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Lectures 6 & 7:  MOSFET Capacitance, Resistance, and CMOS 
Performance

Reading:  Chapter 2, sections 3 September 26 & 28, 2016
Chapter 4, sections 4.3, 4.4, 4.5 Prof. R. Iris Bahar

Weste & Harris

© 2016 R.I. Bahar
Portions of these slides taken from Professors  
J. Rabaey, J. Irwin, V. Narayanan, and S. Reda

 Assignment is posted on the course webpage
 Due Wednesday, Sept. 28

 Please keep in mind the following for your layouts:
 Try to create a minimum physical implementation (without violating 

any design rules)
 Avoid using multiple metals if possible (HW#1 only requires M1)
 Keep metal and poly lines as short as possible.
 Transistors of same type can share source/drain diffusion regions 

if they are physically connected.
 Be consistent with your layout (e.g., orient transistors the same)

 Bad layout designs will lower your homework grade

Homework #1

CMOS inverter I-V curves
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Switching threshold
 Define VM to be the point where Vin = Vout (both PMOS 

and NMOS in saturation since VDS = VGS)
 If VM = VDD/2, then this implies symmetric rise/fall 

behavior for the CMOS gate
 Recall at saturation, ID=(k’/2)(W/L) (VGS-VT)2, 

 where k’n= nCox= nox/tox

 Setting IDp= -IDn

 Assuming VTn=-VTp
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 The simplest model assumes the transistor is a switch with 
an infinite “off” resistance and a finite “on” resistance Ron

 However Ron is nonlinear, time-varying, and dependent on 
the operation point of the transistor

 How can we determine an equivalent (constant and linear) 
resistance to use instead?

MOS Structure Resistance
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MOS structure resistance
 Approximate Ron as the resistance 

found during linear operation
 Simple to calculate but limited accuracy 

 Instead use the average value of the 
resistances, Req, at the end-points of 
the transition (i.e., VDD and VDD/2)
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Req is essentially independent of VDD as long as VDD >> VT+VDSAT/2 
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 What insight can we gain from the previous slides?
 The on resistance is proportional to L/W. 

Doubling  W  halves Req

 For VDD  >> VT+VDSAT/2,   Req is independent of VDD.  Minor 
reduction in Req with increase in VDD is due to channel length 
modulation.

 Once the supply voltage approaches VT , Req increases 
dramatically

Equivalent MOS Structure Resistance Source and drain resistance

 Can cover with low-resistivity material (silicide) to reduce 
to the range of 1 to 4 /

RS RD

S

G

D

RS,D = (LS,D/W)R
where

LS,D is the length of the source or drain diffusion
R is the sheet resistance of the source or drain

diffusion (20 to 100 /)

W

LD

Drain

Drain
contact

Polysilicon gate

 Transitions between routing layers (contacts through vias) 
add extra resistance to a wire
 keep signal wires on a single layer whenever possible
 avoid excess contacts or vias

 Typical contact resistances, RC, (minimum-size)
 5 to 20  for metal or poly to n+, p+ diffusion and metal to 

poly
 1 to 5  for metal to metal contacts

Contact resistance Wire resistance

L

W

H

R =
 L

H W
Sheet Resistance R

R1� R2�=

=

 L
A

=

Material (-m)
Silver (Ag) 1.6 x 10-8

Copper (Cu) 1.7 x 10-8

Gold (Au) 2.2 x 10-8

Aluminum (Al) 2.7 x 10-8

Tungsten (W) 5.5 x 10-8

Material Sheet Res. (/)
n, p well diffusion 1000 to 1500
n+, p+ diffusion 50 to 150
n+, p+ diffusion 

with silicide
3 to 5

polysilicon 150 to 200
polysilicon with 

silicide
4 to 5

Aluminum 0.05 to 0.1

resistivity
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Delay definitions

t
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tp = (tpHL + tpLH)/2

Propagation delay
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 Transient, or dynamic, response determines the 
maximum speed at which a device can be operated.

