description of 
the Toyota Prius split power transmission here:  the website includes a Flash animation that lets you change 
the speeds of the motors in the system and visualize the motion of the gears. 
 
The figure shows a schematic diagram illustrating the general 
geometry and motion of the system.   We have four rigid 
bodies: 

• The central sun gear, radius SR  , SN  teeth, rotating at 
angular velocity zSω   

• The planet carrier, angular velocity zPCω  
• The ring gear, radius RR , with RN  teeth, angular 

velocity zRω  
• The planet gear, radius ( ) / 2R Sr R R= −  , 

( ) / 2P R SN N N= −  teeth, rotating at angular velocity 

zPω   
 
In any application, we are given the angular velocity of two of the drive shafts (any two of 

zSω , zPCω , zRω ), and must calculate the third.   The planet gear is not connected to any drive shaft, so we 
usually don’t care very much about its angular speed, but we will need to find zPω to solve for the unknown 
one of zSω , zPCω , zRω  .  
 

j

i

O C

ωz1

R1

R2

ωz2

O

ω
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rSun gear RS

RR
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ω zR
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ω zP
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http://eahart.com/prius/psd/
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This seems a terribly difficult problem, but it can be solved in a very simple way with a trick.   
 
We start by solving a simpler version of the problem.  Suppose 
that the planet carrier is stationary ( zPCω =0) and the sun gear 
rotates with angular speed  zSω  (see the animation).   What is the 
angular velocity of the ring gear?       
 
The sun gear and the planet gear are just a standard gear pair so 
we know that 

S
zS S zP zP zS

RR r
r

ω ω ω ω= − ⇒ = −  

The two touching points on the planet gear and the ring gear must 
have the same velocity, so (using the rotating gear formula) 

zP zR R R zP
R

rr R
R

ω ω ω ω= ⇒ =j j  

We can eliminate zPω  to get the answer: 

S
zR zS

R

R
R

ω ω= −  

  
Now let’s try the harder problem.   The animation shows a general situation, where zSω , zPCω  are both 
nonzero.   How can we find zRω now? 
 
This is difficult to analyze because the center of the planet gear is 
not fixed, so it’s hard for us to visualize the motion, and the 
standard gear formulas don’t work.   But we can simplify the 
problem by analyzing motion in a reference frame that rotates 
with the planet carrier.   For example, imagine attaching a 
videocamera to the planet carrier – this camera would show the 
planet carrier to be stationary, with the surrounding world rotating 
in the opposite direction.   The angular velocity of the planet 
carrier would be subtracted from all the other angular velocities.   
In this reference frame, we can use the result we just calculated: 

( )
( )

zR zPC S

zS zPC R

R
R

ω ω
ω ω

−
= −

−
 

 
This result is general, and can be re-arranged to tell you the 
angular velocities for any given combination of zSω , zPCω  and 

zRω . 
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6.4 Linear momentum, angular momentum and kinetic energy of rigid bodies 
 
In this section, we determine how to calculate the angular momentum and kinetic energy of a rigid body, 
and define two important quantities: (1) the center of mass of a rigid 
body (which you already know), and (2) the Inertia tensor (matrix) of a 
rigid body. 
 
To keep things simple, we won’t consider a general rigid body right 
away.   Instead, we will calculate the linear momentum, angular 
momentum, and kinetic energy of a system of N particles that are 
connected together by rigid, massless links. 
 
Definitions of inertial properties: For this system, we will define   

The total mass 
1

N
i

i
M m

=
=∑   

The position of the center of mass 
1

1 N
G i i

i
m

M =
= ∑r r   

The position vector of each mass relative to the center of mass i i G= −d r r   

The velocity of the center of mass G
G

d
dt

=
rv   

 
The mass moment of inertia about the center of mass (a tensor, which can be expressed as a matrix 
if we choose a coordinate system and set i ix iy izd d d= + +d i j k  ) 
 

2 2

2 2

1 2 2

iy iz ix iy ix izGxx Gxy Gxz N
G Gyx Gyy Gyz i ix iy ix iz iy iz

i
Gzx Gzy Gzz ix iz iy iz ix iy

d d d d d dI I I

I I I m d d d d d d

I I I d d d d d d
=

 + − −      = = − + −        − − +    

∑I  

 
The mass moment of inertia is sometimes also written in a more abstract but very compact way as 

( )2

1

N

G i i i i i
i

m m
=

= − ⊗∑I d 1 d d  

Here, 1  is the identity tensor, and i i⊗d d  is a tensor with components ix ixd d  , ix iyd d , ix izd d , etc (the 
symbol ⊗  is called the ‘diadic product’ of two vectors). 
 
 
Formulas for linear and angular momentum and kinetic energy: We will show that: 
 

The total linear momentum is GM=p v  
 

The total angular momentum (about the origin) is G G GM= × +h r v I ω  
 

The total kinetic energy is 1 1
2 2G G GT M= ⋅ + ⋅v v ω I ω  

i j

k

d2

m4

m3

m2

m1

d3

d4

d1

r1

rG

r2
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These are actually general results that hold for all rigid bodies, as long as we use a more general definition 
of M  and GI  . 
 
 
Simplified formulas for two dimensions:  For planar problems, 0izd =  
(since all the masses are in the plane), and zω=ω k  .   In this case, we can 
use 

The total linear momentum is GM=p v  
The total angular momentum (about the origin) is 

G G Gzz zM I ω= × +h r v k  

The total kinetic energy is 21 1
2 2G G Gzz zT M I ω= ⋅ +v v  

 
Here GzzI  is just the bottom diagonal term of the full inertia matrix (i.e. just a 
single number) 

( ) 22 2

1 1

N N
Gzz i ix iy i i

i i
I m d d m

= =
= + =∑ ∑ d  

 
 
Example 1: A simple 3D assembly of masses is shown in the 
figure.   
 
(1) Find the mass moment of inertia.    
 
By symmetry, the COM is at the origin. The inertia tensor is 
therefore  
 

( )
( )

( )

2 2

2 2

2 2

2 0 0

0 2 0

0 0 2

y y z z

G x x z z

x x y y

m L m L

m L m L

m L m L

 +
 
 

= + 
 
 +
 

I  

 
 
(2) Assume that the COM is stationary (i.e. the assembly rotates about the origin). Find formulas for the 
angular momentum and kinetic energy of the system, in terms of the angular velocity components 

, ,x y zω ω ω   
 
The formula gives the angular momentum 
 

i

j

k

Lz

Lz

Ly

Ly

Lx
Lx

mz

mz

my

my

mx

mx

j

i
A

m1

m2
m3

r1

rG

r2

d1

d3d2
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( )
( )

( )
( ) ( ) ( )

2 2

2 2

2 2

2 2 2 2 2 2

2 0 0

0 2 0

0 0 2

2 2 2

y y z z
x

G G G x x z z y

z
x x y y

y y z z x x x z z y x x y y z

m L m L

M m L m L

m L m L

m L m L m L m L m L m L

ω
ω

ω

ω ω ω

 +
   
   

= × + = +   
   

  +
 

= + + + + +

h r v I ω

i j k

 

Note that h is a vector.   Importantly, h is not generally parallel to the angular velocity vector, as this 
example shows. 
 
The kinetic energy is 

( )
( )

( )
( ) ( ) ( )

2 2

2 2 2

2 2

2 2 2 2 2 2 2 2 2

2 0 0

1 1 1 0 2 0
2 2 2

0 0 2

y y z z
x x

G G y x x z z y

z z
x x y y

y y z z x x x z z y x x y y z

m L m L

T M m L m L

m L m L

T m L m L m L m L m L m L

ω ω
ω ω

ω ω

ω ω ω

 +
    
    

= + ⋅ = ⋅ +    
    

    +
 

= + + + + +

v ω I ω
 

 
These results help us understand what the formulas are predicting.  Note, for example, that: 
• The mass moment of inertia always has the form mass*length2.   It has units of kg-m2 
• The mass moment of inertia is a measure of how mass is distributed about the center of mass.  An 

object has a large inertia if the mass is far from the COM, and a small one if the mass is close to the 
COM. 

• The matrix-vector products in the formulas for h and T are 
really just a way of calculating the velocity of each particle 
in the system in a quick way.   For example, suppose we 
rotate our assembly of masses about the k axis with 
angular velocity zω  (see the animation).   Let’s calculate 
the kinetic energy of the system, but without using the 
rigid body formulas.   The two blue masses are stationary, 
so they have no KE.   The red and green mass are both 
moving in a circle about the origin.   The circular motion 
formula says their speed is zV Rω=  We can calculate the 
total kinetic energy using the usual formula 

( ) ( ) ( )

2

22 2 2 2

1
2

1 12 2
2 2

i i
i

x x z y y z x x y y z

T m V

m L m L m L m Lω ω ω

=

= + = +

∑
  

This explains why the formula for GzzI   contains xL  and yL   - the GzzI  component keeps track of how 
much energy or momentum is produced by a rotation about the z axis.   The energy and momentum depend 
on the distances of the masses from the z axis – which of course depends on xL  and yL . 
 
Finally, note that we can interpret the two terms in the formulas for momentum and KE as quantifying 
(separately) the effects of translation and rotation 
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Angular momentum 
Translational + Rotational 

GG GM×= +v I ωh r
 

 

Kinetic energy is 
1
2

Translation

1
2

al Rotati onal+ 

GG GMT ⋅⋅= +v v ω I ω
 

This helps explain why we can often idealize a system as a particle.  If the rotational term is negligible, the 
angular momentum and kinetic energy of a rigid body is just the same as that of a particle located at the 
COM. 
 
