
11/27/2016

1

Lectures 20, 21: Multiplication, Power Dissipation (revisited)

Reading: Chap. 11, section 11.9 November 21, 23, 2016
Chap. 2, sec. 2.4.3, 2.4.4, Chap. 5, sec. 5.3 Prof. R. Iris Bahar

Weste & Harris

© 2016 R.I. Bahar
Portions of these slides taken from Professors
J. Rabaey, J. Irwin, V. Narayanan, and S. Reda

 Office hours today: 11am-1pm
 Final Project Proposals due this Wednesday by noon
 Remaining lectures:

 Finish Adders
 Multipliers
 Datapath Logic
 Design for reliability, low power circuits, emerging topics…

 Final exam: Wednesday, November 30 (in class)

 Final Presentations: Mon., Dec. 13, 9am-noon, B&H 141

What’s coming up?

 Remember Propagate signal P=A B
 S=A B Cin=P Cin

 Cout=AB+ACin+BCin=PCin+PA

 P and S are XOR functions, Cout is a mux function
 Notice that P is shared between S and Cout

Another Transistor level implementation TG full adder

A

B

Cin

Cout = !PA + PCin

Sum=P Cin

Only 14 transistors
Where is the critical path?

11/27/2016

2

Fast Carry Chain Design
 The key to fast addition is a low latency carry network
 What matters is whether in a given position a carry is

 generated Gi = Ai & Bi = AiBi

 propagated Pi = Ai Bi (sometimes use Ai + Bi)
 annihilated (killed) Ki = !Ai & !Bi

 Giving a carry recurrence of

Ci+1 = Gi + PiCi

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1 P0 C0

C3 = G2 + P2G1 + P2P1G0 + P2P1P0 C0

C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0 C0

Mirror Adder

B

B B

B B

B
B

B
A

A

A

A

A

A A

A

Cin

Cin

Cin

Cin

Cin
!Cout !S

24+4 transistors

kill

generate

0-propagate

1-propagate

Cout = AB + BCin + ACin
SUM = ABCin + !COUT(A + B + Cin)

Mirror adder

B

B B

BA

A

A

A
Cin

!Cout

kill

generate

0-propagate

1-propagate

6 6

6 2

2

4

41212

12

Ci+1 = Gi + PiCi Note that P, K, and G are
all mutually exclusive

K
Cin

Cout

G

P

!P

Manchester Carry Chain
 Switches controlled by Gi and Pi

 Total delay of
 time to form the switch control signals Gi and Pi

 setup time for the switches
 signal propagation delay through N switches in the worst case

!Ci+1 = !(CiPi + Gi)

Gi Pi

!Ci

clk

Gi

Pi

Ci

Ki

Ci+1

!Pi

11/27/2016

3

4-bit sliced MCC adder

G P

!C0

clk

G PG PG P

& & & &

A0 B0A1 B1A2 B2A3 B3

S1S2S3

!C1!C2!C3

!C4

S0 = P0 C0

Domino Manchester carry chain

Ci,0

G0

clk

clk
P0P1P2P3

G1G2G3

Ci,4

!(G0 + P0 Ci,0)

!(G1 + P1G0 + P1P0 Ci,0)

!(G2 + P2G1 + P2P1G0 + P2P1P0 Ci,0)

!(G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0 Ci,0)

Carry-skip (carry-bypass) adder

If (P0 & P1 & P2 & P3 = 1) then Co,4 = Ci,0 otherwise the
block itself kills or generates the carry internally (and
doesn’t need Ci,0 to compute Co,4)

A0 B0

S0

Ci,0FA

A1 B1

S1

FA

A2 B2

S2

FA

A3 B3

S3

FA
Co,4

Co,4

BP = P0 P1 P2 P3 “Block Propagate”

Carry-skip chain implementation

BP
block carry-in

block carry-out
carry-out

Cin

G0

P0P1P2P3

G1G2G3

!Cout

BP

!BP

Not strictly necessary

11/27/2016

4

Carry-skip chain implementation

BP
block carry-in

block carry-out
carry-out

Cin

G0

P0P1P2P3

G1G2G3

!Cout

BP

4-bit block carry-skip adder

Worst-case delay carry from bit 0 to bit 15
carry generated in bit 0, ripples through bits 1, 2, and 3, skips the
middle two groups (B is the group size in bits), ripples in the last group
from bit 12 to bit 15