CMOS inverter: dynamic behavior

VDD

Rn

Vout = 0

Vin = V DD

CL

tpHL = f(Rn, CL)

Rp

 intrinsic MOS transistor capacitances
 extrinsic MOS transistor (fanout) capacitances
 wiring (interconnect) capacitance

Sources of  capacitance

Cw

CDB2

CDB1

CGD12

CG4

CG3

Vout2
Vin

Vout

VoutVin

M2

M1

M4

M3

Vout2

CL

MOS intrinsic capacitances

 Structure capacitances
 Channel capacitances
 Diffusion capacitances
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MOS structure capacitances
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Top view

lateral diffusion

CGSO = CGDO = Cox xd W = Co W

Overlap Capacitance (linear)

 The gate-to-channel capacitance depends upon the 
operating region and the terminal voltages

MOS channel capacitances

S D

p substrate

B

G
VGS +

-

n+n+

depletion 
regionn channel

CGS = CGCS + CGSO CGD = CGCD + CGDO

CGB = CGCB

 Cutoff (i.e., subthreshold) VGS   VT
 No channel exists: CGC only appears between gate and body
 CGCB = WL Cox

 Strong Inversion VGS  > VT

 Linear (Resistive) VDS  < VDSAT  = VGS – VT
 Inversion layer acts as conductor between source, drain
 CGCB =0, CGC distributes between S, D 
 CGCS = CGCD =WL Cox/2

 Saturated  VDS   VDSAT  = VGS – VT
 CGCB = CGCD =0, CGC only appears between gate and source
 CGCS =WL Cox (actually, it’s closer to 2/3 WL Cox )

Variations in channel capacitance
Operation 

Region
CGCB CGCS CGCD CGC CG

Cutoff CoxWL 0 0 CoxWL CoxWL + 2CoW

Resistive 0 CoxWL/2 CoxWL/2 CoxWL CoxWL + 2CoW

Saturation 0 (2/3)CoxWL 0 (2/3)CoxWL (2/3)CoxWL + 
2CoW

Average channel capacitance

 Channel capacitance components are nonlinear and vary 
with operating voltage

 Most important regions are cutoff and saturation since that 
is where the device spends most of its time

 Gate capacitance is non-linear, but we can approximate 
with piecewise-linear model
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 The junction (or diffusion) capacitance is from the reverse-
biased source-body and drain-body pn-junctions.

MOS diffusion capacitances

S D

p substrate

B

G
VGS +

-

n+n+

depletion 
regionn channel

CSB = CSdiff CDB = CDdiff

Source junction view

side walls

channel

W

xj

channel-stop 
implant (NA+)

source 
bottom plate 
(ND)

LS

substrate (NA)

Cdiff = Cbp + Csw = Cj AREA + Cjsw xj PERIMETER
= Cj LS W +  Cjsw xj(2LS + W)

NOTE: Cj and Cjsw are given in capacitance per unit area (e.g., F/m2)

junction
depth

MOS Capacitance Model

CGS

CSB CDB

CGD

CGB

S

G

B

D

CGS = CGCS + CGSO CGD = CGCD + CGDO

CGB = CGCB

CSB = CSdiff CDB = CDdiff

 The extrinsic, or fanout, capacitance is the total gate 
capacitance of the loading transistors M3 and M4.

Cfanout = Cgate (NMOS) + Cgate (PMOS)
= (CGSOn + CGDOn + WnLnCox) + 

(CGSOp + CGDOp + WpLpCox)

 Simplification of the actual situation
 Assumes all the components of Cgate are between Vout and 

GND  (or VDD)
 Assumes the channel capacitances of the loading gates are 

constant

Extrinsic (fanout) capacitance
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 Propagation delay is proportional to the time-constant of the 
network formed by the pull-down resistor and the load 
capacitance.

Inverter propagation delay

tpHL = f(Rn , CL)VDD

Rn

Vout = 0

Vin = V DD

CL

Rp

wireextL

DSAT

DD
eqn

CCCC
I
VRR


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int

4
3

Want to have equal rise/fall delays
Make Rn=Rp

 Model circuit as first-order RC network

Modeling propagation delay

R

C
vin

vout

vout (t)  =  (1 – e–t/)Vin

where  = RC

Time to reach 50% point is
t = ln(2)  = 0.69 

Time to reach 90% point is
t = ln(9)  = 2.2 

2/)(69.02/)( pnLpLHpHLp RRCttt 

 Reduce Rn, Rp

 Increase W/L ratio of the transistor 
 most powerful and effective performance optimization tool for designer
 But what happens to the intrinsic capacitance with larger W/L?