6.4.1 Deriving the linear momentum formula 

By definition 
1

N
i i

i
m

=
=∑p v .   We can re-write this as follows: 

( )
1 1 1

N N N
i

i i i i i G G
i i i

d d dm m m M M
dt dt dt= = =

= = = = =∑ ∑ ∑rp v r r v  

(we used the definition of the COM to get the last result) 
 
 
6.4.2 Deriving the angular momentum formula 

Start with the definition:  
1

N
i i i

i
m

=
= ×∑h r v  

Note that i G i= +r r d   and recall the relative velocity formula ( )i G i G i− = × − = ×v v ω r r ω d  .  This means 
we can re-write the angular momentum as 

1

1 1 1 1

( ) ( )
N

G i i G i
i
N N N N

i G G i i G G i i i i i
i i i i

m

m m m m

=

= = = =

= + × + ×

     
= × + × + × × + × ×          
     

∑

∑ ∑ ∑ ∑

h r d v ω d

r v d v r ω d d ω d

 

Note that 

( )
1 1 1 1

0
N N N N

i i i i G i i G i G G
i i i i

m m m m M M
= = = =

= − = − = − =∑ ∑ ∑ ∑d r r r r r r  

 
Finally, recall the dreaded triple cross product formula 

( ) ( )× × = ⋅ − ⋅a b c a c b a b c  
This means that 

( ) ( )i i i i i i× × = ⋅ − ⋅d ω d d d ω d d ω  
This gives us the result in compact notation directly 

( ) ( )2

1 1 1
( ) ( )

N N N

i i i i i i i i i i i i i i G
i i i

m m m m m
= = =

 
× × = ⋅ − ⋅ + − ⊗ ⋅ = 

  
∑ ∑ ∑d ω d d d ω d d ω d 1 d d ω I ω  

 
where we used the compact formula for the mass moment of inertia about the COM: 
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( )2

1

N

G i i i i i
i

m m
=

= − ⊗∑I d 1 d d  

 
If you don’t like the compact formula, we can also get the matrix version by expand out the triple cross 
product 

( )

2 2 2

2 2 2

2 2 2

2 2

2 2

2 2

( )

( ) ( ) ( )

( )

x ix iy iz ix

i i i i y ix iy iz iy x ix y iy z iz

izz ix iy iz

iy iz ix iy ix iz

ix iy ix iz iy iz

ix iz iy iz ix iy

d d d d
d d d d d d d

dd d d

d d d d d d

d d d d d d

d d d d d d

ω

ω ω ω ω

ω

 + +      ⋅ − ⋅ = + + − + +       + +  
 + − −

= − + −
 − − +

d d ω d d ω

x

y

z

ω
ω

ω


 
 
 
   

 

 
This again shows that 

1

N
i i i G

i
m

=
× × =∑ d ω d I ω  

 
Finally collecting terms gives the required answer 

1 1 1

N N N
i G G i i G i i i G G G

i i i
m m m M

= = =

   
= × + × + × × = × +      
   
∑ ∑ ∑h r v d v d ω d r v I ω  

 
 
6.4.3 Deriving the kinetic energy formula 

1

1
2

N
i i i

i
T m

=
= ⋅∑ v v  

We can use ( )i G i G i− = × − = ×v v ω r r ω d  

1 1

1 1 1

1 1 ( ) ( )
2 2

1 1( ) ( ) ( )
2 2

N N
i i i i G i G i

i i
N N N

G G i G i i i i i
i i i

m m

m m m

= =

= = =

⋅ = + × ⋅ + ×

 
= ⋅ + ⋅ × + × ⋅ ×  

 

∑ ∑

∑ ∑ ∑

v v v ω d v ω d

v v v ω d ω d ω d

 

Recall that  

1

N
i i

i
m

=

 
=  

 
∑ d 0  

and expand the dot product of two cross products using the formula 
( ) ( ) ( )( ) ( )( )× ⋅ × = ⋅ ⋅ − ⋅ ⋅a b c d a c b d b c a d  

This shows that 

( )( ) ( )2( ) ( )i i i i i× ⋅ × = ⋅ ⋅ − ⋅ω d ω d ω ω d d ω d  
As for the derivation of the angular momentum, this can be rearranged using the compact notation as 
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( ) ( )22

1 1 1
( ) ( ) ( ) ( )

N N N

i i i i i i i i i i i i i
i i i

G

m m m m m
= = =

 
× ⋅ × = ⋅ ⋅ − ⋅ + ⋅ − ⊗ 

  
= ⋅

∑ ∑ ∑ω d ω d d d ω ω d ω ω d 1 d d ω

ω I ω

 

 
Alternatively, we can get the matrix version of the formula as 

( )( ) ( )2

2 2 2 2

2 2 2 2

2 2 2 2

( ) ( )

0 0

0 0

0 0

i i i i i

ix iy iz ix ix iy ix izx x x

y ix iy iz y y ix iy iy iy iz

z z zix iy iz ix iz iy iz iz

d d d d d d d d

d d d d d d d d

d d d d d d d d

ω ω ω
ω ω ω

ω ω ω

× ⋅ × = ⋅ ⋅ − ⋅

   + +        
       = ⋅ + + − ⋅       
            + +     

ω d ω d ω ω d d ω d

2 2

2 2

2 2

x

y

z

iy iz ix iy ix izx x

y ix iy ix iz iy iz y

z zix iz iy iz ix iy

G

d d d d d d

d d d d d d

d d d d d d

ω
ω

ω

ω ω
ω ω

ω ω

 
 
 
   

 + − −    
    = ⋅ − + −    
       − − +  

= ⋅ω I ω

 

 
Finally, collecting all the terms gives the required answer 

1

1 1 1
2 2 2

N
i i i G G G

i
T m M

=
= ⋅ = ⋅ + ⋅∑ v v v v ω I ω  

 
 
6.4.4 Calculating the center of mass and inertia of a general rigid body 
 
It is not hard to extend the results for a system of N particles to a general rigid body.   We simply regard the 
body to be made up of an infinite number of vanishingly small particles, and take the limit of the sums as 
the particle volume goes to zero.    The sums all turn into integrals. 
 
3D problems:  For a body with mass density ρ  (mass per unit volume) we have that 
 

 The total mass is 
V

M dVρ= ∫   

 The position of the center of mass is 1
G

V
dV

M
ρ= ∫r r  

 
 The mass moment of inertia about the center of mass is 

2 2

2 2

2 2

y z x y x z

G x y x z y z
V

x z y z x y

d d d d d d

d d d d d d dV

d d d d d d

ρ

 + − −
 
 = − + − 
 − − +  

∫I  

where G= −d r r  
 

i
j

k
d

r
rG
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For 2D problems: We know the COM must lie in the i,j plane and we don’t need to calculate the whole 
matrix.   
 
For a body with mass per unit area µ  we can therefore use the formulas 
 

 The total mass is 
A

M dAµ= ∫   

 The position of the center of mass is 1
G

A
dA

M
µ= ∫r r  

 The mass moment of inertia about the center of mass is 2 21 ( )Gzz x y
A

I d d dA
M

µ= +∫  

where G= −d r r  
 
 

Example 1: To show how to use these, let’s calculate the total mass, 
center of mass, and mass moment of inertia of a rectangular prism 
with faces perpendicular to the , ,i j k  axes: 
 
First the total mass (sort of trivial) 

0 0 0

c b a
M dxdydz abcρ ρ= =∫ ∫ ∫  

 
 
Now the COM 

2 2 2

0 0 0

1 1 1 1 1 1( ) ( )
2 2 2 2

c b a

G x y z dxdydz a bc a b c ab c a b c
abc abc

ρ
ρ

 = + + = + + = + + 
 ∫ ∫ ∫r i j k i j k i j k  

 
And finally the mass moment of inertia 

i

j

k

a
b

c

j

i

d
r

rG
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2 2

2 2

0 0 0 2 2

3 3

3 3

3 3

( / 2) ( / 2) ( / 2)( / 2) ( / 2)( / 2)

( / 2) ( / 2) ( / 2)( / 2)

( / 2) ( / 2)

1 1 0 0
12 12

1 10 0
12 12

1 10 0
12 12

c b a

G

y b z c x a y b x a z c

sym x a z c y b z c dxdydz

sym sym x a y b

ab c abc

a bc abc

a bc ab c

ρ

ρ

 − + − − − − − − −
 
 = − + − − − −
 
 − + − 

 +

= +

 +
 

∫ ∫ ∫I

2 2

2 2

2 2

0 0

0 0
12

0 0

b c
M a c

a b









 +
 
 = +
 
 + 

 

 
 
 
Example 2: As a second example, let’s calculate the mass moment 
of inertia of a cylinder with mass density ρ  , length L and radius a.  
We have to do the integrals with polar coordinates. For example, the 
inertia matrix is 
 

2 2
/2 2

2 2

/2 0 0 2 2

y z x y x z
L a

Cylinder
x y x z y zG

L
x z y z x y

d d d d d d

d d d d d d rdrd dz

d d d d d d

π
ρ θ

−

 + − −
 
 = − + − 
 − − +  

∫ ∫ ∫I  

Now (in polar coordinates, and assuming that the COM is located at 
the center of the cylinder) cos sinx y zd r d r d zθ θ= = =  .   
 
We can have Matlab do all the integrals for us: 
 

i

j

k

L/2

L/2

a

rθ

z
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Example 3: Let’s finish up with a 2D example.   Find the mass, center of 
mass, and out of plane mass moment of inertia of the triangle shown in 
the figure. 
 

The total mass is 
(1 / )

0 0

1
2

a y bb
M dxdy abµ µ

−

= =∫ ∫   

The position of the COM is 
(1 / )

0 0

2 1( ) ( )
3

a y bb

G x y dxdy a b
ab

µ
µ

−

= + = +∫ ∫r i j i j  

The 2D mass moment of inertia is 

( )
(1 / )

2 2 2 2 2 2

0 0

( ) ( ) ( )
3 3 36 18

a y bb

Gzz
a b ab MI x y dxdy a b a bµµ

−
 = − + − = + = + 
 ∫ ∫  

 
 
 
This is all a big pain, and you may be contemplating a life of crime instead of an engineering career.   
Fortunately, it is very rare to have to do these sorts of integrals in practice, because all the integrals for 
common shapes have already been done.   You can google most of them.   The tables below give a short list 
of all the objects we will encounter in this course. 
 
 
 
 
 

Table of mass moment of inertia tensors for selected 3D objects 
 

Prism 
M abcρ=   

i
j

k

a

b

c

 

2 2

2 2

2 2

0 0

0 0
12

0 0

b c
M a c

a b

 +
 
 +
 
 + 

 

Solid Cylinder 
2M a Lπρ=   

i

j

k

L/2

L/2

a

 

2 2
2

2 2

2 2

1 3 / 0 0

0 1 3 / 0
12

0 0 6 /

a L
ML a L

a L

 +
 
 +
 
 
 

 

j

i
a

b

x=a(1-y/b)



 31 

Solid Cone 
2

3
M a hπ ρ=  i

j

k h

a

h/4

 

2 2
2

2 2

1 / (4 ) 0 0
3 0 1 / (4 ) 0

20
0 0 2

h a
Ma h a

 +
 
 +
 
 
 

 

Solid Sphere 
34

3
M aπρ=  i

j

k

a

 

2 1 0 0
2 0 1 0

5
0 0 1

Ma
 
 
 
  

 

Solid Ellipsoid 
4
3

M abcπρ=  i
j

k

a b

c

 

2 2

2 2

2 2

0 0

0 0
5

0 0

b c
M a c

a b

 +
 
 +
 
 + 

 

Hollow Cylinder 
2 2( )M b a Lπρ= −  

i

j

k

L/2

L/2

a b

 

2 2 2

2 2 2

2 2

3( ) 0 0

0 3( ) 0
12

0 0 6( )

L a b
M

L a b

a b

+ +

+ +

+

 
 
 
 
  
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Table of mass moment of inertia about perpendicular axis for selected 2D objects 
 

Square 

j

i

a

a

 

2 2( )
12Gzz
MI a b= +  

Disk 

j

iR
 

2
2Gzz
MI R=  

Thin ring 

j

iR
 

2
GzzI MR=  

Hollow disk 

j

i
b

a

 

( )2 2
2Gzz
MI a b= +  

Slender rod 

j

i
L

 

2
12Gzz
MI L=  
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6.4.5 The Parallel Axis Theorem 
 
In all the previous calculations we have been calculating the mass moment of inertia about the center of 
mass.   This is what always appears in the general angular momentum formula.   But we sometimes want to 
find the mass moment of inertia about a different point (not the COM).   For example, if a body happens to 
be rotating about a fixed point, we can sometimes find its angular momentum and kinetic energy more 
quickly by first finding the mass moment of inertia about the fixed point, and then using special simpler 
formulas the angular momentum and kinetic energy (see section 6.4.10).  We also sometimes want to find 
the combned mass moment of inertia of several bodies that are connected together.   When we do this, we 
usually find the center of mass of the collection of bodies, and then add up the mass moments of inertia of 
all the separate bodies about the COM of the assembly (see section 6.4.6).   To be able to do this, we need 
to be able to calculate the mass moment of inertia of a body about and arbitrary point, i.e. not the COM of 
the body.  
 
