EN1600

Design and Implementation of
VLSI Systems

Fall 2016

Lecture 18 & 19: Memory

Reading: Chapter 12, sec. 12.2
Chapter 11, section 11.1, 11.2
Weste & Harris

Nov. 14, 16 2016
Prof. R. Iris Bahar

BROWN

© 2016 Rl Bahar

Portions of these slides taken from Professors
1. Rabaey, J. Irwin, V. Narayanan, and S. Reda

What’s coming up?

® Final Project Proposals

® Remaining lectures:
e Finish with memory array decoders today
e Fast Adders
° Multipliers

Datapath Logic

e PLAs and FPGAs

e Design for reliability, low power circuits, emerging topics...
® Final exam: Wednesday, November 30 (in class)
® Final Presentations: Tuesday, December 13, 9am-noon

11/16/2016

Project Ideas

® Pipelined adder or other fast adder implementation

® Comparison of ripple carry adder vs. carry skip adder in terms of areq, speed, and power
® N-bit Arithmetic Logic Shift Unit

® N X N Bit Pipelined Parallel Multiplier

* Magnitude Comparator — designed 2 different ways, or with 2 different logic styles
® An 8 word, 16 bit multi-port FIFO register file

® K-bit (16 rows by 16 bit) SRAM

® A fully associative memory array (requires CAM and SRAM logic)

® 8-bit Divider

® SECDED (single error correction, double error detection) logic

® An 8 entry by 16 bit instruction issue queue

® Comparison of leakage power dissipation for designs with and without sleep transistors
(activates high V,, by using the stack effect when circuit is in idle mode).

® Layout of a datapath for a simple 8-bit processor
® Arithmetic unit that calculates accumulated sum, maximum input and minimum input of a stream
of 8-bit numbers

® Vending machine or some other complex state machine.

Memory Definitions

® Size (Kbytes, Mbytes, Gbytes, Tbytes)

® Timing parameters
® Read Access — delay between read request and the data available
* Write Access — delay between write request and writing data to memory

* (Read or Write) Cycle — min. time required between read/writes

Read Cycle

Read / \
Write Cycle
Read Access —
Read Access
Write / \ \

Write Setup Write Access

Data Valid Data Written

L BROWN]
o

Row Address

Column

Address

F I
Row Decoder

T P
2D memory architecture

oKL bit line
word line
= storage
= U (RAM) cell

1]

11 m2

Column Decoder

selects appropriate word
from memory row

| Sense Amplifiers

| amplifies bit line swing

I Read/Write Circuits I

1

Input/Output (M bits)

]

WL

AM memory

read
precharge — | | |

enable
IBL BL

A

4x4 S

2 bit words

A,

—

Row Decoder

A, ——>»_ Column Decoder

clocking and
control

e
L BROWN]
2 T

bit line precharge
WL[O]
WL[1]
WL[2]

WL[3]

| I | sense amplifiers

BL., write circuitry

11/16/2016

52
e BROWN]

Cell sizing and performance

to ensure proper Cell Ratio

adversely affect the speed of the read cycle

e Minimum width and length pass transistors
e Boost the width of the pull downs (M1 and M3)

larger

the bit line doesn’t have to make a full swing)

® Keeping cell size minimal is critical for large caches

® Minimum sized pull down devices (M1 and M3)
* Requires longer than minimum channel length pass transistors (M5 and Mé)

« But up-sizing of the pass transistors increases capacitive load on the word
lines and limits the current discharged on the bit lines both of which can

* Reduces the loading on the word lines and increases the storage
capacitance in the cell — both are good! — but cell size may be slightly

® Performance is determined by the read operation
¢ To accelerate the read time, SRAMs use sense amplifiers (so that

‘ /f;,rk\i |

Dé&easmg bit line delay

® Reduce the bit line voltage swing
* need sense amp for each column to sense/restore signal
® |solate memory cells from the bit lines after sensing (to
prevent the cells from changing the bit line voltage further)
- pulsed word line
® Isolate sense amps from bit lines after sensing (to prevent
bit lines from having large voltage swings)
- bit line isolation

® What will these techniques do for power?

