
11/16/2016

1

Lecture 18 & 19: Memory

Reading: Chapter 12, sec. 12.2 Nov. 14, 16 2016
Chapter 11, section 11.1, 11.2 Prof. R. Iris Bahar

Weste & Harris

© 2016 R.I. Bahar
Portions of these slides taken from Professors
J. Rabaey, J. Irwin, V. Narayanan, and S. Reda

 Final Project Proposals
 Remaining lectures:

 Finish with memory array decoders today
 Fast Adders
 Multipliers
 Datapath Logic
 PLAs and FPGAs
 Design for reliability, low power circuits, emerging topics…

 Final exam: Wednesday, November 30 (in class)
 Final Presentations: Tuesday, December 13, 9am-noon

What’s coming up?

 Pipelined adder or other fast adder implementation
 Comparison of ripple carry adder vs. carry skip adder in terms of area, speed, and power
 N-bit Arithmetic Logic Shift Unit
 N × N Bit Pipelined Parallel Multiplier
 Magnitude Comparator — designed 2 different ways, or with 2 different logic styles
 An 8 word, 16 bit multi-port FIFO register file
 K-bit (16 rows by 16 bit) SRAM
 A fully associative memory array (requires CAM and SRAM logic)
 8-bit Divider
 SECDED (single error correction, double error detection) logic
 An 8 entry by 16 bit instruction issue queue
 Comparison of leakage power dissipation for designs with and without sleep transistors

(activates high Vth by using the stack effect when circuit is in idle mode).
 Layout of a datapath for a simple 8-bit processor
 Arithmetic unit that calculates accumulated sum, maximum input and minimum input of a stream

of 8-bit numbers
 Vending machine or some other complex state machine.

Project Ideas
 Size (Kbytes, Mbytes, Gbytes, Tbytes)
 Timing parameters

 Read Access – delay between read request and the data available
 Write Access – delay between write request and writing data to memory
 (Read or Write) Cycle – min. time required between read/writes

Memory Definitions

Read

Write

Data

Read Cycle

Read Access Read Access
Write Cycle

Data Valid

Write Setup Write Access

Data Written

11/16/2016

2

2D memory architecture

A0
A1

AL-1
Sense Amplifiers

bit line

word line

storage
(RAM) cell

AL

AL+1

AK-1

Read/Write Circuits

Column Decoder

2K-L

M2L

Input/Output (M bits)

amplifies bit line swing

selects appropriate word
from memory row

4x4 SRAM memory

A0

!BL
WL[0]

A1

A2

Column Decoder

sense amplifiers

write circuitry

BL

WL[1]

WL[2]

WL[3]

bit line precharge
2 bit words

clocking and
control

enable

read
precharge

BLi BLi+1

6-transistor SRAM Cell

!BL BL

WL

M1

M2

M3

M4

M5
M6Q

!Q

 Keeping cell size minimal is critical for large caches
 Minimum sized pull down devices (M1 and M3)

 Requires longer than minimum channel length pass transistors (M5 and M6)
to ensure proper Cell Ratio

 But up-sizing of the pass transistors increases capacitive load on the word
lines and limits the current discharged on the bit lines both of which can
adversely affect the speed of the read cycle

 Minimum width and length pass transistors
 Boost the width of the pull downs (M1 and M3)
 Reduces the loading on the word lines and increases the storage

capacitance in the cell – both are good! – but cell size may be slightly
larger

 Performance is determined by the read operation
 To accelerate the read time, SRAMs use sense amplifiers (so that

the bit line doesn’t have to make a full swing)

Cell sizing and performance

11/16/2016

3

 Reduce the bit line voltage swing
 need sense amp for each column to sense/restore signal

 Isolate memory cells from the bit lines after sensing (to
prevent the cells from changing the bit line voltage further)

 pulsed word line
 Isolate sense amps from bit lines after sensing (to prevent

bit lines from having large voltage swings)
 bit line isolation

 What will these techniques do for power?

