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Lecture 11, 12:  Introduction to Dynamic Logic

Reading: Chap. 9, section 9.2 (esp. 9.2.4)     October 17, 19 2016
Weste & Harris Prof. R. Iris Bahar

© 2016 R.I. Bahar
Portions of these slides taken from Professors  
J. Rabaey, J. Irwin, V. Narayanan, and S. Reda

Technique #5 : Logical Effort
 The optimum effective fan-out for a chain of N inverters driving 

a load CL is
 Set N such that the fan-out per stage is around 4, whenever 

possible (FO4)
 Can we generalize this approach (logical effort) to any gate?

 The inverter equation is
tp = tp0 (1 + Cext/ Cg) = tp0 (1 + f/)

we can generalize it to…

tp = tp0 (p +  g f/)

 tp0 is the intrinsic delay of an inverter
 f is the effective fan-out (Cext/Cg) – also called the electrical effort
 p is the ratio of the intrinsic delay of the gate relative to a simple inverter 

(a function of the gate topology and layout style):  parasitic delay
 g is the logical effort

N
inL CCf /

 The path logical effort, G =  gi

 Path effective fanout (path electrical effort) is  F = CL/Cg1
[1]

 The branching effort accounts for fan-out to other gates in  
the network:   b = (Con-path + Coff-path)/Con-path

 The path branching effort is then B =  bi

…and the total path effort is then H = GFB   [1]

 The gate effort that minimizes path delay is 
 So, the minimum delay through the path is
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Path delay of  logic gate network (cont.)
 For gate i in the chain, its size is determined by h = figibi

 For this network what do we need to compute h?
 F = CL/Cg1 = 5
 G = 1 x 5/3 x 5/3 x 1 = 25/9
 B = 1 (no branching)
 H = GFB = 125/9, so the optimal stage effort is h= H = 1.93
 Fanout factors are computed as fi=h/(gi·bi).  Since bi=1 we have:

f1 = h/g1=1.93, f2 = 1.93 / (5/3) = 1.16, 

f3 = 1.93/(5/3)=1.16, f4 = 1.93

1
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Path delay of  logic gate network (cont.)
 Given fi for each gate i in the chain, what is the final sizing?

 f1=1.93, f2=1.16, f3 = 1.16, f4 = 1.93
 So the gate sizes are (working from outputs to inputs):

 c: f4=cext,4/cg,4 = cL/cg,4 = 1.93    cg,4=5/1.93=2.59
 b:  f3=cext,3/cg,3 = cg,4/cg,3 = 1.16    cg,3=2.59/1.16=2.23
 a:  f2=cext,2/cg,2 = cg,3/cg,2 = 1.16    cg,2=2.23/1.16=1.93
 g1:  f1=cext,1/cg,1 = cg,2/cg,1 = 1.93    cg,1=1.93/1.93=1.00

1
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Path delay of  logic gate network (cont.)
 So what are the actually scaling sizes of the gates?

 Consider again the intrinsic capacitance values we calculated
 cg,4=5/1.93=2.59, cg,3=2.59/1.16=2.23, cg,2=2.23/1.16=1.93, 

cg,1=1.93/1.93=1.00  relative to a minimum sized inverter
 We need to adjust to the gate type:
 cg,4 = 2.59  gate c is 2.59X size of minimum sized inverter, so 

Sc=2.59 since gate c is an inverter as well.
 cg,3 = 2.23  gate b is 2.23X size of minimum sized NOR, which is 

5/3 as big as min sized INV so Sb = 2.23 X 3/5 = 1.34
 NOR is 1.34X size of minimum sized NOR

 cg,2 = 1.93  gate a is 1.93X size of minimum sized NAND3,  which  
is 5/3 as big as min sized NAND so Sa = 1.93X 3/5 = 1.16
 NAND is 1.16X size of minimum sized NAND3
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Properties of  dynamic gates
 Logic function is implemented by the PDN only

 How many transistors are needed to implement an N-input 
function in dynamic logic?

 What does this imply about total area and load capacitance, CL?
 Full swing outputs (VOL = GND and VOH = VDD)
 Faster switching speeds

 Fewer transistors means reduced logical effort.  
What is the logical effort of a 2-input dynamic NOR gate?

 no short circuit current, Isc, so all the current provided by PDN goes 
into discharging CL

 We assume tpLH = 0, but the presence of the evaluation transistor 
slows down the tpHL (extra transistor in series).
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Conditions on output

 Once the output of a dynamic gate is discharged, it 
cannot be charged again until the next precharge
operation.
 What does this imply about the inputs to the gate 

transitioning during evaluation?

 Output can be in the high impedance state during the 
evaluation stage if the PDN is turned off 

State is stored on CL
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 What’s with the overshoot and 
undershoot?
 Notice input changes with steep 

voltage step
 Takes a while for output to react 

to change in input value
 Gate-drain capacitances of the 

transistors couple input directly to 
output in the short time before 
transistors have a chance to 
switch 

 Extra charge must be supplied to 
discharge the bootstrap 
capacitor

 See section 4.4.6.6

Input/Output Coupling:  Bootstrapping
 The amount by which the output voltage drops is a strong 

function of the input voltage and the available evaluation time.
 Noise needed to corrupt the signal has to be larger if the evaluation time 

is short

Susceptibility to Noise
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 Power dissipation: how much energy is consumed per 
operation and how much heat the circuit dissipates