—
Bit line isolation for small signal sensing

bit lines

— \/\AV=O.1Vdd
— T

I I

Tp

isolate 4=
Read
sense
amplifier
sense u_l

\ /\/— AV =Vyy

sense amplifier outputs

11/16/2016

= e

) T e
4x4 DRAM Memory
. read
2 bit words precharge — | I | bit line precharge
enable
l/_ AL WL[0]
A % WL[1]
[0
A | % WL[2]
x WL[3]
‘ | | | | sense amplifiers
clocking,
control, and \ BLO| BL, | BL2| BL3| write circuitry
refresh
Ay Column Decod}r/

P

1-Transistor DRAM Cell
WL—T we /e /read\

M1l X
c X_ /7 VorVy ~
_[Ca

I B N

BL Voo/2 sensing

—

® Write: C_ is charged (or discharged) by asserting WL and BL
® Read: Charge redistribution occurs between C; and C;

® Read is destructive, so must refresh after read

IBL

9-T CAM cell

® Writes progress as in a
BL standard SRAM cell

WL

X
match u

® Compares the stored data
(Q and Q) to the bit line
data
® Precharged match line ties to
all cells in a row
¢ If Q and BL match, x is
discharged through M, or M,
and thus M, is OFF keeping the
match line high
Else if Q and BL don’t match, x
is charged to Vi — V; and the
match line discharges

e —
4x4 SRAM memory
2 bit words read
precharge, — | bit line precharge
enable
WL[O]
IBL BL
A [} WL
] [1]
3
Al & WL[2]
3
°
o WL[3]
— —
Ay 4§ Column Decoder

sense amplifiers

L]

write circuitry

11/16/2016

4x4

2 bit words

e

DRAM Memory

read
precha

enable

A

A

Row Decoder

Ao

—

bit line precharge

WL[0]

WL[1]

WL[2]

WL[3]

| sense amplifiers

BLo BBt BL, | write circuitry

Column Decoder

Row Decoders

e Collection of 2M complex logic gates organized in a
regular, dense fashion

® (N)JAND decoder for 8 address bits
WL(0) = 1A, & 1A, & 1A; & 1A, & 1A, & 1A, & 1A, & 1A,

WL(255) = A, & A, & As & A, & A; & A, & A & A,
® NOR decoder for 8 address bits
WLO) =UA, | Ag T As | AL T A3 T AT AT A

WL(255) = 1(1A, | 1A, | 1A5 | 1A, | 1A, | 1A, | 1A, | 1A)

® Goals: Pitch matched, fast, low power

Implementing a wide NOR function

® Single stage 8x256 bit decoder

* One 8 input NOR gate/row x 256 rows = 256 x (8+8) = 4,096
transistors

o Pitch match and speed/power issues
® Decompose logic into multiple levels
IWL(0) = (A, | A & As | A) & YA, | Aj) & I(A, | Ag)
e First level is the predecoder (for each pair of address bits, form
ATA L ADNA A TA, and 1A A,)
e Second level is the word line driver
® Predecoders reduce the number of transistors required
® Four sets of four 2-input NOR predecoders = 4 x 4 x (2+2) = 64
e 256 word line drivers, (4-input NANDs) = 256 x (4+4) = 2,048
® Number of inputs to the gates driving the WLs is halved, so the
propagation delay is reduced by a factor of ~4

S = e
2-level 8x256 decoder: An Example

H(1ARIA &AL 1AL)&(IA&IA,) & (IA&IA,))

WL, i | WL,
*256 *256
W= | Whass
(1A & 1A,)
e "4 *4 *4 *4 i
(A &A,) — = =) = Pitch matched