Decreasing bit line delay Bit line isolation for small signal sensing

sense

Read
sense
amplifier

bit lines

isolate

sense amplifier outputs

V = 0.1Vdd

V = Vdd

4x4 DRAM Memory

A0

BL WL[0]
A1

A2

Column Decoder

sense amplifiers

write circuitry

WL[1]

WL[2]

WL[3]

bit line precharge2 bit words

BL0 BL1 BL2 BL3

clocking,
control, and

refresh

enable

read
precharge

 Write: Cs is charged (or discharged) by asserting WL and BL
 Read: Charge redistribution occurs between CBL and Cs

 Read is destructive, so must refresh after read

1-Transistor DRAM Cell

M1 X

BL

WL

X VDD-VT

WL write
“1”

BL VDD

Cs

read
“1”

VDD/2 sensing

CBL

11/16/2016

4

 Writes progress as in a
standard SRAM cell

 Compares the stored data
(Q and !Q) to the bit line
data
 Precharged match line ties to

all cells in a row
 If Q and BL match, x is

discharged through M2 or M3
and thus M1 is OFF keeping the
match line high

 Else if Q and BL don’t match, x
is charged to VDD – VT and the
match line discharges

9-T CAM cell

match

WL

!BL BL

M2M3

Q !Q

x

M1

4x4 SRAM memory

A0

!BL
WL[0]

A1

A2

Column Decoder

sense amplifiers

write circuitry

BL

WL[1]

WL[2]

WL[3]

bit line precharge
2 bit words

enable

read
precharge

BLi BLi+1

4x4 DRAM Memory

A0

BL WL[0]
A1

A2

Column Decoder

sense amplifiers

write circuitry

WL[1]

WL[2]

WL[3]

bit line precharge2 bit words

BL0 BL1 BL2 BL3

enable

read
precharge

Row Decoders
 Collection of 2M complex logic gates organized in a

regular, dense fashion
 (N)AND decoder for 8 address bits

WL(0) = !A7 & !A6 & !A5 & !A4 & !A3 & !A2 & !A1 & !A0

…
WL(255) = A7 & A6 & A5 & A4 & A3 & A2 & A1 & A0

 NOR decoder for 8 address bits
WL(0) = !(A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0)

…
WL(255) = !(!A7 | !A6 | !A5 | !A4 | !A3 | !A2 | !A1 | !A0)

 Goals: Pitch matched, fast, low power

11/16/2016

5

Implementing a wide NOR function
 Single stage 8x256 bit decoder

 One 8 input NOR gate/row x 256 rows = 256 x (8+8) = 4,096
transistors

 Pitch match and speed/power issues
 Decompose logic into multiple levels

!WL(0) = !(!(A7 | A6) & !(A5 | A4) & !(A3 | A2) & !(A1 | A0))
 First level is the predecoder (for each pair of address bits, form

Ai|Ai-1, Ai|!Ai-1, !Ai|Ai-1, and !Ai|!Ai-1)
 Second level is the word line driver

 Predecoders reduce the number of transistors required
 Four sets of four 2-input NOR predecoders = 4 x 4 x (2+2) = 64
 256 word line drivers, (4-input NANDs) = 256 x (4+4) = 2,048

 Number of inputs to the gates driving the WLs is halved, so the
propagation delay is reduced by a factor of ~4

2-level 8x256 decoder: An Example

Address<7:0>
*8

*8

*4 *4

!(!A0 & !A1)
. . .
!(A0 & A1)

!((!A0&!A1)&(!A2& !A3)&(!A4&!A5) & (!A6&!A7))

WL0WL0

WL255WL255

*256*256

• Pitch matched

• Buffered word
line drivers

*4 *4

2-level 8x256 decoder: Another Example

Address<7:0>
*8

*8

*8 *8

!(!A0 & !A1 & !A2)
. . .
!(A0 & A1 & A2)

!(!(!A0&!A1&!A2) | !(!A3&!A4&!A5) | !(!A6&!A7))

WL0WL0

WL255WL255

*256*256

*4
• Pitch matched

• Buffered word
line drivers

 Read: with large-signals sensing (no SA) NMOS is fine. For small
signal sensing, use PMOS to connect BLs to the Sense Amps (SA) since
BL, !BL are close to Vdd.

