

BROWN					
Variations in channel capacitance					
 Cutof 	f (i.e., subthreshold) $V_{GS} \leq V_{T}$				
• No	channel exists: \mathbf{C}_{GC} only appears between gate and body				
• ($C_{GCB} = WLC_{ox}$				
Stron	g Inversion $V_{GS} > V_{T}$				
• Lin	ear (Resistive) $V_{DS} < V_{DSAT} = V_{GS} - V_T$				
• 1	version layer acts as conductor between source, drain				
• ($C_{GCB} = 0, C_{GC}$ distributes between S, D				
-	$\Rightarrow C_{GCS} = C_{GCD} = WL C_{ox}/2$				
• Sa	turated $V_{DS} \ge V_{DSAT} = V_{GS} - V_T$				
• ($C_{GCB} = C_{GCD} = 0$, C_{GC} only appears between gate and source				
-	\rightarrow C _{GCS} =WL C _{ox} (actually, it's closer to 2/3 WL C _{ox})				

Average channel capacitance							
Operation Region	C _{GCB}	C _{GCS}	C _{GCD}	C _{GC}	C _G		
Cutoff	C _{ox} WL	0	0	C _{ox} WL	C _{ox} WL + 2C _o W		
Resistive	0	C _{ox} WL/2	C _{ox} WL/2	C _{ox} WL	C _{ox} WL + 2C _o W		
Saturation	0	(2/3)C _{ox} WL	0	(2/3)C _{ox} WL	(2/3)C _{ox} WL + 2C _o W		

- Most important regions are cutoff and saturation since that is where the device spends most of its time
- Gate capacitance is non-linear, but we can approximate with piecewise-linear model