Ci,0

Sum

Setup

Sum

Carry
Propagation

Setup

Sum

Carry
Propagation

Setup

Sum

Carry
Propagation

Setup

bits 0 to 3bits 4 to 7bits 8 to 11bits 12 to 15

Tadd = tsetup + B tcarry + ((N/B) -1) tskip +B tcarry + tsum

Carry
Propagation

Static vs. Variable Block Size

 Pre-compute the carry
out of each block for
both carry_in = 0 and
carry_in = 1 (can be
done for all blocks in
parallel) and then
select the correct one

Carry select adder

4-b Setup

“0” carry propagation

“1” carry propagation 1

0

multiplexer CinCout

Sum generation

P’s G’s

C’s

A’s B’s

S’s

11/27/2016

5

 AND/OR Mux selects “carry-1” or “carry-0” block
depending on carry in of previous stage

 Here, C4 starts the Mux selection process.
 Compared to carry skip, avoids having to wait for the

ripple carry of the last block.

Carry Select Adder

Cin+

A4:1 B4:1

S4:1

C4

+

+

01

A8:5 B8:5

S8:5

C8

+

+

01

A12:9 B12:9

S12:9

C12

+

+

01

A16:13 B16:13

S16:13

Cout

0

1

0

1

0

1

Figure 11.24 from Weste&Harris

Carry select adder: critical path

Setup

“0” carry

“1” carry 1

0

mux Cin

Sum gen

P’s G’s

C’s

S’s

A’s B’s

Setup

“0” carry

“1” carry

mux

Sum gen

P’s G’s

C’s

S’s

A’s B’s

Setup

“0” carry

“1” carry

mux

Sum gen

P’s G’s

C’s

S’s

A’s B’s

Setup

“0” carry

“1” carry

muxCout

Sum gen

P’s G’s

C’s

S’s

A’s B’s
bits 0 to 3bits 4 to 7bits 8 to 1bits 12 to 15

Tadd = tsetup + B tcarry + N/B tmux + tsum

1

+4

+1+1+1+1

+1

Square root carry select adder

Setup

“0” carry

“1” carry 1

0

mux Cin

Sum gen

P’sG’s

C’s

S’s

As B’sA’s Bs

1

0

S’s

Setup

“0” carry

“1” carry

mux

Sum gen

P’s G’s

C’s

A’s B’s

Setup

“0” carry

“1” carry 1

0

muxCout

Sum gen

P’s G’s

C’s

S’s

A’s B’s
bits 0 to 1bits 2 to 4bits 5 to 8bits 9 to 13

Setup

1

0

mux

Sum gen

P’s G’s

C’s

S’s

“1” carry

“0” carry

Setup

“0” carry

“1” carry

mux

Sum gen

P’s G’s

C’s

A’s B’s
bits 14 to 19

1

+2

+1+1+1+1+1

+1

+3+4+5+6

S’s

Tadd = tsetup + 2 tcarry + √N tmux + tsum

Integer multiplication revisited
 Right shift and add

 Partial product rows accumulated from top to bottom on an N-bit
adder

 Time for N bits Tserial_mult = O(N Tadder) = O(N2) for a RCA

 Making it faster
 Use a faster adder
 Use higher radix (e.g., base 4) multiplication

 Use multiplier recoding to simplify multiple formation
 Use carry-save-adders and avoid carry propagate at each cycle
 Use multiple adders (array multiplier) with carry save adder cells.

 Can be easily and efficiently pipelined
 Very simple and efficient layout in VLSI

11/27/2016

6

The binary multiplication

x

+

Partial products
(can be formed in parallel)

Multiplicand

Multiplier

Double Precision Result

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0

1 1 1 0 0 1 1 1 0

0 0 0 0 0 0

1 0 1 0 1 0

1 0 1 1

Unsigned multiplication: version I

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

Start
i=0

Multiplier0=1 1. Test
Multiplier0

2. Shift the Multiplicand register left 1 bit

1a. Add multiplicand to product and
place the result in Product register

is i < 31?
No: i = i++

3. Shift the Multiplier register right 1 bit

Multiplier0=0

Yes: 32 repetitions
completed

Done

Unsigned multiplication, version II

Done

1. Test
Product0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

Product0 = 0Product0 = 1

Yes: 32 repetitions

Control
testWrite

32 bits

64 bits

Shift rightProduct

Multiplicand

32-bit ALU

Start
i=0

Is i<31? No: i=i++

What is the main advantage here?