 Reduce CL

 Keep drain diffusions small
 Limit interconnect capacitance
 Limit fanout

 Increase VDD

 Trade off energy for performance
 Increase VDD above a certain level yields minimal improvements
 Reliability concerns enforce an upper bound on VDD

How can we improve performance?

 So far we have sized the PMOS and NMOS so that the Req
values match (i.e.,  = (W/Lp)/(W/Ln) = Wp/Wn = 2 to 2.8)
 Symmetric VTC
 Equal high-to-low and low-to-high propagation delays

 If speed is the only concern, reduce the width of the PMOS 
device!
 Widening the PMOS degrades the tpHL due to larger intrinsic 

capacitance
 What does this imply if we want to minimize delay for an 

inverter?

NMOS/PMOS ratio

In 1 2
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 We define propagation delay as:

 And define

 So we have

 Now, optimize tp with respect to β…

NMOS/PMOS ratio
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 Given the equation for tp :

 Minimize tp as a function of β…
 Compute the optimal value of β by setting ∂tp/∂β = 0

Where r=Reqp/Reqn=resistance ratio for identically sized 
PMOS, NMOS

NMOS/PMOS ratio

negligible is   when Wopt Crβ 
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PMOS/NMOS ratio effects
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 = (W/Lp)/(W/Ln)

x 10-11 

 = (W/Lp)/(W/Ln)

tpLH

tp

tpHL

 of 2.4 gives symmetrical 
response

 of 1.6 to 1.9 gives 
optimal performance

Device sizing for performance

 Divide capacitive load, CL, into
 Cint :  intrinsic  diffusion (and gate-drain overlap cap (Miller cap)) 

 Cext :  extrinsic  fanout (gate-channel cap and wiring)

tp = 0.69 Req Cint (1 + Cext/Cint) = tp0 (1 + Cext/Cint)
 tp0 = 0.69 Req Cint is the intrinsic (unloaded) delay of the 

gate

 Widening both PMOS and NMOS by a factor S reduces 
Req by an identical factor (Req = Rref/S), but raises the 
intrinsic capacitance by the same factor (Cint = SCiref)

tp = 0.69 Rref Ciref (1 + Cext/(SCiref)) = tp0(1 + Cext/(SCiref))
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Device sizing for performance

tp = 0.69 Rref Ciref (1 + Cext/(SCiref)) = tp0(1 + Cext/(SCiref))

 What can we conclude from this?

 tp0 is independent of the sizing of the gate; with no load the 
drive of the gate is totally offset by the increased 
capacitance

 Any S sufficiently larger than (Cext/Cint) yields the best 
performance gains with least area impact

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

1 3 5 7 9 11 13 15

Sizing impacts on delay

S 

x 10-11 

The majority of the 
improvement is already 
obtained for S = 5.  Sizing 
factors larger than 10 
barely yield any extra gain 
(and cost significantly 
more area).

for a fixed load

self-loading effect 
(intrinsic capacitance 
dominates)

For Cext/Cint=1.05

Impact of  fanout on delay

 Extrinsic capacitance, Cext , is a function of the gates being 
driven by the gate under question (i.e. the fanout) 

larger fanout larger external load.
 Re-express the intrinsic capacitance (Cint) in terms of input 

gate capacitance:

Cint = Cg ,    where 1

tp = tp0 (1 + Cext/ Cg) = tp0 (1 + f/) 

f = Cext/Cg is the effective fanout

tp = tp0 (1 + Cext/Cint)

Inverter chain
 Goal is to minimize the delay through an inverter chain

 The delay of the jth inverter stage is
tp,j = tp0 (1 + Cg,j+1/(Cg,j)) = tp0(1 + fj/ )

and    tp = tp,1 + tp,2 + . . . + tp,N
so tp = tp,j = tp0  (1 + Cg,j+1/(Cg,j)) 

 If CL and Cg,1 are given, we have 2 different optimizations
 How should the inverters be sized to minimize delay?
 How many stages are needed to minimize the delay?

