EN1640
Design of Computing Systems
Spring 2015

Lecture 8, 9, &10: FPGA Dataflow and Verilog Modeling

February 9,11, 13,2015
Prof. R. Iris Bahar

&
oo BROWN

© 2015 R.. Bahar
Portions of these slides taken from Professors S. Reda

opics

1. Programmable logic
2. Design Flow

3. Verilog --- A Hardware Description |~
Language '

module fulladdd(output reg[3:0] sum,
output reg c_out,
input [3:0] 2, b,
input c_in);

Fe
c4

o) BROWN

® Lab #1 is posted on the webpage
www.brown.edu/Departments/Engineering /Courses/engn1640
® Note for problem #3,
e | want the result displayed in decimal format.

e Use 2's complement to represent negative numbers.

® If you are new to the Quartus Il system, please be sure to
start early so you have time to go through the tutorials.

® Lab assignment must be demo’ed by Friday, Feb. 13 @ 6pm

Fe
c4

o) BROWN

3. Introduction to Verilog

Hardware description language (HDL) vs. software languages:
e Concurrency
e Propagation of time
e Signal dependency or sensitivity
Verilog:
e Case sensitive, with syntax similar to C
e Comments designated by // to end of line or by /* to */ across
several lines
o Textbooks:
« Introduction to Logic Synthesis using Verilog HDL
¢ Verilog Quickstart

¢ Verilog Digital System Design
o The Verilog Hardware Description Language

2/8/2015

Verilog modules

reset toggle

clk

* The functionality of each module can be defined
with 3 modeling levels:

* Structural (or gate level)
 Dataflow level
* Behavioral (or algorithmic level)

* Verilog allows different levels of abstraction to be
mixed in the same module.

eriloé Part 1. Structural modeling

Data types: bits

Nets represent connections
between hardware elements.

sl
Continuously driven by the output g*
of connected devices. c
. cl
Nets are declared using the
keyword wire.
c2

e wire si;
e wire ci1, c2;
° wire d=0;

Cout

odules and ports

module FA(A, B, Cin, S, Cout); | T ?
input A, B, Cin; 1-bit 7
output S, Cout; i Cnu**AEﬂLr‘*Cm
ce T
endmodule | P4

* All port declarations (input, output, inout) are implicitly
declared as wire.

* If an input should hold its value, it must be declared as reg.

module FA(input A, input B, input Cin, output S, output Cout); |

endmodule

v_el modeling

ate le

'wire z, 71, OUT, OUT1, OUT2, IN1, IN2;

‘and a1(OUT1, IN1, IN2);
nand nal(0UT2, IN1, IN2);
xor x1(OUT, OUT1, OUT2);
not (Z, OUT);
buf final (Z1, Z);

Describes the topology of a circuit

All instances are executed concurrently just as in hardware
Instance name is not necessary

The first terminal in the list is an output; others are inputs

Not the most interesting modeling technique for this class

2/8/2015

xample: 1-bit full adder

module FA(A, B, Cin, S, Cout);
input A, B, Cin;

output S, Cout; Ay A B
wire s1, c1, c2; BT J
c Lbit

Coure| Full [+Cin
xor gl(sl, A, B); M:ier
xor g2(S, sl1, Cin); Cout s

and g3(c1, si1, Cin);
and g4(c2, A, B);
or g5(Cout, c1, c2);

endmodule
g g g5
.) 1 > = cou —Cout
o
a2
CnE D = =
[from Tools =» Netlist Viewers = RTL Viewer] [from Tools =» Netlist Viewers = after
technology mapping]
9

pecif;;hg values for wires and variables

* Number specification:

(<size>>)€base format\%<number9§

specifies the
number of bits

in the number

d or D for decimal Number
h or H for hexadecimal gepends on
b or B for binary the base
o or O for octal

Examples

= 4’ b1111 ™ don

, or x: don’ t care

=12 habc | Z or z: high impedence

. 16, d235 _: used for readability

= 12 h13x

= -6°d3

= 12'b1111_0060_1010

11

ata ;ypes: vectors

A net or register can be declared as vectors.
Examples:

= wire a;

= wire [7:0] bus;

= wire [31:0] busA, busB, busC;

It is possible to access bits or parts of vectors
Examples:

= busA[7]

= bus[2:0]

= virt_addr[0:2]

10

ting an array of gates

nstantia

wire [7:0] OUT, IN1, IN2;

// array of gates instantiations
nand n_gate [7:0] (OUT, IN1, IN2);

// which is equivalent to the following
nand n_gate@ (OUT[@], IN1[@], IN2[@]);
nand n_gatel (OUT[1], IN1[1], IN2[1]);
nand n_gate2 (OUT[2], IN1[2], IN2[2]);
nand n_gate3 (OUT[3], IN1[3], IN2[3]);
nand n_gate4 (OUT[4], IN1[4], IN2[4]);
nand n_gate5 (OUT[5], IN1[5], IN2[5]);
nand n_gate6 (OUT[6], IN1[6], IN2[6]);
nand n_gate7 (OUT[7], IN1[7], IN2[7]);