The mass moment of inertia about an arbitrary point is defined exactly 
the same way as the inertia about the COM, except that we use the 
distances from our arbitrary point instead of the distance from the 
COM.   

2 2

2 2

2 2

y z x y x z

O x y x z y z
V

x z y z x y

r r r r r r

r r r r r r dV

r r r r r r

ρ

 + − −
 
 = − + − 
 − − +  

∫I  

 
It’s painful to have to re-do all these integrals, however.   If we already know GI  , the parallel axis theorem 
lets us calculate OI  directly.  Define the vector d that points from G to O 

O G x y zd d d= − = + +d r r i j k  
Then for a 3D object with mass M 

2 2

2 2

2 2

y z x y x z

O G x y x z y z

x z y z x y

d d d d d d

M d d d d d d

d d d d d d

 + − −
 
 = + − + − 
 − − +  

I I  

 
 
For 2D we have a simpler result 
 

2 2( )Ozz Gzz x yI I M d d= + +  
 
 
 
 
 
Example: Let’s find the mass moment of inertia of a cylinder about 
axes that pass through one end of the cylinder (O), instead of the 
COM. 
 

i

j

k

L/2

L/2

a

rθ

z

O

i

j

k

r

rO-rG

i O

r

rO-rG

j

iO
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Here, 0
2 2x y z
L Ld d d= ⇒ = = =d k   

 
The formula gives  

2 2

2 2

2 2

y z x y x z

O G x y x z y z

x z y z x y

d d d d d d

M d d d d d d

d d d d d d

 + − −
 
 = + − + − 
 − − +  

I I  

2 2 2
2

2 2 2

2 2

2 2
2

2 2

2 2

1 3 / 0 0 / 4 0 0

0 1 3 / 0 0 / 4 0
12

0 0 00 0 6 /

4 3 / 0 0

0 4 3 / 0
12

0 0 6 /

a L L
ML a L M L

a L

a L
ML a L

a L

   +
   
   = + +
   
   
   
 +
 
 = +
 
 
 

 

 
 
Proof of the parallel axis theorem 
 
Let Or  be some arbitrary point in space, and let Gr  be the position of 
the COM.  Define O G= −d r r  as the vector from the COM to O, as 
shown in the figure. 
 
Then let r  denote the position vector of an infinitesimal volume 
element in the rigid body relative to O, and let b  denote the position 
vector of the same volume element relative to the COM G. 
Then = −r b d .  
 
We also know that (by definition) 

( )
( )

2

2

O
V

G
V

V V

dV

dV

dV dV M

ρ

ρ

ρ ρ

= − ⊗

= − ⊗

= =

∫

∫

∫ ∫

I r 1 r r

I b 1 b b

b 0

 

We can make use of 2 = ⋅r r r and then substitute  = −r b d  into (1).   Expand the dot and dyadic product 
of −b d , note d is a constant and use the identities on the last line above, as follows 

i

j

k

r

rO-rG

i O
b
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( ) ( )

( ) ( )

( ) ( ) ( )

2

2 2 2

( ) ( ) ( ) ( )

( ) ( )

2

O
V V

V V

V V V

G
V

dV dV

dV dV

dV dV dV

dV M M

ρ ρ

ρ ρ

ρ ρ ρ

ρ

= − ⊗ = − ⋅ − − − ⊗ −

= ⋅ − ⊗ + ⋅ − ⊗

     
− ⋅ + ⊗ + ⊗     
     

= − ⊗ + − ⊗ = + − ⊗

∫ ∫

∫ ∫

∫ ∫ ∫

∫

I r 1 r r b d b d b d b d

b b 1 b b d d 1 d d

d b 1 b d d b

b 1 b b d 1 d d I d 1 d d

 

 
 
 
 
 
 
6.4.6 Calculating moments of inertia of complex shapes by summation 
 
The most important application of the parallel axis theorem is in calculating the mass moment of inertia of 
complicated objects (which don’t appear in our table) by adding together moments of inertia for simple 
shapes.   We can illustrate this with a couple of simple examples. 
 
Example 1:  Two spheres with radius 3a are connected by a rigid 
cylinder with length 6a and radius a to create a dumbbell.   All 
objects have the same mass density ρ  .   Calculate the total mass 
moment of inertia of the dumbbell. 
 
The general approach is  

(1) Find the COM of the entire assembly 
(2) Find the mass moment of inertia of each shape (the spheres 

and the cylinder) about its own COM 
(3) Use the parallel axis theorem to find the moment of inertia 

of each shape about the combined COM 
(4) Add all the moments of inertia 

 
For our problem 

(1) We know the COM is at the origin by symmetry, so we 
don’t need to calculate it 

(2) The inertia matrices of each object (cylinder + sphere) about their own COM are: 

( )
( )

( )
( )

( )

2

3 2

2

2 2

3 2 2

2

3 0 0
2 4 3 0 3 0
5 3

0 0 3

(6 ) 3 0 0
1 6 0 (6 ) 3 0

12
0 0 6

sphere
G

cylinder
G

a

a a

a

a a

a a a

a

π ρ

π ρ

 
 

   =     
 
  

 +
 
 = +
 
 
 

I

I

 

i

j

k

3a

3a

2a

3a
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(3) We don’t need to use the parallel axis theorem for the cylinder, because its COM is already at the 
same place as the COM of the assembly.   For the spheres, we need to move the COM a distance 6a 
parallel to the k direction.  This means that 0, 6x y zd d d a= = =  in our formula.  Therefore 

( )
( )

( )
( )

( )
( )

2

3 2 3

2 2

3 0 0 0 0 0
2 4 43 0 3 0 3 0 0 0
5 3 3

0 0 3 0 0 6

sphere
COM

a

a a a

a a

π πρ ρ

   
       = +           
      

I  

 
(4) We can add everything up (note that there are two spheres).  Its best to use Mupad. The answer is 

2

2 3

2

929 0 0
1 0 929 0 42

140
0 0 9514

COM

a

M a M a

a

π ρ

 
 
 = =
 
 
 

I  

 

j

i

2a

2a

a

j

i

2a

i

j j

2a

a

a

a
j

 
Example 2:  Things are a lot simpler in 2D.  The procedure is the same, but we only need to calculate zzI  .    
For example, to calculate the mass moment of inertia for a square 2ax2a plate with a hole with an axa 
square cut out from the top corner we would use the following approach. 

 
Start by calculating the total mass and the position of the COM.  We can regard the cut-out section as a 
square with negative density inside a larger 2ax2a square.   
 
The total mass is therefore ( )2 2 22 3M a a aρ ρ ρ= − =   

The position of the COM is 2 21 3 3 54 ( ) ( ) ( )
2 2 6G
a aa a a a a

M
ρ ρ = + − + = + 

 
r i j i j i j   

 
The mass moment of inertia of the 2ax2a square and the axa square are 

2 2 2 4

2 2 2 4

1 8Large square 4 (4 4 ) (COM at ( ))
12 3

1 1 3Small square ( ) (COM at ( ))
12 6 2

Gzz

Gzz

I a a a a a

I a a a a a

ρ ρ

ρ ρ

= + = +

= − + = − +

i j

i j
  

 
We now use the parallel axis theorem to find the moment of inertia of each square about the combined 

COM.   For the large square: 1 1
6 6x yd a d a= =  .    For the small square,  2 2

3 3x yd a d a= = .  The total 

mass moment of inertia is therefore 
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4 2 2 2 4 2 2 2 4 28 1 1 1 4 4 11 114
3 36 36 6 9 9 6 18

total
GzzI a a a a a a a a a Maρ ρ ρ ρ ρ   = + + − − + = =   

   
 

 
 
6.4.7 Rotating the inertia tensor 
 
All the curious properties of spinning objects – a gyroscope; a 
boomerang; the rattleback – are consequences of the fact that 
the mass moment of inertia of an object changes when it is 
rotated.  We can see this very easily by re-visiting our 
assembly of masses.  In the original calculation, the red, green 
and blue masses were located on the i,j,k axes.  We calculated 
the inertia tensor to be  
 

( )
( )

( )

2 2

2 2

2 2

2 0 0

0 2 0

0 0 2

y y z z

G x x z z

x x y y

m L m L

m L m L

m L m L

 +
 
 

= + 
 
 +
 

I

 
 
Now suppose we rotate the assembly through 90 degrees 
about the k axis.  The red masses now lie on the j axis, and the 
green ones line up with the i axis.   It is not hard to see that the 
new mass moment of inertia is now 
 

( )
( )

( )

2 2

2 2

2 2

2 0 0

0 2 0

0 0 2

x x z z

G y y z z

x x y y

m L m L

m L m L

m L m L

 +
 
 

= + 
 
 +
 

I

( ,xx yyI I  have switched positions) 
 
 
This seems like a huge problem – if we needed to re-calculate the mass moment of inertia from scratch 
every time a rigid body moves, analyzing rigid body motion would be nearly impossible. 
 
Fortunately, we can derive a formula that tells us how the mass moment of inertia of a body changes when 
it is rotated.    
 
 
 
 
 
 
 
 

i

j

k

Lz

Lz

Ly

Ly

Lx
Lx

mz

mz

my

my

mx

mx

 

i

j

k
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Lz
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Lx

Lx
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my
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Rotation formula for moments of inertia: Consider the rectangular prism 
shown in the figure.  Let 0

GI  denote the mass moment of inertia with the 
prism oriented so the faces are perpendicular to i,j,k (i.e. the inertia given in 
the table in Sect 6.4.5).   
 
Suppose the body is then rotated by a tensor R. 
 
The mass moment of inertia after rotation is given by 

0 T
G G=I RI R  

 
 
Example: The prism shown in the figure is rotated by 45 degrees about the 
k axis.   Calculate the mass moment of inertia after the rotation 
 
Start by calculating the rotation (use the formulas from 6.2.1) 

cos(45) sin(45) 0
sin(45) cos(45) 0

0 0 1

− 
 =  
  

R  

 
We know the inertia tensor of the prism before it is rotated is 

2 2

0 2 2

2 2

0 0

0 0
12

0 0
G

b c
M a c

a b

 +
 
 = +
 
 + 

I  

 
We can use Matlab to do the tedious matrix multiplications 

 
 
Note that the inertia tensor is no longer diagonal. 
 