In Out

CLCg,1

1 2 N
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Sizing the inverters in the chain
 After a bit of calculus, we find that for minimum delay:

Cg,j+1/Cg,j = Cg,j/Cg,j-1 for j=2…N
 What does this imply?

 All gates have the same effective fanout, f
 Each gate should be scaled up by the same factor w.r.t. its 

preceding gate
 What is the effective fanout for a gate given CL and Cg,1?

 With a bit of algebra and inductive reasoning we find that:

 F = CL/Cg,0 is the overall effective fanout
 What is the minimum delay through the chain?

NN
gL FCCf  1,/

)/1(0 γFNtt N
pp 

Example:  inverter chain sizing

 CL/Cg,1 has to be evenly distributed over N = 3 inverters
F = CL/Cg,1 = 8/1

 Assuming L remains unchanged for all inverters, f is 
obtained by adjusting W relative to the previous stage 
(i.e., scale up by factor of 2 relative to the previous gate).

In Out

CL = 8 Cg,1Cg,1

1

283 f

W=Wmin

W=2Wmin

W=4Wmin

Optimal number of  inverters
 What is the optimal value for N given F? (where F = fN)

 if the number of stages is too large, the intrinsic delay of the 
stages dominates

 if the number of stages is too small, the effective fan-out of 
each stage dominates

 For  = 0 (ignoring self-loading) N = ln (F) and the effective-
fan out (tapering factor) becomes f = e = 2.718

 For  = 1 (the typical case) the optimum effective fan-out can 
be solved numerically and turns out to be close to 3.6
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Optimum effective fanout

 Too many stages has a substantial negative impact on delay
 Choosing f slightly larger than optimum has little effect on delay 

and reduces the number of stages (and area).
 Common practice to use f = 4 (for  = 1)
 Fanout of 4 (FO4) rule of thumb delay metric is based on this result

 f
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Example of  inverter (buffer) staging

CL = 64 Cg,0Cg,0 = 1

1

CL = 64 Cg,0Cg,0 = 1

1 8

CL = 64 Cg,0Cg,0 = 1

1 4 16

CL = 64 Cg,0Cg,0 = 1

1 2.8 8 22.6

N         f           tp

1        64        65

2         8         18

3 4          15

4        2.8        15.3

Switch delay model

A

Req

A

Rp

A

Rp

A

Rn CL

A

Cint

CintCL

A

Rn

A

Rp

B

Rp

B

Rn

NAND

INVERTER

B

Rp

A

Rp

A

Rn

B

Rn CL

NOR

Input pattern effects on delay
 Delay is dependent on the pattern of 

inputs
 1st order approximation of delay:

tp ≈ 0.69 Reff CL

 Reff depends on the input pattern

CL

A

Rn

A
Rp

B
Rp

B

Rn Cint

Input pattern effects on delay
 01 transition on output:  2 possibilities

 one input goes low:  what is Reff ?
 delay is 0.69 Rp CL

 both inputs go low:  what is Reff ? 
 delay is 0.69 Rp/2 CL since two p-resistors 

are on in parallel

 10 transition on output:  1 possibility
 both inputs go high

 delay is 0.69 2Rn CL

 Adding transistors in series (without 
sizing) slows down the circuit

CL

A

Rn

A
Rp

B
Rp

B

Rn Cint

tp ≈ 0.69 Reff CL
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Delay dependence on input patterns

A=B=10

A=10, B=1

A=1, B=1 0

time, psec

Vo
lta

ge
, V

Input Data

Pattern

Delay

(psec)
A=B=01 69

A=1, B=01 62

A= 01, B=1 50

A=B=10 35

A=1, B=10 76

A= 10, B=1 57

2-input NAND with
NMOS = 0.5m/0.25 m
PMOS = 0.75m/0.25 m

CL = 10 fF

 How should NMOS and PMOS devices be sized relative to an 
inverter with equal rise/fall times?

Transistor sizing

CL

A

Rn

A

Rp

B

Rp

B

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

2

2

1 1

1
1

2

2


