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Lecture 13 & 14:  static/dynamic latch design & power dissipation

Reading: Chap. 10, sections 10.1-10.3         Oct. 31, Nov. 2, 2016
Chap. 5, sec. 5.1-5.3 Prof. R. Iris Bahar

Weste & Harris

© 2016 R.I. Bahar
Portions of these slides taken from Professors  
J. Rabaey, J. Irwin, V. Narayanan, and S. Reda
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Latch race problem
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Master slave  timing properties

 Assume propagation delays are tpd_inv and tpd_tx, that 
the contamination delay is 0, and that the inverter 
delay to derive !clk is 0

 Set-up time - time before rising edge of clk that D must 
be valid

 Propagation delay - time for QM to reach Q

 Hold time - time D must be stable after rising edge of 
clk
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tpd_inv + tpd_tx

zero
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Non-Ideal Clocks
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 Race condition: direct path from D to Q during the short time 
when both clk and !clk are high (1-1 overlap)

 Undefined state:  both B and D are driving A when clk and !clk
are both high

 Dynamic storage: when clk and !clk are both low (0-0 overlap)

Example of  clock skew problems
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 Clock load per register is important since it directly 
impacts the power dissipation of the clock network.

 Can reduce the clock load (at the cost of robustness) by 
making the circuit ratioed

 To switch the state of the master, T1 must be sized to 
overpower I2

 To avoid reverse conduction, I4 must be weaker than I1.

Reduced load flip-flop
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Dynamic flip-flop race conditions
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0-0 overlap race condition
toverlap0-0 < tT1 +tI1 + tT2

No change on output should be detected

1-1 overlap race condition
toverlap1-1 < thold

Change at output should reflect stable value

Note that you can have 1-1 or 0-0 overlap on either rising or falling edges

 Robustness considerations limit the use of dynamic FFs
 coupling between signal nets and internal storage nodes can inject 

significant noise and destroy the FF state
 leakage currents cause state to leak away with time
 internal dynamic nodes don’t track fluctuations in VDD that reduces noise 

margins

 A simple fix is to make the circuit pseudostatic

 Above logic added to all dynamic latches

Pseudo-static dynamic latch
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C2MOS (clocked CMOS) flip-flop
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 A clock skew insensitive FF  Clock-skew insensitive as long as the rise and fall times 
of the clock edges are sufficiently small

C2MOS flip-flop 0-0 overlap case
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Pipelining using C2MOS
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What are the constraints on F and G 

to ensure that the FF is race free?

Pipelining using C2MOS
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WRONG !!

 Homework #4 will be posted later today
 Due Friday, Nov. 11, byy 5pm
 Covers latch design and multi-Vdd design
 2 big layout component  start early!

 Lecture next week
 Given by Marco Donato
 Finish lectures on sources of power dissipation
 Start to cover memory SRAM and cache design

HW and Lecture for next week True single phase clocked (TSPC) latches

clk clkIn
Q

Positive LatchNegative Latch

transparent when clk = 1
hold when clk = 0

clk clkIn
Q

hold when clk = 1
transparent when clk = 0
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Embedding Logic in TSPC Latch
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Simplified TSPC edge-triggered FF
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 Pulse registers - a short pulse is generated locally from the rising (or falling) 
edge of the system clock and is used as the clock input to the flip-flop
 Race conditions avoided since transparent mode time very short (during the pulse 

only)
 Advantage: reduced clock load; 
 Disadvantage: increase in verification complexity

Pulsed FF (AMD-K6)
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 Packaging costs
 Power supply rail design
 Chip and system cooling costs
 Noise immunity and system reliability
 Battery life (in portable systems)
 Environmental concerns

Why power matters Chip power density
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…chips might become hot…

Source: Borkar, De Intel

 Power density is not uniformly distributed across the chip
 Silicon is not a good heat conductor
 Max junction temperature is determined by hot-spots