*8

Address<7:0>
D *8

Buffered word
line drivers

11/16/2016

w) e
//
\'4

el 8x256 dec;ie?Anofher Example

I(1AKIA&IA,) | 1(1ABIA,&IA,) | [(IAKIA,))
—

é-le

| —

WLOW] /m

*256 *256

W'—st W WLoss

(1A, & 1A, & 1A

(A& A &A,) L - Pitch matched

*8

Address<7:0>
[: *8

Buffered word
line drivers

Pass Transistor based column decoder

BL, BL, BL, IBL, BL, IBL, BL, IBL,

BL BL
!
S, =
[- — 11
S 3
5 oo
0

Data IData

2 input NOR decoder

® Read: with large-signals sensing (no SA) NMOS is fine. For small
signal sensing, use PMOS to connect BLs to the Sense Amps (SA) since
BL, IBL are close to Vdd.

® Writes: drive one of the BLs low to write a O into the cell

¢ Fast since there is only one transistor in the signal path. However, there is
a large transistor count ((K+1)25 + 2 x 2)

e For K =2 — 3 x 22 (decoder) + 2 x 22(PTs) = 12 + 8 = 20

e

Tree based column decoder
BL, BL, BL, BL, BL, BL, BL, IBL,

PR el T N Tl
o|'4|,_,|_\|_,4|

Data IData
® Number of transistors reduced to (2 x 2 x (2K -1))
o forK=2—>2x2x(22-1)=4x3=12
® Delay increases quadratically with the number of sections (K)
(so prohibitive for large decoders)

e Can fix with buffers, progressive sizing, combination of tree and pass
transistor approaches

Arithmetic Logic

Building fast adders

7
@fo] BROWN

11/16/2016

in Cout S carry status
} ,0 [on] o | o 0 Kl
A | 1-bit Full \o0 o /] 1 0 1 kil
Adder |- S RN 0 1 propagate
B (FA) [0 N 1 0 propagate
l \ 1 0 / 0 0 1 propagate
Cout 1 J 1 1 0 propagate
ﬂ 1\ 0 1 0 generate
1 1 1 1 1 generate
G =A&B N
P=A®B S=A®BDC, =P®C,
K=1A& B C.s =AB+ AC, + B&C, (maijority function)

=G +PC,
® How can we use it to build a 64-bit adder?
® How can we modify it easily to build an adder/subtractor?

® How can we make it better (faster, lower power, smaller)?

® Ripple Carry Adder (RCA)
built out of 64 Full Adders
® Subtraction — complement all
subtrahend bits (xor gates)
and set low order carry-in
® RCA
* Simple logic, so low (area)
cost
e Slow: (O(N) for N bits) and
lots of glitching

A 62—bn‘ adder/subtractor
_]CsC,

add/subt T |

By

By

B,

—»SO

as1

—»Sz

J, Ces

1-bit

™ Ses

Bez -

l Ces=Cout

11/16/2016

“eg
L BROWN]

& //x

i m) N e
Ripple carry adder (RCA) litching in a ripple carry add?r
A, B, A, B, A B, A, B, e _

o
L'

Ll 1 -

Co=C4~— FA = FA — FA | FA +—C,=C, T 815, | s0
S, S, S, So)
Tadder ~ TFA(AIB_)Cout) + (N_2)TFA(Cin_)Cout) + TFA(Cin_)S) _>°_,
=]
T = O(N) worst case delay »
Real Goal: Make the fastest possible carry path 0 4
12

Time (ps)

] “Il: BROWN]|
e T : //J/’ir/a\«& -
“Brute Force” adder design Mirror Adder

24+4 transistors

*SSA®B®C,, C,,=AB+AC, +BC,

out

AAZBH“ oAl Bl il A
0-propagate A kill 7 4
12 4 Cirile
Cin !COUK E 'S
2 —|3
1-propagate generate CF'
8 s A6 rME BHE e AIE
C B_| ’
Az c
e

o Cout = AB + BC;, + AC,, =

SUM =ABC,, + ICoyr(A + B + C,)

out

® Notice that C_,, and S both get inverted

out

e

Mirror Adder Features

® NMOS and PMOS chains are completely symmetrical with
maximum of two series transistors in the carry chain,
e identical rise /fall delays.
® For layout, most critical issue is minimizing capacitance for ICout
e 4 diffusion caps, 4 int. gate caps, 2 ext. gate caps.

e Shared diffusions can reduce the stack node capacitances.