 Two important components:  static and dynamic

E (joules) = CL Vdd
2 P01 + tsc Vdd Ipeak P01 + Vdd Ileakage

P(watts) = CL Vdd
2 f01 + tscVdd Ipeak f01 + Vdd Ileakage

Power and energy

f01 = P01 * fclock

Power dissipation of  dynamic gate
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E = CL VDD
2 P01

Probability the output 
transitions from 0 to 1

Dynamic power is data dependent
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Dynamic 2-input NOR Gate

Assume signal probabilities
PA=1 = 1/2
PB=1 = 1/2

Then transition probability
P01 = Pout=0  × Pout=1

= 3/4  × 1 = 3/4

Switching activity can be higher in dynamic gates!
P01 = Pout=0

Properties of  dynamic gates (cont.)
 Power dissipation should be better

 no short circuit power consumption since the pull-up path is not 
on when evaluating

 lower CL

 by construction can have at most one transition per cycle             
 no glitching

 But power dissipation can be significantly higher due to
 higher transition probabilities
 extra load on CLK

 Needs a precharge clock
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Cascading dynamic gates
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Only a single 0  1 transition allowed at the inputs 
during the evaluation period!

Domino Logic
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NP-CMOS (Zipper)
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 Efficient use of a dynamic gate.
 Wide NOR gate that uses minimum sized gate
 Low logical effort

Dynamic Zero Detector
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 Ideally, if the PDN is off, the output should remain high (VDD) for 
the duration of the evaluate stage

 Leakage currents cause charge to degrade over time

Charge leakage
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Impact of  charge leakage
 Output settles to an intermediate voltage determined by a 

resistive divider of the pull-up and pull-down networks
 If output drops below switching threshold, output interprets as low 
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 Keeper compensates for the charge lost due to the 
pull-down leakage paths.

A solution to charge leakage
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How should the keeper device be sized relative to the 
NMOS devices?

Charge sharing
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Charge stored originally on CL
is redistributed (shared) over CL
and CA leading to possible 
circuit malfunction.

this could cause the gate it drives to malfunction. 

Ca is initially discharged
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Charge sharing example
What is the worst case voltage drop on y?  

(Assume inputs switch after precharge
and internal nodes are initially at 0V.)

Vout = - VDD ((Ca + Cc)/((Ca + Cc) + Cy)) 

= - 2.5V*(30/(30+50)) = -0.94V

Cy=50fF

CLK

CLK

A !A

B !B B !B

C!C

y = A  B  C

Ca=15fF

Cc=15fF

Cb=15fF

Cd=10fF

Load
inverter
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Solution to charge redistribution
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Precharge internal nodes using a clock-driven transistor (at the 
cost of increased area and capacitance)
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Differential (dual rail) domino
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Due to its high-performance, differential domino has been very 
popular in the design of in several commercial microprocessors.
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onoff
 DCVS:  Differential Cascade Voltage Switch logic

DCVS logic

In1

In2
PDN1

Out

!In1

!In2

PDN2

!Out

PDN1 and PDN2 are mutually exclusive

1 0 0 on off

off on on off

 on off  1

 Some transistors are shared between Out and !Out
 Overall lower transistor count

DCVS example

Out
!Out

B

A !A

B!B
!B

 So far we have assumed that primary inputs are only allowed 
to drive gate terminals of MOS transistors.

 Now assume primary inputs can drive both gate and 
source/drain terminals

 NMOS switch closes when the gate input is high

 Remember - NMOS transistors pass a strong 0 but a weak 1

NMOS transistors in series/parallel

A B

X Y
X = Y if A and B

X Y

A

B X = Y if A or B
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 Gate is static – a low-impedance path exists to both 
supply rails under all circumstances

 N transistors instead of 2N
 No static power consumption
 Bidirectional (versus non-directional)

Pass Transistor (PT) Logic
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B

B= A  B
F = A  B

 Pure PT logic is not regenerative:  signal gradually 
degrades after passing through a number of PTs

 fix with static CMOS inverter insertion

VTC of  pass transistor AND gate

A

0

B

B F= AB

B=VDD, A=0VDD

A=VDD, B=0VDD
A=B=0VDD

V o
ut
, V

0

1

2

0 1 2

0

1

2

3

0 0.5 1 1.5 2

 Vx does not pull up to VDD , but VDD – VTn

 Threshold voltage drop causes static power dissipation 
(M2 may be weakly conducting forming a path from 
VDD to GND)

NMOS only PT driving an inverter
In = VDD
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Transmission gates (TGs)
 Most widely used solution

 Full swing bidirectional switch controlled by gate signal C: 
A = B if C = 1

A B

C

C

A B

C
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C = VDD

C = GND

A = VDD B

C = VDD

C = GND

A = GND
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TG multiplexer

GND

VDD

In1 In2S S

S S
S

S
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F
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F = !(In1  S + In2  S) 

Transmission gate example

B

A

What is this function?

F = A ⊕ B

 What is the logical effort for In and Sel?

 Consider the NMOS pass transistor as part of the pull-
down network

 In transmission gates the PMOS and NMOS have the same 
size since they conduct at the same time

Logical Effort and Transmission gates

4

2
2
2 OutIn

Sel

___
Sel

gIn = 2

gSel = 2/3

Sequential logic

Combinational
Logic

clock

Outputs

Next
State

Current
State

Inputs
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 Change the stored value by cutting the feedback loop

MUX based latches
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Q
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Negative Latch

Q = !clk & Q   |  clk & DQ = clk & Q   |  !clk & D

feedback

transparent when the 
clock is low

transparent when the 
clock is high

feedback

TG MUX based latch implementation
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