 
 
Rotation formula for 2D motion:  Fortunately,  2D 
is simple 
 
Rotating a 2D object about the k axis does not 
change GzzI     
 
 
 

k

j
i

A

B

A

B

k

j
i

pB-pA

rB-rA

IG

IG

0

j

i

a

a

j

i
IGzz

IGzz
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Proof of the rotation formula: Consider a system of N particles.  Suppose that before rotation, the 
particles are at positions 0

id  relative to the COM.    The initial inertia tensor is 
20 0 0 0

1

N

G i i i i i
i

m m
=

 
= − ⊗ 

 
∑I d 1 d d  

Now rotate the system, so the particle s move to new positions 0
i i=d Rd .  The new inertia tensor is 

( )2

1

N

G i i i i i
i

m m
=

= − ⊗∑I d 1 d d  

Recall that T =RR 1  and recall that a rotation R does not change lengths so 0
i i=d d .  Therefore 

20 0 0

1
( ) ( )

N
T

G i i i i i
i

m m
=

 
= − ⊗ 

 
∑I d RR Rd Rd  

It is easy to show (just write out the matrix products) 0 0 0 0( ) ( ) ( ) T
i i i i⊗ = ⊗Rd Rd R d d R , which shows that 

2 20 0 0 0 0 0 0

1 1
( )

N N
T T T T

G i i i i i i i i i i G
i i

m m m m
= =

   
= − ⊗ = − ⊗ =   

   
∑ ∑I d RR R d d R R d 1 d d R RI R  

 
 
 
6.4.8 Time derivative of the inertia tensor 
 
When we analyze motion of a rigid body, we will need to calculate the time derivatives of the linear and 
angular momentum.   Linear momentum is no problem, but for angular momentum, we will need to know 
how to differentiate GI  with respect to time.  There is a formula for this: 

G
G G

d
dt

= −
I WI I W  

where Td
dt

=
RW R   is the spin tensor (see sect 6.2.2) 

 
Proof: 

• Start with 0 T
G G=I RI R  and take the time derivative 

0 0
T

TG
G G

d d d
dt dt dt

= +
I R RI R RI  

 

• Recall that 
T T

T T T T Td d d d
dt dt dt dt

= ⇒ + = ⇒ = − = −
R R R RRR 1 R R 0 R R R W   

• Finally note that /d dt =R WR  and therefore 
0 0T TG
G G G G

d
dt

= + = −
I WRI R RI R W WI I W  
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6.4.9 Time derivative of angular momentum 
 
To use the angular momentum conservation equation, we will need to know how to calculate the time 
derivative of the angular momentum.   When we do this for a 3D problem, we need to take into account that 
the mass moment of inertia changes as the body rotates.   We will prove the following formula: 

( )G G G G
d M
dt

= × + + ×
h r a I α ω I ω  

For 2D planar problems this can be simplified to: 

G G Gzz z
d M I
dt

α= × +
h r a k  

 
 

Proof: We start by taking the time derivative of the general definition of h 

( )G G G
d d M
dt dt

= × +
h r v I ω  

 
We can go ahead and do the derivative with the product rule: 

G G G
G G G

d d dd dM M
dt dt dt dt dt

= × + × + +
r v Ih ωv r ω I  

We can simplify this by noting that /G Gd dt =r v  and of course the cross product of Gv  with itself is zero.  
We can also use the definition of angular acceleration: /d dt =ω α  .   This gives  

G
G G G

dd M
dt dt

= × + +
Ih r a ω I α  

Finally, substitute for /Gd dtI  from the formula in the previous section, and recall that = ×Wu ω u  for all 
vectors u, and that a vector crossed with itself is zero to see that: 

( )G G G G G

G G G G G

G G G G

d M
dt

M
M

= × + − +

= × + + × − ×

= × + + ×

h r a WI I W ω I α

r a I α ω I ω I ω ω
r a I α ω I ω

 

 
 

6.4.10 Special equations for angular momentum and KE of bodies that rotate about a 
stationary point 
 
We often want to predict the motion of a system that rotates about a fixed pivot – a pendulum is a simple 
example.   These problems can be be solved using a useful short-cut for the angular momentum or KE of a 
body rotating about a fixed point.   The short-cut will give the same answer as the general formulas. 
 
 
For an object that rotates about a fixed pivot at the origin: 
 

 The total angular momentum (about the origin) is O=h I ω  

 The total kinetic energy is 1
2 OT = ⋅ω I ω  

 

i

j

k

r

rO-rG

i

O
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Here OI  is the mass moment of inertia about O (calculated, eg, using the parallel axis theorem).  Note that 
the special formulas do not include the term involving the velocity of the COM – that’s been automatically 
included by using OI  instead of GI . 
 
For 2D rotation about a fixed point at the origin we can simplify these to 
 

 The total angular momentum (about the origin) is 
Ozz zI ω=h k  

 The total kinetic energy is 21
2 Ozz zT I ω=  

 
Proof:  It is straightforward to show these formulas.  Let’s show the two dimensional version of the kinetic 
energy formulas as an example. For fixed axis rotation, we can use the rigid body formulas to calculate the 
velocity of the center of mass (O is stationary and at the origin) 

G G z Gω= × = ×v ω r k r  
The general formula for kinetic energy can therefore be re-written as 

( )

2 2 2

2 2 2

1 1 1 1( ) ( )
2 2 2 2

1 1
2 2

G G Gzz z z G G Gzz z

G Gzz z Ozz z

T M I M I

M I I

ω ω ω

ω ω

= ⋅ + = × ⋅ × +

= + =

v v k r k r

r
 

The other formulas can be proved with the same method – we simply express the velocity or acceleration of 
the COM in the general formulas in terms of angular velocity and acceleration, and notice that we can re-
arrange the result in terms of the mass moment of inertia about O. 

 
The 3D proof is the same.  Start with the general formula 

1 1
2 2G G GT M= ⋅ + ⋅v v ω I ω  

 
and use the kinematics formula to find Gv   (noting that O is stationary and at the origin) 

G G= ×v ω r  

( ) ( )1 1
2 2G G GT M= × ⋅ × + ⋅ω r ω r ω I ω  

Remember the vector formula ( ) ( ) ( )( ) ( )( )× ⋅ × = ⋅ ⋅ − ⋅ ⋅a b c d a c b d b c a d , which shows that 

( )( ) ( )2( ) ( )G G G G G× ⋅ × = ⋅ ⋅ − ⋅ω r ω r ω ω r r ω r  
We can re-write the kinetic energy as 

( )2

2

1 1( ) ( )
2 2
1 1 1
2 2 2

G G G G

G G G G O

T M

M

= ⋅ ⋅ − ⋅ + ⋅

 = ⋅ − ⊗ + ⋅ = ⋅  

r r ω ω r ω ω I ω

ω r 1 r r ω ω I ω ω I ω
 

using the parallel axis theorem. 
 
Another way to prove the result is just to calculate the KE of the body from scratch, by summing the KE of 
the infinitesimal particles in the rigid body, and noting that they are all in circular motion about O. 
 

r

rO-rG

j

iO
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The proof of the angular momentum formula is just the same – start with the general formula for h and then 
simplify it using G G= ×v ω r .   You might like to try this as an exercise. 
 
 
Example:  In the planetary gear system shown, the sun gear has 
radius SR  and mass m , the ring gear has radius 3 SR  , while the 
planet gear has mass m and the planet carrier has mass m/2 .    
The sun gear rotates with angular speed zSω  and the ring gear 
is stationary.     

 

Find a formula for the total angular momentum of the assembly 
about the center of the sun gear, in terms of zSω , SR  and m.   
Treat the gears as disks, the planet carrier as a 1D rod and 
assume there’s only one planet gear as shown to keep things 
simple; this would be a rather unusual gear system but adding more gears just makes the problem tedious 
without illustrating any new concepts... 

The 2D formula for angular momentum of a rigid body (about the origin) is 

G G Gzz zm I ω= × +h r v k  

where Gr  is the position vector of the COM of the body relative to the origin. 
 
We need to find the angular speed of all the moving parts: using the gear formulas 

2zP zPC S zR zPC S
R S P

zS zPC P zS zPC R

R R R R R
R R

ω ω ω ω
ω ω ω ω

− −
= − = − = +

− −
 

we see that 
0 1

1 1 11
3 3 4

zPC S S S
zS zPC

zS zPC R R R

zS zPC zPC zS

R R R
R R R

ω ω ω
ω ω

ω ω ω ω

 −
= − ⇒ = + −  

 ⇒ = + ⇒ = 
 

 

and 
2 1

1( )
2

zP zPC S zP zPC

zS zPC R S zS zPC

zP zPC zS zPC zS

R
R R

ω ω ω ω
ω ω ω ω

ω ω ω ω ω

− −
= − ⇒ = −

− − −

⇒ = − − = −

 

 
 
The COM of the planet carrier is half way along its length; its COM is in circular motion with 
speed zPC SV Rω=   
 
Similarly the COM of the planet gear is in circular motion with speed 2zPC SV Rω=  

ω

Ring gear

rSun gear RS

RR

zS

ω zR

Planet
Carrier

Planet
gear

ω zP

ω zPC
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Now we can add up all the angular momenta: 

1. Sun 21
2S zSmR ω=h k   

2. Planet carrier 2 21 1 1 1 1 1( ) (2 )
2 4 12 2 4 6PC S S Zs S zS S zSR mR m R mRω ω ω= × + =h i j k k   

Notice that the planet carrier rotates about  the center of the sun.  So, if we want, we could also use 
the special formula for angular momentum of an object rotating about a fixed point 

PC Ozz zPCI ω=h k  
where OzzI  is the mass moment of inertia of the planet carrier about the fixed point, which must be 
calculated using the parallel axis theorem 

2 2 2 21 2(2 )
12 2 2 3Ozz Gzz s S S

m mI I Md R R mR= + = + =  

(where we noted that the length of the bar is 2 SR  ).   We know / 4zPC zSω ω=  so 

21
6PC Ozz zPC S zSI mRω ω= =h k k  

as before. 
 

3. Planet gear 2 21 1 1 32 ( 2 ) ( ) ( )
4 2 2 4P S S Zs S zS s zsR m R m R mRω ω ω= × + − =h i j k k   

Note that we can’t use the special formula for rotation about a fixed point for the planet gear, 
because although there is a fixed point on the planet gear (where it touches the ring), we were asked 
to find the angular momentum about the center of the sun.   This is not a fixed point on the planet 
gear. 
 

Sum everything 217
12 S zSmR ω=h k   
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6.5 Rotational forces – review of moments exerted by forces and torques 
 
You can find a detailed discussion of forces and moments, with lots of examples, in Section 2 of these 
notes.   Moments and torques don’t come up very often in particle dynamics, but play a very important role 
in rigid body dynamics.   We therefore review the most important concepts related to torques and moments 
here. 
 
You need to remember, and understand, these ideas: 

(1) A moment is a generalized force that causes an object to rotate (see section 2).  
(2) A force can exert a moment on a rigid body.   The moment of a force (about the origin) is defined 

as 
= ×M r F  

(3) In general, a force causes a rigid body to accelerate, and will also induce an angular acceleration (so 
it influences both translational and rotational motion). 