® Only the transistors in the carry stage have to be optimized for
optimal speed.

e All transistors in the sum stage can be minimal size.

® The transistors connected to Cin are placed closest to the output.

Inversion Property

® |nverting all inputs to a FA results in inverted values for all
outputs

1l
T
!

IS (A, B, C,)) = S(IA, 1B, IC,)

IC.; (A, B, C,)=C_,(AIB,IC,)

EX};loiﬁng the Inversion Property
A3 B3 A2 B2 A] B] AO BO

A S I R O A

=C,~—| FA p~q FA [— FA p~q FA [—C,=C

! ! ! !

S, S, S, So

inverted cell regular cell

C

in

® Minimizes the critical path (the carry chain) by eliminating
inverters between the FAs (will need to increase the transistor
sizing on the carry chain portion of the mirror adder).

® Two flavors of FAs needed (Sum bits for even integers need to
be inverted)

11/16/2016

adder

TG full

| Sum=P® C,,

,,,,,,,,,,,,,,,,,,,

Cout = PA+ PC;,

Only 14 transistors
Where is the critical path?

Fast Carry Chain Design

® The key to fast addition is a low latency carry network

® What matters is whether in a given position a carry is
e generated G, = A aB, =AB,
® propagated P.= A ® B, (sometimes use A, + B,)
e annihilated (killed) K, = A, & !B,

® Giving a carry recurrence of

G =G+ PG

C, =Gy + PGy

G =G +P G =G+ PGy +P PGy

C; =G, + P,G, + P,P,G, + P,P,P, Cy

C,=G;+ PG, + P,P,G, + P;P,P,G, + P,P,P,P, Cy

e

Mirror adder

A—«%z B[4

0-propagate

Note that P, K, and G are
all mutually exclusive

) /’:fk\i
Mirror Adder
24+4 transistors
B
A B4L AL 4L il ay
0-propagate Kill
C. AL e r ol
1-propagate A_| generate L{ C F‘
A B ol el o N
1 .

Coux =AB + BC, +AC,, =
SUM =ABC,, + ICour(A+ B + C;y)

11/16/2016

Manchester Carry Chain

® Switches controlled by G, and P,

IC,, =CP; + G;)

—t

clk —

® Total delay of
* time to form the switch control signals G, and P,

e setup time for the switches

e signal propagation delay through N switches in the worst case

I
L BROWN]
o /X

11/16/2016

5 BROWN
o /./,;%\ :
4-bit sliced MCC adder Domino Manchester carry chain
A, B, A, B, A, B, A, B,
ot ot fod i olk
&D &D &D & D
G P G P G P G P Cus
] - - d '
ic, iCo
F F F F | r : clk
— — —~ ~ = = ‘—q
{Go+ Py Cio)
'Cs 'C, 'C, ’/ NG+ P,Gy+ P,PGy + P,P1P, Cip)
® ® @ @ G+ P4Gy+ PPy Cip)
Jl Jl i i UGs+ P3Gyt P3PyGy + PaPyP Gy + P3PyPPy Cip)
S; S, S, S, =P, ® C,

///’r

Carr;'-skip (carry-b;'zés) adder

A; By A, B, A B, A, B

|

|

|

|

|

|

|

|

CoA
G FA | FA | FA | FA Co
Co,4 l l l l
S3 82 S'I SO
BP =P, P, P, P; “Block Propagate”

If (Po & Py & P, & P; = 1) then C,, = C,, otherwise the
block itself kills or generates the carry internally (and
doesn’t need C, , to compute C_)

10