Carry Save Addition

 A full adder in the ith position sums 3 inputs and produces 2
outputs
 Carry output belongs to (i+1)th bit, sum belongs to ith bit

 N full adders in parallel are called carry save adder (CSA)
 Produce N sums and N carry outs

Z4Y4X4

S4C4

Z3Y3X3

S3C3

Z2Y2X2

S2C2

Z1Y1X1

S1C1

XN...1 YN...1 ZN...1

SN...1CN...1

n-bit CSA

11/27/2016

7

 A single carry-save adder is a collection of n independent adders
 Each addition results in a pair of bit vectors, C, S, stored separately in P
 The sum, carry bits of P are fed into the CSA in the following stage
 Requires a separate carry-propagate add at the end to combine the last carry,

sum parts
 Still takes n cycles to compute, but each stage is faster.

 Avoid waiting for carry to ripple through at each stage (save for later)

Carry-save multiplier Unsigned multiplication, version III

Resolve final
sum/carry bits

1. Test
Product0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

Product0 = 0Product0 = 1

Yes: 32 repetitions

Control
testWrite

32 bits

64 bits

Shift rightSum & Carry

Multiplicand

32-bit CSA

Start
i=0

Is i<31? No: i=i++

32-bit CPA

CPA

Done

The Array Multiplier

Finding the critical path is not straightforward !

Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

Carry-save multiplier

tmult = (N-1)tcarry + tand + tmerge

HA HA HA HA

FAFAFAHA

FAHA FA FA

FAHA FA HA Vector Merging Adder

Reduces the
number of clock
stages

11/27/2016

8

Pipelined array multiplier
Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

Y4X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Can be designed
with CSAs or CPAs

Pipelining increases
throughput

It’s not just about dynamic power dissipation

CMOS energy & power equations

E = CL VDD
2 P01 + tsc VDD Ipeak P01 + VDD Ileakage

P = CL VDD
2 f01 + tscVDD Ipeak f01 + VDD Ileakage

Dynamic
power

Short-circuit
power

Leakage
power

f01 = P01 * fclock

Dynamic power dissipation

Energy/transition = CL * VDD
2 * P01

Pdyn = Energy/transition * f = CL * VDD
2 * P01 * f

Pdyn = CEFF * VDD
2 * f where CEFF = P01 CL

Data dependent a function of switching activity!

Vin Vout

CL

Vdd

f01

11/27/2016

9

Short circuit power dissipation

Finite slope of the input signal causes a direct current path
between VDD and GND for a short period of time during
switching when both the NMOS and PMOS transistors are

conducting.

Vin Vout

CL

Isc

Impact of CL on Psc

Vin Vout

CL

Isc 0

Vin Vout

CL

Isc Imax

Large capacitive load
BUT BOTH DEVICES ARE ON FOR A

SHORT TIME
Output fall time significantly
larger than input rise time.

Small capacitive load
BOTH DEVICES ARE ON FOR A

LONG TIME
Output fall time substantially

smaller than the input rise time.

-0.5

0

0.5

1

1.5

2

2.5

0 2 4 6

Ipeak as a function of CL

time (sec)

x 10-10

x 10-4

CL = 20 fF

CL = 100 fF

CL = 500 fF

500 psec input slope

Short circuit dissipation is
minimized by matching
the rise/fall times of the
input and output signals -
slope engineering.

When load capacitance is
small, Ipeak is large.

Leakage (static) power dissipation

Sub-threshold current is the dominant factor.

All increase exponentially with temperature!

VDD Ileakage

Vout

Drain junction
leakage

Sub-threshold currentGate leakage

11/27/2016

10

 Vth has an exponential effect on leakage current
 Increasing Vth will lower static power dissipation

 Control indirectly (taking advantage of circuit topology and
input values)

 Control directly (using low Vth devices)

Reducing static power

qkT
V

qnkT
VV

SD

DSthGS

eeII // 1

Stack effect
 Leakage is a function of the circuit topology and the value

of the inputs
 Ileakage is mainly a function of VGS and Vth (which is a

function of VSB).

where VT0 is the threshold voltage at VSB = 0; VSB is the source- bulk
(substrate) voltage; is the body-effect coefficient; φF is the Fermi potential
(negative for NMOS)

 For an NMOS device, as VSB increases (i.e. becomes
positive), Vth increases.