(4) A ‘torque’ or ‘pure moment’ is a special kind of generalized force that causes an object to rotate, 
but has no effect on its translational motion.  As an example, a motor shaft (eg the bit on a power-
driven screwdriver!) will exert a torque on the object connected to it.   

(5) A torque or pure moment is a vector quantity – it has magnitude and direction.  The direction 
indicates the axis associated with its rotational force (following the right hand screw convention); 
the magnitude represents the intensity of the rotational force. The magnitude of a torque has units of 
Newton Meters. A moment is often denoted by the symbols shown in the figure 

 
 
6.5.1 Rate of work done by a torque or moment: If a torque x y zQ Q Q= + +Q i j k  acts on an object that 
rotates with angular velocity ω , the rate of work done on the object by Q is 

x x y y z zP Q Q Qω ω ω= ⋅ = + +Q ω  
 
 
6.5.2 Torsional springs 
 
A solid rod is a good example of a torsional spring. You could 
take hold of the ends of the rod and twist them, causing one 
end to rotate relative to the other.   To do this, you would apply 
a moment or a couple to each end of the rod, with direction 
parallel to the axis of the rod.   The angle of twist increases 
with the moment.  Various torsion spring designs used in 
practice are shown in the picture – the image is from 
 
http://www.mollificio.lombardo.molle.com/springs/torsion_spr
ings.html  
 

http://www.mollificio.lombardo.molle.com/springs/torsion_springs.html
http://www.mollificio.lombardo.molle.com/springs/torsion_springs.html
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More generally, a torsional spring resists rotation, by exerting equal and opposite moments on objects 
connected to its ends.  For a linear spring the moment is proportional to the angle of rotation applied to the 
spring.   
 
The figure shows a formal free body diagram for two objects 
connected by a torsional spring.  If object A is held fixed, and object 
B is rotated through an angle θ  about an axis parallel to a unit 
vector n, then the spring exerts a moment 

κθ= −Q n  
on object B where κ  is the torsional stiffness of the spring.   
Torsional stiffness has units of Nm/radian. 
 
The potential energy of the moments exerted by the spring can be 
determined by computing the work done to twist the spring through 
an angle θ .   

1. The work done by a moment Q due to twisting through a 
very small angle dθ  about an axis parallel to a vector n is  

dW dθ= ⋅Q n  
2. The potential energy is the negative of the total work done 

by M, i.e. 

( ) 21
2

V d d d
θ θ θ

θ κθ θ κθ θ κθ
0 0 0

= − ⋅ = − − ⋅ = =∫ ∫ ∫Q n n n  

 
A potential energy cannot usually be defined for most concentrated moments, because rotational motion is 
itself path dependent (the orientation of an object that is given two successive rotations depends on the 
order in which the rotations are applied).  
 
 
6.6 Dynamics of rigid bodies 
 
We predict the position and velocity of a particle by integrating F=ma.    
For a rigid body, we need to predict both its position and orientation.   
We use the following equations to do this.   
 
The figure shows a rigid body subjected to several forces ( )iF   and 
torques (pure moments) ( )iQ  .  During a representative time interval 

0 1t t t< <  the forces exert a linear impulse ℑ  and angular impulse A, 
and do total work on the rigid body W∆  . 
 
The body has total mass M and mass moment of inertia GI  about the 
center of mass.   
 
Let , ,G G Gr v a  denote the position, velocity and acceleration of the center of mass, and let ,ω α  denote the 
angular velocity and acceleration.    
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The linear and angular momentum (about the origin) of the rigid body follow as GM=p v  , 

G G GM= × +h r v I ω  , and its kinetic energy is 21 1
2 2G GT M= + ⋅v ω I ω  . 

 
The equations of motion are then 
 
 

Force-acceleration relation:  ( )i
G

i
M=∑F a  

 

Moment – angular velocity/acceleration relation   [ ]( ) ( )i j
i G G G G

i j
M× + = × + + ×∑ ∑r F Q r a I α ω I ω  

 

Force-momentum and impulse-momentum relation: ( )
1 0

i

i

d
dt

= ℑ = −∑ pF p p  

 
 

Moment – angular momentum relation: ( ) ( )
1 0

i j
i

i j

d
dt

× + = = −∑ ∑ hr F Q A h h  

 

Power – work – kinetic energy relation ( ) ( ) ( )
1 0

i i j

i j

dT W T T
dt

⋅ + ⋅ = ∆ = −∑ ∑F v Q ω  

 
 
 
For 2D planar motion we can use the simplified formulas 

( )

( ) ( )

i
G

i
i j

i G G Gzz z
i j

M

M I α

=

× + = × +

∑

∑ ∑

F a

r F Q r a k
 

 
Derivations:  It is possible to obtain the equations of motion for a rigid 
body from Newton’s laws for a particle – the basic idea is to assume that 
a rigid body consists of an infinite number of particles connected by 
rigid massless links – but this isn’t really a rigorous proof, because we 
have to assume that the links are two-force members, and there is no way 
to prove that this is a realistic description of matter.   Another viewpoint 
is to accept conservation of linear momentum and angular momentum as 
two separate physical laws (the linear momentum is just Newton’s law, 
and the angular momentum equation is sometimes referred to as Euler’s 
law). We can then ‘prove’ that a rigid body can be represented as a 
bunch of particles connected by two force members.   We’ll show the 
first approach here. 
 
The figure shows a system of particles connected by rigid massless links.  i j

k

d2

m4

m3

m2

m1

d3

d4

d1

r1

rG

r2 F(1)

F(3)

F(2)
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The length of the link between the ith and jth particle will be denoted by ijL  We assume that all the links 
are two-force members.  
 
The particles are subjected to a set of external forces ( )iF  .   We denote the magnitude of the force in the 
member connecting the ith and jth particle by ijR  (by convention a positive ijR  represents an attractive 
force between the particles).  Note that the ij jiR R=  because the two  particles exert equal and opposite 
forces on each other.    The vector valued force exerted on the ith particle by the jth follows as 

j i
ij ij

ij
R

L
−

=
r r

R  

(to see this note that ( ) /j i ijL−r r  is a unit vector from the ith to the jth particles) 
 
We can start the derivation with the force-linear momentum relation for a single particle.   For example, for 
the ith particle (see section 4 of the notes) 

( )j ii
ij i i

ijj i

dR m
L dt≠

−
+ =∑

r r
F v  

Sum this over all particles 
 

( )j ii
ij i i

iji i j i i

dR m
L dt≠

−
+ =∑ ∑∑ ∑

r r
F r  

But we know that i i G
i

m M=∑ v v , and since ,ij ji ij jiR R L L= =   the second term on the left hand side is 

zero.   Therefore 
i G

G
i

d dM M
dt dt

= = =∑ v pF a  

Since this is independent of the number of particles, it must also apply to a rigid body.  This shows that the 
force-momentum and force-acceleration for a rigid body can be derived from Newton’s law for a particle. 
 
We can derive the angular momentum relation for a rigid body using the same idea.  For one particle we 
have the angular momentum equation 

( ) ( )( )j i ji i i
i i ij i i ij

ij ijj i j i

dR R
L L dt≠ ≠

−
× + × = × + × =∑ ∑

r r r hr F r r F r  

where we have noted that i i× =r r 0  .   We can sum this over all the particles 

( ) i ji
i ij i

iji i j i i

dR
L dt≠

×
× + =∑ ∑∑ ∑

r r
r F h  

The second term here is zero, because i j j i× = − ×r r r r  and ij ji ij jiR R L L= =  (just write out the sum 
term by term for some finite number of particles – eg two – if you don’t see this).   The term on the right 
hand side is clearly just the total angular momentum of the system.  If we replace some subset of the forces 
with a statically equivalent torque and force, we obtain the moment-angular momentum equation. 
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6.7 Summary of equations of motion for rigid bodies 
 
In this section, we collect together all the important formulas from the preceding sections, and summarize 
the equations that we use to analyze motion of a rigid body. 
 
 
We consider motion of a rigid body that has mass density ρ  during some time interval 0 1t t t< <  , and 
define the following quantities: 
 
 
6.7.1 Forces, torques, impulse, work, power 

 The total force acting on the body ( )i

i
∑F   

  The total linear impulse exerted by forces during the time interval 
1

0

( ) ( )
t

i

it

t dtℑ= ∑∫ F   

 The total moment (including torques) acting on the body  
( ) ( )i j

i
i j

× +∑ ∑r F Q  

 The tot al angular impulse exerted on the body during the time 

interval
1

0

( ) ( )( )
t

i j
i

i jt

t dt
 
 = × +
 
 
∑ ∑∫A r F Q  

 The rate of work done by forces and torques acting on the body  ( ) ( )i j
i

i j
P = ⋅ + ⋅∑ ∑F v Q ω   

 The total work done by forces and torques on the body during the time interval 
1

0

( )
t

t

W P t dt= ∫  

 
 
6.7.2 Inertial properties  

 
 The total mass is 

V
M dVρ= ∫   

 The position of the center of mass is 1
G

V
dV

M
ρ= ∫r r  

 
 The mass moment of inertia about the center of mass 

2 2

2 2

2 2

y z x y x z

G x y x z y z
V

x z y z x y

d d d d d d

d d d d d d dV

d d d d d d

ρ

 + − −
 
 = − + − 
 − − +  

∫I  

where G= −d r r  

i
j

k
d

r
rG

i
j

k rG

F(1)

F(2)

F(3)

vG

v1

v2

v3

Q(1)

Q(2)
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For a 2D body with mass per unit area µ  we use 
 

 The total mass is 
A

M dAµ= ∫   

 The position of the center of mass is 1
G

A
dA

M
µ= ∫r r  

 The mass moment of inertia about the center of mass is 2 21 ( )Gzz x y
A

I d d dA
M

µ= +∫  

where G= −d r r  
 
 
 
6.7.3 Describing motion 
 
 

 The rotation tensor (matrix) maps the vector 
connecting two points in a solid before it moves 
to its position after motion 

( )B A B A− = −r r R p p  
 The spin tensor is related to R by  

Td d
dt dt

= =
R RW R WR   

 Rotation through an angle θ  about an axis 
parallel to a unit vector  

x y zn n n= + +n i j k   is 
2

2

2

cos (1 cos ) (1 cos ) sin (1 cos ) sin

(1 cos ) sin cos (1 cos ) (1 cos ) sin

(1 cos ) sin (1 cos ) sin cos (1 cos )

x x y z x z y

x y z y y z x

x z y y z x z

n n n n n n n

n n n n n n n

n n n n n n n

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

 + − − − − +
 
 = − + + − − − 
 − − − + + −  

R  

 The angular velocity vector x y zω ω ω= + +ω i j k  is related to W by 

0

0
0

z y

z x

y x

ω ω

ω ω
ω ω

− 
 

= − 
 − 

W  

 

 The angular acceleration vector is d
dt

=
ωα   

 
 The velocities of two points A and B in a rotating rigid body are related by 

( )B A B A− = × −v v ω r r   
 

k

j
i

A

B

A

B

k

j
i

pB-pA rB-rA

j

i

d
r

rG
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 The accelerations of  A and B are related by 
[ ]( ) ( ) ( ) ( )B A B A B A B A B A− = × − + × − = × − + × × −a a α r r ω v v α r r ω ω r r  