 Impact on reliability and packaging, w.r.t. cooling

Chip power density distribution
Power Map On-Die Temperature

 Power dissipation in Watts
 determines battery life in hours
 rate at which energy is taken from Vdd and converted into heat

 Peak power
 determines power ground wiring designs
 sets packaging limits
 impacts signal noise margin and reliability analysis

 Energy efficiency in Joules
 rate at which power is consumed over time

 Energy = power * delay
 Joules = Watts * seconds
 lower energy number means less power to perform a computation 

at the same frequency

Power and energy figures of  merit
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Power versus Energy
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Watts

time

Approach 1

Approach 2

Approach 2

Approach 1

Energy is area under curve

Lower power design could simply be slower

Two approaches require the same energy
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PDP and EDP
 Power-delay product (PDP) = Pav * tp = (CLVDD

2)/2
 PDP is the average energy consumed per switching event         

(Watts * sec = Joule)
 lower power design could simply be a slower design

 Energy-delay product (EDP) = PDP * tp = Pav * tp2

 EDP is the average energy                                                   
consumed multiplied by the                                                 
computation time required

 takes into account that one                                                             
can trade increased delay                                                              
for lower energy/operation                                                              
(e.g., via supply voltage                                                             
scaling that increases delay,                                                              
but decreases energy                                                              
consumption)

energy-delay

energy

delay

CMOS energy & power equations

E = CL VDD
2 P01 +  tsc VDD Ipeak P01 +  VDD Ileakage

P = CL VDD
2 f01 +   tscVDD Ipeak f01 + VDD Ileakage

Dynamic 
power

Short-circuit 
power

Leakage 
power

f01 = P01 * fclock

Dynamic power dissipation

Energy/transition = CL * VDD
2  * P01

Pdyn = Energy/transition * f = CL * VDD
2 *   P01 * f

Pdyn = CEFF * VDD
2 * f     where CEFF = P01 CL

Data dependent  a function of switching activity!

Vin Vout

CL

Vdd

f01
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Dynamic power vs. device size
 Device sizing affects dynamic energy consumption

 gain is largest for networks with large overall effective fan-
outs    (F = CL/Cg,1)

 The optimal gate sizing factor (f) for dynamic energy is 
smaller than for performance, 
� e.g., for chain of 2 inv., F=20

� Oversizing has worse 
implications for energy than 
for delay
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Dynamic power as a function of  VDD
 Decreasing VDD decreases

dynamic energy 
consumption (quadratically)

 But, increases gate delay 
(decreases performance)

VDD (V) 

• Determine the critical path(s) at design time and use high VDD
for gates on those paths for speed.  Use a lower VDD on the 
other gates, especially those that drive large capacitances 
(since this yields the largest energy benefits).
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Multiple VDD Considerations
 How many different voltages VDDi?    Two is relatively common

 Many chips already have two supplies (core and I/O)

 When combining multiple supplies, level converters are required 
when a gate with lower VDD drives a gate at higher VDD

 If gate at VDDL drives a gate at VDDH, the PMOS never turns off
 cross-coupled PMOS transistors

do the level conversion
 NMOS transistors operate on a                                                                

reduced supply

 Level converters are not needed                                                      
for a step-down change in voltage

 Overhead of level converters can be mitigated by doing conversions 
at register boundaries and embedding conversion inside the flip-flop

VDDH

Vin

Vout

VDDL

Multiple VDD Considerations
 cross-coupled PMOS transistors do the level conversion
 NMOS transistors operate on a reduced supply

VDDH

Vin

Vout

VDDL See section 10.4.4 (pg. 409) for 
examples of level-converter flip-flops
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Dual-supply inside a logic block
 Minimum energy consumption achieved if all logic paths are critical 

(have the same delay).  Why?
 Clustered voltage-scaling

 Each path starts with VDDH and switches to VDDL (gray logic gates) when 
delay slack is available

 Level conversion is done in the flip flops at the end of the paths
 Use standard cells to construct the dual-VDD function block

 Design standard cells that can connect to VDDH or VDDL

HW#4 assignment


