1. The projectile in a gas gun is subjected to a propulsive force

\[F = F_0 \left(1 - \frac{v}{3c}\right)^5 \]

where \(F_0 \), c are constants and \(v \) is the projectile's speed. The projectile has mass \(m \). It starts at rest at time \(t=0 \) at position \(x=0 \).

1.1 Use Newton’s law to determine the acceleration of the projectile and hence determine an expression for its speed as a function of time and other parameters. Air resistance and friction may be neglected.

\[F = ma \quad \Rightarrow \quad a = \frac{dv}{dt} = \frac{F_0}{m} \left(1 - \frac{v}{3c}\right)^5 \]

Separate, vary & integrate

\[\int_0^v \frac{dv}{(1 - \frac{v}{3c})^5} = \int_0^t \frac{F_0}{m} \, dt \]

\[\frac{3c}{4} \left[\frac{1}{(1 - \frac{v}{3c})^4} \right]_0^v = \frac{F_0}{m} \cdot t \]
$v = 3c \left\{ 1 - \frac{1}{\left(1 + \frac{4F_0}{3mc} t\right)^{1/4}} \right\}$

1.2 Find a formula for the distance traveled by the projectile as a function of time.

$$v = \frac{dx}{dt}$$

$$\int_0^x dx = \int_0^t 3c \left\{ 1 - \frac{1}{\left(1 + \frac{4F_0}{3mc} t\right)^{1/4}} \right\} dt$$

$$\Rightarrow x = 3c t - 3c \left[\frac{mc}{F_0} \left(1 + \frac{4F_0}{3mc} t\right)^{3/4} \right]_0^t$$
\[x = 3ct - \frac{3mc^2}{F_0} \left[(1 + \frac{4F_0t}{3mc})^{3/4} - 1 \right] \]

Velocity a function of position

\[\frac{dx}{dt} = V = V_0 \left(1 - \frac{x}{x_0} \right) \]

Separate variables

\[\int_0^x \frac{dx}{(1 - x/x_0)} = \int_0^t V_0 \, dt \]

\[-x_0 \ln \left(1 - \frac{x}{x_0} \right) \bigg|_0^x = V_0 t \]

\[-x_0 \ln \left(1 - \frac{x}{x_0} \right) = V_0 t \Rightarrow x = x_0 \left(1 - e^{-\frac{V_0 t}{x_0}} \right) \]
An airport “People Mover” travels at constant speed V around a circular path with radius R.

(a) Write down the acceleration of the vehicle in the $\{n, t\}$ basis

$$\alpha = \frac{V^2}{R} \hat{n}$$

(b) The figure shows a passenger in the vehicle. Draw a FBD showing the forces acting on the person.

(c) Find formulas for the reaction forces acting on the passenger in terms of m, g, V, R. Not all the forces can be determined uniquely.
\[F = ma \Rightarrow -(T_A + T_B) \hat{n} + (N_A + N_B - mg) \hat{k} = m \frac{V^2}{R} \hat{n} \]

\[\sum M_c = 0 \quad (T_A + T_B) h + (N_B - N_A) \frac{d}{2} = 0 \]

\[T_A + T_B = -m \frac{V^2}{R} \]

\[N_A + N_B = mg \]

\[-N_A + N_B = -(T_A + T_B) \frac{h^2}{d} = \frac{m V^2}{R} \frac{2h}{d} \]

Add \(2N_B = mg + m \frac{V^2}{R} \frac{2h}{d} \)

\[2N_A = mg - m \frac{V^2}{R} \frac{2h}{d} \]
(d) Find a formula for the minimum allowable radius of the path that allows the passenger to remain standing, in terms of g, V, h, d

For no tipping $N_a > 0$, $N_b > 0$

Here N_a is concern

$N_a > 0 \Rightarrow R > \frac{V^2}{2gh} \frac{2h}{gd}$
3. Two spheres with identical mass and restitution coefficient $e=0$ have initial positions shown in the figure below. Before impact sphere B is stationary and sphere A has velocity V_i. The collision is frictionless. By answering the true/false questions below, identify which of the figures (a-d) shows the correct position of the spheres after collision.

(a) Total Momentum is conserved in the j direction.
Momentum of B is conserved in the t direction.
The restitution formula is satisfied in the n direction.

\[\dot{p} = m \dot{v} \]
\[\text{Initial momentum} \neq 0 \]

(B): Initial momentum $\neq 0$
in t dir
Final nonzero

\[
\text{Restitution } (V_n^B - V_n^A) = -e (V_n^A - V_n^B)
\]

Hence distance between particles in n dir is fixed.
(b) Total Momentum is conserved in the \(\mathbf{j} \) direction
Momentum of B is conserved in the \(\mathbf{t} \) direction
The restitution formula is satisfied in the \(\mathbf{n} \) direction

\[T \quad F \quad T \quad F \]
(c) Total Momentum is conserved in the \(j \) direction
Momentum of B is conserved in the \(t \) direction
The restitution formula is satisfied in the \(n \) direction