 
 
6.7.4 Momentum and Energy  
 

 The total linear momentum is GM=p v  
 

 The angular momentum (about the origin) is G G GM= × +h r v I ω  
 

 The total kinetic energy is 1 1
2 2G G GT M= ⋅ + ⋅v v ω I ω  

 
For 2D planar problems, we know zω=ω k  .   In this case, we can use 

 The total linear momentum is GM=p v  
 The total angular momentum (about the origin) is G G Gzz zM I ω= × +h r v k  

 The total kinetic energy is 2 21 1
2 2G Gzz zT M I ω= +v  

 
 
6.7.5 Conservation laws 
 

 Linear momentum        ( )
1 0

i

i

d
dt

= ℑ = −∑ pF p p  

 

 Angular momentum  ( ) ( )
1 0

i j
i

i j

d
dt

× + = = −∑ ∑ hr F Q A h h  

 

 Work-Power - Kinetic Energy relation  ( ) ( ) ( )
1 0

i i j

i j

dT W T T
dt

⋅ + ⋅ = ∆ = −∑ ∑F v Q ω  

 

 Energy equation for a conservative system 0 0 1 1( ) 0d T V T V T V
dt

+ = + = +   

 
 
 
6.7.6 Linear and angular momentum equations in terms of accelerations 
 
The linear and angular momentum conservation equations can also be expressed in terms of accelerations, 
angular accelerations, and angular velocities.   The results are 
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[ ]

( )

( ) ( )

i
G

i
i j

i G G G G
i j

M

M

=

× + = × + + ×

∑

∑ ∑

F a

r F Q r a I α ω I ω
 

 
 
 
For 2D planar motion we can use the simplified formulas 

( )

( ) ( )

i
G

i
i j

i G G Gzz z
i j

M

M I α

=

× + = × +

∑

∑ ∑

F a

r F Q r a k
 

 
 
6.7.7 Special equations for analyzing bodies that rotate about a stationary point 
 
We often want to predict the motion of a system that rotates about a fixed pivot – a pendulum is a simple 
example.   These problems can be solved using the equations in 6.6.5 and 6.6.6, but can also be solved using 
a useful short-cut. 
 
 
For an object that rotates about a fixed pivot at the origin: 
 

 The total angular momentum (about the origin) is O=h I ω  

 The total kinetic energy is 1
2 OT = ⋅ω I ω  

 The equation of rotational motion is 

[ ]( ) ( )i j
i O O

i j
× + = + ×∑ ∑r F Q I α ω I ω  

Here OI  is the mass moment of inertia about O (calculated, eg, using 
the parallel axis theorem) 
 
For 2D rotation about a fixed point at the origin we can simplify these to 
 

 The total angular momentum (about the origin) is 
Ozz zI ω=h k  

 The total kinetic energy is 21
2 Ozz zT I ω=  

 The equation of rotational motion is 
( ) ( )i j

i Ozz z
i j

I α× + =∑ ∑r F Q k  

 
Proof:  It is straightforward to show these formulas.  Let’s show the two dimensional version of the kinetic 
energy formulas as an example. For fixed axis rotation, we can use the rigid body formulas to calculate the 
velocity of the center of mass (O is stationary and at the origin) 

i

j

k

r

rO-rG

i

O

r

rO-rG

j

iO
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G G z Gω= × = ×v ω r k r  
The general formula for kinetic energy can therefore be re-written as 

( )

2 2 2

2 2 2

1 1 1 1( ) ( )
2 2 2 2

1 1
2 2

G G Gzz z z G G Gzz z

G Gzz z Ozz z

T M I M I

M I I

ω ω ω

ω ω

= ⋅ + = × ⋅ × +

= + =

v v k r k r

r
 

The other formulas can be proved with the same method – we simply express the velocity or acceleration of 
the COM in the general formulas in terms of angular velocity and acceleration, and notice that we can re-
arrange the result in terms of the mass moment of inertia about O. 
 
 
6.8 Examples of solutions to problems involving motion of rigid bodies 
 
The best way to learn how to use the equations in section 6.6 is just to work through a series of examples.   
 
 
6.8.1 Solutions to 2D problems 
 
Example 1:  A solid of revolution (eg a cylinder or sphere) with mass 
M and mass moment of inertia about its COM GzzI   is released from 
rest at the top of a ramp.  It rolls without slip.   Calculate its velocity at 
the bottom of the ramp. 
 

• The system is conservative, so we can solve the problem using 
energy conservation.  The energy equation tells us that the sum 
of kinetic and potential energy of the cylinder is constant: 

0 0 1 1T V T V+ = +  
• We can take the datum for potential energy to be the position of the COM at the bottom of the 

ramp. The initial potential energy is therefore 0V Mgh=  ; the final potential energy is zero. 
• The initial kinetic energy is zero, because the cylinder is stationary.   The final kinetic energy is  

2 21 1
2 2x Gzz zT Mv I ω= +  .    

• The energy equation gives  2 2
0 0 1 1

1 1
2 2x Gzz zT V T V Mgh Mv I ω+ = + ⇒ = +   

 
• Finally, since the cylinder rolls without slip, we know that x zv Rω= −  .  

 
 
Hence 

2 2
2

2

2

2
1 / ( )

Gzz
x x

x
Gzz

IMgh Mv v
R
ghv

I MR

= +

⇒ =
+
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This formula predicts that an object with a smaller inertia GzzI  will move faster than an object with a large 
inertia.   A sphere rolls down the ramp more quickly than a cylinder, for example, and a solid cylinder rolls 
more quickly than a ring. 
 
 
Example 2:  For the problem treated in the preceding section, calculate 
the critical value of friction coefficient necessary to prevent slip at the 
contact. 
 
If we want to learn about forces, we have to use the linear and angular 
momentum equations.   This problem can be solved with the 2D 
formulas in terms of accelerations:  

( )

( ) ( )

i
G

i
i j

i G G Gzz z
i j

M

M I α

=

× + = × +

∑

∑ ∑

F a

r F Q r a k
 

 
• The figure shows a free body diagram for the cylinder (or sphere) 
• We know that the COM is always a constant height above the ramp, so 

the acceleration must be parallel to i.   The linear momentum equation 
gives 

( sin ) ( cos ) GxMg T N Mg Maα α− + − =i j i  
• We can use the angular momentum equation – it is convenient to take 

moments about the contact point C.   (There are no torques in this problem). 
( ) ( )

sin

i j
i G G Gzz z

i j

Gx Gzz z Gx Gzz z

M I

RMg R a I MRa I

α

α α α

× + = × +

⇒ − = × + = − +

∑ ∑r F Q r a k

k j i k k k
 

• Finally, we can use the rolling wheel formula for accelerations Gx za Rα= −  .  
• The preceding results give: 

2

sin

sin sin
( / ) 1 / ( )

Gx
Gx Gzz

Gx
Gzz Gzz

aRMg MRa I
R

MgR ga
MR I R I MR

α

α α

− = − −

⇒ = =
+ +

 

• Finally, substituting back into the i components of (1): 

2

2 2

sin

/ ( )sinsin sin
1 / ( ) 1 / ( )

Gx

Gzz

Gzz Gzz

T Mg Ma

I MRMgMg Mg
I MR I MR

α

αα α

= −

= − =
+ +

 

• The j component of (1) gives cosN Mg α=   

• For no slip T Nµ≤ ⇒  
2

2
/ ( ) tan

1 / ( )
Gzz

Gzz

I MR
I MR

µ α≥
+

 

 

N

RMg

µN
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The formula shows that objects with large values of 2/GzzI MR  are more likely to slip.   If the inertia is 
very small, slip will never occur.   A ring will slip on a lower slope than a cylinder, which will slip on a 
lower slope than a sphere. 
 
Example 3:  A vertical mast can be idealized as a slender rod with length L 
and mass M, which is held in an inverted position by a torsional spring with 
stiffness κ  at its base.   Find the equation of motion for the angle θ  in the 
figure, and hence determine the natural frequency of vibration of the mast. 
 
This is a conservative system.  Also, the mast rotates about a fixed point.   We 
can analyze the problem using energy methods, and use the special formulas 
for rotation about a fixed point. 
 

• The kinetic energy formula for planar motion is 
21

2 Ozz zT I ω=  

• For planar motion we know that 

z
d
dt
θω =  

• We can use the parallel axis theorem to calculate the mass moment of inertia of a rod about one 
end: 

2
2 2 21 1

12 2 3Ozz Gzz
LI I Md ML M ML = + = + = 

 
 

• Gravity and the torsional spring both contribute to the total potential energy of the system.  The 
total potential energy is 

21cos
2 2
LV Mg θ κθ= +  

• Energy conservation means that 

( )

2 2

0

1 1cos 0
2 2

sin 0

Ozz z

z
Ozz z

dT V const T V
dt

d I MgL
dt

d d dI MgL
dt dt dt

ω θ κθ

ω θ θω θ κθ

+ = ⇒ + =

 ⇒ + + = 
 

⇒ − + =

 

• Recall that z
d
dt
θω =  so  

2

2 sin 0Ozz
dI MgL
dt
θ θ κθ⇒ − + =  

• We assume that θ  is small enough that sinθ θ≈  , so  
2

2 0OzzI d
MgL dt

θ θ
κ

⇒ + =
−

 

• This is a standard ‘Case I’ undamped vibration EOM, so we can just read off the natural 
frequency 

L
i

j

O

θ

κ

M



 55 

2
3( )

n
Ozz

MgL MgL
I ML

κ κω − −
= =  

 
 
Example 4: A thin uniform disk of radius R, mass m and mass moment of 
inertia 2 / 2mR  is placed on the ground with a positive velocity 0v  in the 
horizontal direction, and a counterclockwise rotational velocity (a 
backspin) 0ω .  The contact between the disk and the ground has friction 
coefficient µ . The disk initially slips on the ground, and for a suitable 
range of values of 0ω  and 0v  its direction of motion may reverse.  The 
goal of this problem is to calculate the conditions where this reversal will 
occur. 
 
 
General discussion of slipping contacts:  Solving problems with sliding 
at a contact is always tricky, because we have to draw the friction forces in 
the correct direction.   Before tackling the example, we will summarize the 
general rules.  We will consider a wheel as an example, but the rules apply 
to contact between any object and a stationary surface.   The figure shows 
a wheel that spins with angular velocity zω=ω k  while the center moves 
with speed O oxv=v i  .   The direction of the friction force is determined 
by the direction of motion of the point on the wheel that instantaneously 
touches the ground, which can be calculated from the formula 

( )C Ox zv Rω= +v i  
Friction always acts to try to bring point C to rest – if C is moving to the right, friction acts to the left; if C 
is moving to the left, friction acts to the right. 
 
There are three possible cases: 
 
Forward slip: 0Ox zv Rω+ > Point C moves in the positive i direction over the ground 
 
 

 
 
 
 

 Slip occurs at the contact,  
 We have to use the friction law T Nµ=   
 Point C is moving to the right, so friction must act to the left 

 
 
 
 

m
R

v0

ω0

j
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Pure rolling 0Ox zv Rω+ = .  Point C is stationary. 
 