)2φV2φγ(VV FSBFT0th

Stack Effect
 Consider a 2-input NAND gate
 Leakage is lowest when both inputs

A=B=0V.
 Intermediate node Vx settles to:

Vx ≈ Vth ln (1+n)

A B

B

A

Out

VX

Leakage reduction due to stacked
transistors is called the stack effect

A B VX ISUB=f(Is,VGS,VBS)

0 0 Vth ln(1+n) VGS=VBS= -VX

0 1 0 VGS=VBS=0
1 0 VDD-VT VGS=VBS=0
1 1 0 VSG=VSB=0

S

D

S

D

qkT
V

qnkT
VV

SD

DSthGS

eeII // 1

)2φV2φγ(VV FSBFT0th

 Reducing Vth increases Ileakage
(exponentially)

 But, reducing Vth decreases
gate delay

 Determine the critical path(s) at design time and use low
Vth devices for transistors from gates on critical paths. Use
a high Vth on other logic for leakage control.
 A careful assignment of VT can reduce the leakage significantly

Leakage reduction using higher Vth

0 0.2 0.4 0.6 0.8 1

VGS (V)

ID
 (A

)

VT=0.4V
VT=0.1V

10-2

10-12

10-7

ID

11/27/2016

11

 Minimum energy consumption is achieved if all logic paths
are critical (have the same delay)

 Use lower threshold on timing-critical paths
 Is there an advantage of dual-Vt over dual VDD?

Dual-Thresholds inside a logic block
 Switching activity, P01, has two components

 A static component : function of logic topology
 A dynamic component : function of the timing behavior

(glitching)

Dynamic power is data dependent

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

2-input NOR Gate

With input signal probabilities
PA=1 = 1/2
PB=1 = 1/2

Static transition probability
P01 = Pout=0 x Pout=1

= P0 x (1-P0)

NOR static transition probability
= 3/4 x 1/4 = 3/16

 Switching activity is a strong function of the input
signal statistics
 PA and PB are the probabilities that inputs A and B are one

NOR Gate Transition Probabilities

CL

A

B

BA

P01 = P0 x P1 = (1-(1-PA)(1-PB)) (1-PA)(1-PB)

PA

PB

0

1 0 1

Transition Probabilities for Some Basic Gates

P01 = Pout=0 x Pout=1
NOR (1 - (1 - PA)(1 - PB)) x (1 - PA)(1 - PB)
OR (1 - PA)(1 - PB) x (1 - (1 - PA)(1 - PB))

NAND PAPB x (1 - PAPB)
AND (1 - PAPB) x PAPB

XOR (1 - (PA + PB- 2PAPB)) x (PA + PB- 2PAPB)

B

A
Z

X0.25

0.5

For Z: P01 = P0 x P1 = (1-PXPB) PXPB

For X: P01 = P0 x P1 = (1-PA) PA

= 0.75 x 0.25 = 0.1875

= (1 – (0.75 x 0.5)) x (0.75 x 0.5) = 0.1523

11/27/2016

12

Power dissipation of dynamic gate

In1

In2 PDN

In3

Me

Mp

CLK

CLK

Out

CL

Power only dissipated when previous Out = 0

E = CL VDD
2 P01

Probability the output
transitions from 0 to 1

Switching activity can be higher in dynamic gates!

Input Ordering

Beneficial to postpone the introduction of signals with a high
transition rate (signals with signal probability close to 0.5)

What about activity factor at node F for each circuit?

A
B

C

X

F

0.5

0.2
0.1

B
C

A

X

F

0.2

0.1
0.5

(1-0.5x0.2)x(0.5x0.2)=0.09 (1-0.2x0.1)x(0.2x0.1)=0.0196

 Gates have a nonzero propagation delay resulting in
spurious transitions or glitches (dynamic hazards)
 glitch: node exhibits multiple transitions in a single cycle before

settling to the correct logic value

Glitching in Static CMOS Networks

ABC

X

Z

101 000

Unit Delay

A
B

X

ZC

0

1

2

3

0 2 4 6 8 10 12

Time (ps)

S
O

ut
pu

t V
ol

ta
ge

 (V
)

Glitching in a ripple carry adder

S0S1S2S14S15

Cin

Cin

S0
S1

S2

S3
S4

S5
S10

S15

11/27/2016

13

 Change the topology of a logic network to reduce
transitions

 Chain implementation has a lower overall switching activity
than the tree implementation for random inputs

Ignores glitching effects

Logic Restructuring

A
B

C
D F

A
B

C
D Z

F
W

X

Y0.5

0.5

(1-0.25)*0.25 = 0.1875

0.5
0.5

0.5

0.5
0.5

0.5

0.109
0.059

0.1875

0.1875

0.059

AND: P01 = P0 x P1 = (1 - PAPB) x PAPB

 Glitching is due to a mismatch in the path lengths in the
logic network; if all input signals of a gate change
simultaneously, no glitching occurs

 So equalize the lengths of timing paths through logic

Balanced delay paths to reduce glitching

F1

F2

F3

0
0

0

0

1
2

F1

F2

F3

0
0

0
0

1

1