 Writes: drive one of the BLs low to write a 0 into the cell
 Fast since there is only one transistor in the signal path. However, there is

a large transistor count ((K+1)2K + 2 x 2K)
 For K = 2  3 x 22 (decoder) + 2 x 22 (PTs) = 12 + 8 = 20

Pass Transistor based column decoder
BL3 BL2 BL1 BL0

Data

2
in

pu
t N

O
R

de
co

de
r

A1

A0

S3

S2

S1

S0

!BL3 !BL2 !BL1

!Data

!BL0

11/16/2016

6

 Number of transistors reduced to (2 x 2 x (2K -1))
 for K = 2  2 x 2 x (22 – 1) = 4 x 3 = 12

 Delay increases quadratically with the number of sections (K)
(so prohibitive for large decoders)
 Can fix with buffers, progressive sizing, combination of tree and pass

transistor approaches

Tree based column decoder
BL3 BL2 BL1 BL0

A0

!A0

A1

!A1

Data

!BL3 !BL2 !BL1 !BL0

!Data

Building fast adders

 How can we use it to build a 64-bit adder?
 How can we modify it easily to build an adder/subtractor?
 How can we make it better (faster, lower power, smaller)?

The 1-bit binary adder

1-bit Full
Adder
(FA)

A

B
S

Cin

S = A  B  Cin
Cout = AB + ACin + B&Cin (majority function)

A B Cin Cout S carry status
0 0 0 0 0 kill
0 0 1 0 1 kill
0 1 0 0 1 propagate
0 1 1 1 0 propagate
1 0 0 0 1 propagate
1 0 1 1 0 propagate
1 1 0 1 0 generate
1 1 1 1 1 generate

Cout

G = A&B
P = A  B
K = !A & !B

= P  Cin

= G + PCin

 Ripple Carry Adder (RCA)
built out of 64 Full Adders

 Subtraction – complement all
subtrahend bits (xor gates)
and set low order carry-in

 RCA
 Simple logic, so low (area)

cost
 Slow: (O(N) for N bits) and

lots of glitching

A 64-bit adder/subtractor

1-bit
FA S0

C0=Cin

C1

1-bit
FA S1

C2

1-bit
FA S2

C3

C64=Cout

1-bit
FA S63

C63

. .
 .

A0

B0

A1

B1

A2

B2

A63

B63

add/subt

11/16/2016

7

Ripple carry adder (RCA)
A0 B0

S0

C0=CinFA

A1 B1

S1

FA

A2 B2

S2

FA

A3 B3

S3

FACout=C4

T = O(N) worst case delay

Tadder  TFA(A,BCout) + (N-2)TFA(CinCout) + TFA(CinS)

Real Goal: Make the fastest possible carry path

Glitching in a ripple carry adder

S0S1S2S14S15

Cin

Cin

S0
S1

S2

S3
S4

S5
S10

S15

0

1

2

3

0 2 4 6 8 10 12

Time (ps)

S
O

ut
pu

t V
ol

ta
ge

 (V
)

 S=A  B  Cin, Cout=AB+ACin+BCin

“Brute Force” adder design

A
B
C

S

Cout

M
AJ

A
B
C

A

B BB

A

C
S

C

CC

B B
B

A A

A B
C

B
A

CBA A B C

Cout

C
A

A
BB

 Notice that Cout and S both get inverted

Mirror Adder

B

B B

B B

B
B

B
A

A

A

A

A

A A

A

Cin

Cin

Cin

Cin

Cin
!Cout !S

24+4 transistors

kill

generate

0-propagate

1-propagate

Cout = AB + BCin + ACin
SUM = ABCin + !COUT(A + B + Cin)

6 6

6 2

2

4

41212

12

2 2 2
3

3

3

6

6

6
444

4

2

11/16/2016

8

 NMOS and PMOS chains are completely symmetrical with
maximum of two series transistors in the carry chain,
 identical rise/fall delays.