 

 
 
 

 No slip occurs at the contact.    
 In this case T Nµ<   
 We can draw the friction force in either direction at the contact (if 

we choose the wrong direction, our calculations will just tell us that T 
is negative).  It is usually convenient to choose T to act in the positive 
i direction, but this is not necessary. 

 
 
 
 
Reverse slip: 0Ox zv Rω+ < Point C moves in the negative i direction over the ground 
 
 

 
 
 
 

 Slip occurs at the contact,  
 We have to use the friction law T Nµ=   
 Point C is moving to the left, so friction must act to the right 

 
 
 
 
 
Now we return to the example. 
 
4.1 Draw a free body diagram showing the forces acting on the disk just after it hits the ground.   
 

We are given that 0xv  and 0zω  are both positive so we have 
0Ox zv Rω+ > .  This is forward slip, and we use the corresponding FBD. 

 

N

Rmg

µN
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O
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4.2 Hence, find formulas for the initial acceleration a  and angular acceleration α  for the disk, in terms of 

g , R and µ .  Note that the contact point is slipping. 

The equations of motion are 

( ) ( ) ( )i i j
G i G G Gzz z

i i j
M M I α= × + = × +∑ ∑ ∑F a r F Q r a k  

( ) x

Gzz z

N N mg ma
NR I

µ
µ α

− + − =

− =

i j i
k k

 

Solving these and using 2 / 2GzzI mR=  : 

21
2

2 /

x z

x z

N mg N ma mR NR

a g g R

µ α µ

µ α µ

= = − = −

⇒ = − = −
 

4.3 Find formulas for the velocity and angular velocity of the disk, during the period while the contact point 
is still slipping. 

The acceleration and angular acceleration are constant, so we can use the constant acceleration 
formulas: 

0 0 2 /x zv v gt gt Rµ ω ω µ= − = −  

 

4.4 Find a formula for the time at which the disk will reverse its direction of motion. 

Velocity is reversed where v=0.   From the previous part, 0 0 /v v gt t v gµ µ= − ⇒ =  at the reversal. 

4.5 Find a formula for the time at which the disk begins to roll on the ground without slip.   Hence, show 
that the disk will reverse its direction only if 0 0 / 2v Rω<  

Rolling without sliding starts when xO zv Rω= − .   We have that  

( )
0 0

0 0

0 0

2 /
2 when  

( ) / 3

z x

x z

gt R v v gt
v gt R gt v R
t v R g

ω ω µ µ

µ ω µ ω

ω µ

= − = −

⇒ − = − − = −

⇒ = +

 

The reversal will only occur if rolling without slip occurs after the reversal of velocity. This means 
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0 0 0 0 0( ) / 3 / / 2v R g v g v Rω µ µ ω+ > ⇒ <  

 

Example 5:  The ‘Sweet Spot’ on a softball or baseball bat, or tennis or squash racket is a point that 
minimizes the reaction forces acting on the athlete’s hand when the ball is struck.   In fact, any rigid body 
has a sweet spot – the magic point is called the ‘center of percussion’ of a rigid body. 

For baseball and softball bats in particular, there is a standard ASTM test that can be used to measure the 
position of the sweet spot.   The test works like this: the bat is suspended from the knob on handle, so it 
swings like a pendulum.   The period of vibration τ  of the swinging bat is then measured.  ASTM say that 
the center of percussion is then a distance 

2

24
gd τ

π
=  

from the end of the handle.   Why does this work?   It seems that this test has nothing 
whatever to do with a ball hitting the bat! 

We will solve this problem in two parts.  First, we will calculate a formula for the 
period of vibration in the ASTM test.   Then we will calculate the position of the 
center of percussion.  We will see that the ASTM test does indeed make the correct 
prediction. 

We can calculate the period using the energy method.  The figure shows the ASTM 
pendulum test.  We assume that 

• The bat has a mass moment of inertia about its COM GzzI   
• The COM is a distance L from O 

 
The bat pivots about O, so we can use the fixed axis rotation formula for the kinetic 
energy 

21
2 Ozz

dT I
dt
θ =  

 
 

Here 2
Ozz GzzI I ML= +  (using the parallel axis theorem). 

The potential energy is cosV MgL θ= −  .    

Energy conservation gives  

2

2

constant ( ) 0

sin 0Ozz

dT V T V
dt

d d dI MgL
dt dtdt

θ θ θθ

+ = ⇒ + =

⇒ + =
 

If θ  is small then sinθ θ≈  so the equation of motion reduces to 
2

2 0OzzI d
MgL dt

θ θ+ =  

This is a standard ‘Case 1’ EOM.  The natural frequency is n
Ozz

MgL
I

ω =  so the period is 

L

j

iO

θ

https://www.astm.org/Standards/F2398.htm
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 2 2 Ozz

n

I
MgL

πτ π
ω

= =  

Next, we find the position of the ‘sweet spot’. We can do this by calculating the 
reaction forces on the handle when the bat is struck, and finding the impact point 
that minimizes the reaction force.   
 
The figure shows an impact event.   We assume that: 

• The bat rotates in the horizontal plane (so gravity acts out of the plane of 
the figure).    

• The bat rotates about the point O 
• The ball impacts the bat a distance d from the handle. 
• The ball exerts a (large) force impactF  on the bat 
• Reaction forces ,x yR R  act on the handle during the impact. 

 
This is a planar problem, so we can use the 2D equations of motion. The equation 
for translational motion gives 
( )x impact y GR F R M− + =i j a   
 
For the rotational equation we can also use the short-cut for fixed axis rotation 
 

( ) ( )i j
i Ozz z

i j

impact
impact Ozz z z

Ozz

I

F d
F d I

I

α

α α

× + =

⇒ − = ⇒ = −

∑ ∑r F Q k

k k
 

We can relate Ga  to zα  using the rigid body formula: 
2 2

G z G z G z zL Lα ω α ω= × − = +a k r r i j  
 

We therefore see that 

( )2( )

1

x impact y z z

x impact z

x impact
Ozz

R F R M L L

R F M L

MdLR F
I

α ω

α

− + = +

⇒ = +

 
⇒ = − 

 

i j i j

 

The sweet spot is at the position that makes 0xR =  , which shows that 

OzzId
ML

=  

For comparison, the ASTM formula gives 
22

2 2 2
4 4

Ozz OzzI Ig gd
MgL ML

τ π
π π

 
= = =  

 
 

L

j

iO

ω

Fimpact

d

Rx
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Example 6. The ‘Cubli’ is used to develop control algorithms used to stabilize aircraft and spacecraft.  It 
consists of a cube whose attitude can be controlled by spinning a set of 
reaction wheels inside the cube. 

This simplified 1-D version of the device is used to test the algorithm that 
stands the cube up on one edge.   The goal of this problem is to do the 
preliminary design calculations needed to set up the system. 

Idealize the rectangular frame as four rods with length L and combined 
mass M and the spinning wheel as a ring with radius R and mass m.  The 
corner at O is supported by a frictionless bearing. 

Part 1: Find formulas for the mass moments of inertia of the frame and the wheel (about the center of the 
wheel). 

 

The ring is easy – we can use the formula 2
RI mR=   

The frame is made up of four rods of mass M/4.   The moment 

of inertia of one rod about its center of mass is 21
12 4

M L  .  We 

need to shift the COM by a distance of L/2 to the center of the 
frame.  The total mass moment of inertia of the frame is 
therefore 

2
2 21 14

12 4 4 2 3F
M M LI L ML

   = + =    
 

 

Part 2: The frame is at rest and the wheel is spun up (clockwise) to an angular speed 0ω  .   Find the total 
angular momentum of the system about the corner at O. 

The formula for angular momentum is O Gm= × +∑ ∑h r v Iω   

Since the frame is not moving only the second term contributes 
and we get 2

0mR ω= −h k   

 

Part 3: Thee wheel is then braked quickly, which causes the frame to 
rotate about the corner O at angular speed fω  , while the motor driving 
the ring spins at (clockwise) angular speed 1ω  (note that this is relative 
to the frame).  Write down the angular momentum of the system about 

j

iO

L

L

ω0
R

j

iO
ωf

http://www.idsc.ethz.ch/research-dandrea/research-projects/cubli.html
https://www.youtube.com/watch?time_continue=7&v=KEVghOuZGDU
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O. 

 

          Note that the frame rotates about O so the COM of the ring and frame are both in circular 
motion about O.   We know the speed of their COMs are therefore / 2f Lω   

Use the formula again 

2 2
1

2
2 2 2

1

1 ( )
3 2 2 2 2

5 ( )
6 2

G G Gzz z

f f f f

f

m I

L L L LML M mR m

LML m R mR

ω

ω ω ω ω ω

ω ω

= × +

 = − + + + + 
 
 

= − + + −  
 

∑h r v k

k

k k

 

We could also use the fixed axis rotation formula for the frame (using the mass moment of inertia 
about O) but this would not work for the ring, because O is not a stationary point on the ring. 

Part 4: Explain why angular momentum is conserved about O during 
the braking.  Use momentum conservation to find an equation relating 

fω to 1 0( )ω ω−  

  The external forces acting on the frame and ring together are 
(1) gravity and (2) reaction forces at O.   We assume that the 
speed change of the rotor takes place over a very short time 
interval.  The force of gravity is constant and exerts a 
negligible impulse on the system during this time interval.  The 
reactions exert a finite impulse, but if we take moments about 
O the external angular impulse about O on the system vanishes.    
This means angular momentum must be conserved.   

2
2 2 2 2

1 0 1 0

2
0 1

2
2 2

50 ( ) 0
6 2

( )

5 ( )
6 2

f

f

LML m R mR mR

mR

LML m R

ω ω ω

ω ω
ω

 
− = ⇒ − + + − + =  

 

−
⇒ =

 
+ +  

 

h h k k k

 

Part 5: For the special case 1 0ω =  show that the critical value of 0ω  required to flip the frame (and ring) 
into the stationary vertical configuration is 

( )2
2 2

0 2

2 15 ( ) ( )
6 2

gLLML m R m M
mR

ω
− 

= + + +  
 

 

O

ω1
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Energy is conserved as the frame rotates up onto its edge.   