 For layout, most critical issue is minimizing capacitance for !Cout
 4 diffusion caps, 4 int. gate caps, 2 ext. gate caps.
 Shared diffusions can reduce the stack node capacitances.

 The transistors connected to Cin are placed closest to the output.
 Only the transistors in the carry stage have to be optimized for

optimal speed.
 All transistors in the sum stage can be minimal size.

Mirror Adder Features
 Inverting all inputs to a FA results in inverted values for all

outputs

Inversion Property

A B

S

CinFA

!Cout (A, B, Cin) = Cout (!A, !B, !Cin)

Cout

A B

S

FACout Cin

!S (A, B, Cin) = S(!A, !B, !Cin)



 Minimizes the critical path (the carry chain) by eliminating
inverters between the FAs (will need to increase the transistor
sizing on the carry chain portion of the mirror adder).

 Two flavors of FAs needed (Sum bits for even integers need to
be inverted)

Exploiting the Inversion Property
A0 B0

S0

C0=CinFA’

A1 B1

S1

FA’

A2 B2

S2

FA’

A3 B3

S3

FA’Cout=C4

regular cellinverted cell

TG full adder

A

B

Cin

Cout = !PA + PCin

Sum=P Cin

Only 14 transistors
Where is the critical path?

11/16/2016

9

Fast Carry Chain Design
 The key to fast addition is a low latency carry network
 What matters is whether in a given position a carry is

 generated Gi = Ai & Bi = AiBi

 propagated Pi = Ai  Bi (sometimes use Ai + Bi)
 annihilated (killed) Ki = !Ai & !Bi

 Giving a carry recurrence of

Ci+1 = Gi + PiCi

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1 P0 C0

C3 = G2 + P2G1 + P2P1G0 + P2P1P0 C0

C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0 C0

Mirror Adder

B

B B

B B

B
B

B
A

A

A

A

A

A A

A

Cin

Cin

Cin

Cin

Cin
!Cout !S

24+4 transistors

kill

generate

0-propagate

1-propagate

Cout = AB + BCin + ACin
SUM = ABCin + !COUT(A + B + Cin)

Mirror adder

B

B B

BA

A

A

A
Cin

!Cout

kill

generate

0-propagate

1-propagate

6 6

6 2

2

4

41212

12

Ci+1 = Gi + PiCi Note that P, K, and G are
all mutually exclusive

K
Cin

Cout

G

P

!P

Manchester Carry Chain
 Switches controlled by Gi and Pi

 Total delay of
 time to form the switch control signals Gi and Pi

 setup time for the switches
 signal propagation delay through N switches in the worst case

!Ci+1 = !(CiPi + Gi)

Gi Pi

!Ci

clk

Gi

Pi

Ci

Ki

Ci+1

!Pi

11/16/2016

10

4-bit sliced MCC adder

G P

!C0

clk

G PG PG P



& & & & 

A0 B0A1 B1A2 B2A3 B3

S1S2S3

!C1!C2!C3

!C4

S0 = P0  C0

Domino Manchester carry chain

Ci,0

G0

clk

clk
P0P1P2P3

G1G2G3

Ci,4

!(G0 + P0 Ci,0)

!(G1 + P1G0 + P1P0 Ci,0)

!(G2 + P2G1 + P2P1G0 + P2P1P0 Ci,0)

!(G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0 Ci,0)

Carry-skip (carry-bypass) adder

If (P0 & P1 & P2 & P3 = 1) then Co,4 = Ci,0 otherwise the
block itself kills or generates the carry internally (and
doesn’t need Ci,0 to compute Co,4)

A0 B0

S0

Ci,0FA

A1 B1

S1

FA

A2 B2

S2

FA

A3 B3

S3

FA
Co,4

Co,4

BP = P0 P1 P2 P3 “Block Propagate”