The formula for the kinetic energy of a system of rigid bodies is 

21 1
2 2G GT m= + ⋅∑ ∑v ω I ω  

For 2D problems we can replace the last term by 21
2 Gzz zI ω   

Assume that the frame is at rest in the upright state.  The total potential and kinetic energy in the 
upright state is therefore 

2 2
1 1 1

1 ( )
2 2

LT U mR m M gω+ = + +  

In the initial state 

( )
2 22 2 2

0 0 1

2
2 2 2 2 2 2

1 1

1 1 1 1( ) ( )
2 2 2 3 22

1 5 1( ) ( )
2 6 2 2 2

f f f

f f

L LT U m M mR ML m M g

L LML m R mR mR m M g

ω ω ω ω

ω ω ω ω

 + = + + + + + + 
 

 
= + + + + + +  

 

 

Energy conservation gives 

2
2 2 2 2 2 2 2 2

1 1 1

2
2 2 2 2

1

1 5 1 1( ) ( ) ( )
2 6 2 2 2 2 2

1 5 1 1( ) ( ) 0
2 6 2 22

f f

f f

L L LML m R mR mR m M g mR m M g

LML m R mR m M gL

ω ω ω ω ω

ω ω ω

 
+ + + + + + = + +  

 
   ⇒ + + + − + − =       

 

For 1 0ω =  we get  

( )2
2 2

( ) 2 1
5 ( )
6 2

f
m M gL

LML m R

ω +
= −

 
+ +  

 

 

From part 4 we get 

( )
2

2 2
2

2 2
0 2 2

5 ( ) 2 16 2 5 ( ) ( )
6 2f

LML m R gLLML m R m M
mR mR

ω ω

 
+ +   −  = = + + +  

 
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6.8.2 Solutions to 3D problems 
 
Example 1: The figure shows a wheel spinning on a frictionless axle.   
The axle is supported on one side (at A) by a pivot that allows free 
rotation in any direction.   If the wheel were not spinning, it would 
simply swing about A like a pendulum.   But if the angular speed is 
high enough, the axle remains horizontal, and the wheel turns slowly 
about the vertical axis.   This behavior is called ‘precession’ and is a 
bit mysterious – why does spin somehow hold the wheel up?   The 
goal of this example is to explain this, and to calculate a formula for 
the rotation rate of the axle. 
 
We will do this by showing that steady precession satisfies all the 
equations of motion.    
 
1.1 Let n be a unit vector parallel to the axle.  Consider the disk at the 
instant when =n i  , and assume that 

• the disk spins at constant rate about the axle at ν radians per second,   
• the disk rotates slowly at constant rate about k at Ω  radians per second 

Find the angular velocity and angular acceleration at the instant shown in the figure 
 

The angular velocity is easy – we just add the two vectors: ν ν= +Ω = +Ωω n k i k  
 

The angular acceleration is harder.  Both ω  and Ω  are constant.   But this does not mean that the 
angular velocity vector is constant, because the axle is rotating about the k axis.  The direction of 
the angular velocity is changing, even though the magnitude is not.   We can calculate the rate of 
change of n by using the rigid body formula 

( ) ( )B A B A B A
d
dt

− = − = × −r r v v ω r r  

If we choose A and B to be a unit distance apart, then ( )B A− =r r n  and therefore 
d
dt

= ×
n ω n  

We can now calculate the angular acceleration 

( ) ( )d d d
dt dt dt

ν ν ν ν ν= = Ω + = = Ω + × = Ω
ω nα k n k n n j  

 
1.2 Find a formula for the acceleration of the center of mass of the disk 
 

We can use the rigid body formula 
[ ]

( ) ( )
2

( ) ( )

( ) ( )
G A G A G A

d d

d

ν ν ν

− = × − + × × −

= Ω × + +Ω ×  +Ω ×  

= −Ω

a a α r r ω ω r r

j i i k i k i

i

 

i

j
k

A

Ω

ν

n
B

d

R
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A quicker way is to notice that the COM is in circular motion around A and use the circular motion 
formula, with the same result. 

 
1.3 Draw a free body diagram showing the forces acting on the wheel 

i

k

A B
N

T

d

Mg

 
 
1.3 Write down the equations of translational and rotational motion for the disk 

( ) 2( )i
G

i
M T N Mg Md= ⇒ + − = − Ω∑F a i k i  

[ ]( ) ( )

2
0 0 0 0 0

( ) ( ) ( ) 0 0 0 0 0 0
00 0 0 0

i j
i G G G G

i j

Gxx Gxx

Gyy Gyy

Gzz Gzz

M

I I
d Mg M d d I I

I I

ν ν
ν

× + = × + + ×

        
        ⇒ × − = × −Ω + Ω + ×        
        Ω Ω        

∑ ∑r F Q r a I α ω I ω

i k i i
 

 
Working through the cross products and the matrix-vector products we get 

( )Gyy Gzz GxxMgd I I Iν ν= Ω − − Ωj j j  
We see that steady precession can indeed satisfy all the equations of motion.  Moreover, for a disk (or any 
solid of revolution) Gzz GxxI I=  , so we can calculate the precession rate 

Gxx

Gxx

Mgd I
Mgd
I

ν

ν

= Ω

⇒Ω =

j j
 

 
 
Example 2:  The prism shown in the figure floats in space (no gravity).  
At time t=0 its faces are perpendicular to the i,j,k axes as shown.   It is 
then given an initial angular velocity 0 0z yω ω= +ω k j  with 0 0y zω ω<<   
(i.e. we set the body spinning about the k axis, but give it a very small 
disturbance) .   Investigate the nature of the subsequent motion, with 
both hand calculations and by writing a MATLAB script that will 
animate the motion of the prism.  
 
No forces or moments act on the prism.  We can use the equations of motion  

i
j

k

a

b

c
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[ ]G G G G GM M= = × + + ×0 a 0 r a I α ω I ω  
The angular momentum equation can be written out explicitly 

0 0 / 0 0
0 0 / , , 0 0

0 0 / 0 0

Gxx x Gxx x

Gyy y x y z Gyy y

Gzz z Gzz z

I d dt I
I d dt I

I d dt I

ω ω
ω ω ω ω ω

ω ω

       
        + ×        
               

 

(we could substitute values for , ,Gxx Gyy GzzI I I  in terms of a,b,c and M but it is clearer to leave them) 
Expanding out the matrix products and cross product gives 

( )

( )

( )

0

0

0

x
Gxx Gzz Gyy y z

y
Gyy Gzz Gxx x z

z
Gzz Gyy Gxx x y

dI I I
dt

d
I I I

dt
dI I I
dt

ω
ω ω

ω
ω ω

ω
ω ω

+ − =

− − =

+ − =

 

At time t=0 xω  is zero and yω  is small.  They might increase, but we will only consider behavior while 
they remain small.  In this case x yω ω  is extremely small so we can assume / 0zd dtω ≈  .   We can then 
decouple the first two equations like this: 

1. Differentiate the second equation with respect to time  ( )
2

02 0y x
Gyy Gzz Gxx z

d dI I I
dtdt

ω ω
ω− − =  

2. Now we can substitute for /xd dtω  using the first equation, and divide by GyyI   

( )( )2
2
02 0Gzz Gxx Gzz Gyyy

z y
Gyy Gxx

I I I Id
I Idt

ω
ω ω

− −
+ =  

This is an equation of the form 
2

2 0y
y

d

dt

ω
λω+ =  

We recognize this as an undamped vibration equation (case I or case II from our table of solutions).  Its 
solution depends on the sign of λ  : 

1. For 0λ >  the solution is sin cosy A t B tω λ λ= +  where A, B are constants.  This is stable 
motion - yω  remains small. 

2. For 0λ <  the solution is exp exp( )y A t B tω λ λ= + − .   This is unstable motion - yω  will 
become very large. 

 
 
The sign of λ  is determined by the product ( )( )Gzz Gxx Gzz GyyI I I I− − .  There are three possible cases: 

1. GzzI  is greater than ,Gxx GyyI I  (the k axis has the maximum inertia).  Motion is stable 
2. GzzI  is less than ,Gxx GyyI I (the k axis has the minimum inertia).  Motion is stable 
3. GzzI  is between ,Gxx GyyI I .  Motion is unstable. 

 
We can learn more about the motion by using MATLAB to solve the equations of motion for us.   Since 
there is no motion of the center of mass, we only need to consider rotational motion.  We know that we can 
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describe the orientation of the prism by the rotation tensor R and its rate of change of orientation by the 
angular velocity ω  .   The orientation and angular velocity are governed by the differential equations 

[ ]G G

d
dt

d
dt

=

+ × =

R WR

ωI ω I ω 0
 

where 0 T
G G=I RI R  is the rotated inertia tensor for the block, and W is the spin tensor 

0

0
0

z y

z x

y x

ω ω

ω ω
ω ω

− 
 

= − 
 − 

W  

 
We need to set up the MATLAB ‘ode’ solver to calculate R and ω  as functions of time by integrating these 
equations. 
 
We can store the unknown rotation matrix and the angular velocity vector in a MATLAB vector: 

, , , , , , , , , , ,xx xy xz yx yy yz zx zy zz x y zR R R R R R R R R ω ω ω =  w  
We need to write a MATLAB function that will calculate the time derivatives of this vector, given its 
current value.  The calculation involves the following steps: 

(1) Assemble the vectors ω  and the rotation tensor R from the Matlab solution vector w.  Matlab has a 
useful function that will automatically convert a matrix to a vector, and vice-versa.  For example, 
R (a 3x3 matrix) can be converted to w (a 1x9 column vector) using 

w = reshape(transpose(R),[9,1])) 
To transform w (as a column vector) back to R, you can use 

R = transpose(reshape(w,[3,3])) 
(2) Calculate the spin tensor W  
(3) Calculate the rotated inertia tensor  0 T

G G=I RI R  (Matlab will multiply the matrices for us) 
(4) Solve the equations for the angular acceleration α  
(5) Calculate /d dt =R WR   

(6) Assemble the matlab vector , , , , , , , , , , ,xx xy xz yx yy yz zx zy zz x y z
d R R R R R R R R R
dt

α α α =  
w

           

 
This sounds complicated but actually MATLAB is great at doing this sort of calculation efficiently.  Here’s 
a function: 
 
function  dwdt = rigid_body_eom(t,w) 
   Rvec = w(1:9); % Rotation matrix, stored as a vector 
   omega = w(10:12);  % Angular velocity 
   R = transpose(reshape(Rvec,[3,3])); 
   II = R*I0*transpose(R); %Current inertia tensor, in fixed coord system 
   W = [0,-omega(3),omega(2);omega(3),0,-omega(1);-omega(2),omega(1),0]; 
   alpha = -II\(cross(omega,II*omega)); % Angular accel 
   Rdot = W*R; % Rate of change of rotation matrix 
   Rdotvec = reshape(transpose(Rdot),[9,1]); 
   dwdt = [Rdotvec;alpha]; 
end 
 
We just need to set up ode45 to integrate (numerically) the differential equation: 
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omega0 = [0.,0.01,1];   % Initial angular velocity 
a = [4,1,2];            % Dimensions (a,b,c) of the prism 
time = 20; 
initial_w = [1;0;0;0;1;0;0;0;1;transpose(omega0(1:3))]; 
I0 = [a(2)^2+a(3)^2,0,0;0,a(1)^2+a(3)^2,0;0,0,a(1)^2+a(2)^2]; 
options = odeset('RelTol',0.00000001); 
sol = ode45(@(t,w) rigid_body_eom(t,w,I0),[0,time],initial_w,options); 
animate_rigid_body(sol,a,[0,time]) 
 
You can download the full script here. 
 
The figures below show animations of the predicted behavior for the three possible types of behavior 

 
zzI  is the maximum inertia – rotation is stable 

 

 
zzI  is the intermediate inertia – rotation is unstable (the block tumbles) 
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zzI  is the smallest inertia – rotation is stable 
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