12

2/8/2015

odules with input | output vectors

endmodule

module fulladd4(output [3:0] sum,

output c_out,
input [3:0] a, b,
input c_in);

OR

Output [3:0] sum
Output c_out;
input [3:0] a, b;
input c_in;

endmodule

module fulladd4(sum, c_out, a, b, input c_in);

13

fernative form of module instantiation

endmodule

module FA(A, B, Cin, S, Cout);
input A, B, Cin;
output S, Cout;

wire al, a2, a3, a4, a5

FA fi1(al, a2, a3, a4, a5);

OR

FA1 f1(.Cout(a5), .S(ad), .B(a2), .A(al), .Cin(a3));

15

cm—t— L =F ek
B “HHI‘ H [

adule instantiation

module fulladd4(A, B, Cin, S, Cout);
input [3:0] A, B;

input Cin;

output [3:0] S;

output Cout;

wire C1, C2, C3;

FA f1(A[@], B[@], Cin, S[e], C1);
FA f2(A[1], B[1], C1, S[1], C2);
FA f3(A[2], B[2], €2, S[2], C3);
FA f4(A[3], B[3], C3, S[3], Cout);
endmodule

Farn
FalR

[from Tools <> Netlist Viewers = RTL Viewer]

14

Fe

[i

B

BROWN

Quartus Il builtin modules (megafunctions)

® Use megafunctions instead of coding your own logic to save time.

® Megafunctions include the library of parameterized modules (LPM)
and Altera device-specific megafunctions

‘ Use when possible!

Mg PlugIn Monager [poge 2a]

wng?
R Which hom ol cspud te o ensvead o crowe?
oL
oL
T Veiog HOL

Wl e doous wond Kt ok 7 Bromee

[T it

| e e 16

2/8/2015

é}' BROWN S
Ve’ﬁfg Part 2.

Module designed by specifying data flow: Designer is aware of how data
flows between registers and how it is processed in the design

Dataflow modeling

The continuous assignment is one of the main constructs used in dataflow
modeling

= assign out = il & i2;

= assign addr[15:0] = addrl[15:0] ~ addr2[15:0];

= assign {c_out, sum[3:0]}=a[3:0]+b[3:0]+c_in;
A continuous assignment is always active and evaluated as soon as one of its

right-hand-side variables change

Assign statements describe hardware that operates concurrently
-> ordering does not matter

Left-hand side must be scalar or vector net. Right-hand side operands can
be wires, (registers, integers, and real) 17

xamples: 2x1 MUX and 4x1 MUX

module mux2tol(s, a, b, y);
output y;

input s, a, b;

assign y=(b&s) | (a&-~s);
// OR THIS WAY

assigny =s ? b : a;

endmodule

module mux4tol(out, ie, i1, i2, i3, si1, se@);
output out;
input ie, i1, i2, i3;
output s1, sO;
assign out = (~s1 & ~s@ & i@) |

(~s1 & s0@ & il) |

(s1 & ~s0 & i2) |

(sl & s@ & i3);

// OR THIS WAY
assign out = s1 ? (s@ ? 13:12) : (s@ ? il:ie@);
endmodule

19

perd}Br types in dataflow expressions

® Operators are similar to C except that there are no ++ or —

conventions allowed.
e Arithmetic: *, /, +, -, % and **
e Logical: |, && and | |
e Relational: >, <, >= and <=
* Equality: ==, |=, === and |==
e Bitwise: ~, &, |, * and "~
e Reduction: &, ~&, |, ~|, ® and A~
e Shift: << and >>
e Concatenation: { }

e Replication: {{}}
e Conditional: 2:

18

Fe

[i

B

BROWN

/- o J [J
HLL vs. Verilog assignments

(a) 11.\'.\'ignmcm statement (b) assign statement

ordering does matter in an HLL

a=1;b=0;s=0

na = 0; nb = 0; wire na, nb;
y = na | nb; nb =b & s;
nb=Db & s; na = a & ~s; assign nb = b & s;
na a & ~s; Yy =na | nb;

assign na = a & ~s;

€ nn

1
'
I
'
1
'
. '
i3 1
'
'
g/// \ assign y < na | nb;
'
'
'
1
'
1
1
1
'

Final y value is 0. Final y value is 1.

[Example from Thornton & Reese]

ordering does not matter in Verilog

“‘~—_q___JLa

20

2/8/2015

o BROWN

HLL V;I\/_erilog assignment

(a) assignment statements in an HLL can
target the same variable

a=1;b

=0; s =0;
na=0; nb = 0;

na=b & s;

na = a & ~s;

ned twice: the final
ast assignment.

The na variable
value of na is the

(b) illegal use of assign statements

wWire na; -
assign na = b & 8; §

assign na = a & ~s;

>

Gate outputs are shorted together!

<=
SfS BROWN
El =

(a) Four-bit adder with no
carry-in or carry-out

//4-bit adder
// no carry-in, carry-out

input [3:0] a,b;
output [3:0] s;
assign s = a + b;

endmodule

Exam;;i;_of a dataflow 4-bit adder

module adddbit (a, b, s);

(b) Four-bit adder with carry-in, carry-out

//4-bit adder with carry-in, carry-out
module adddbit (ci, a, b, s, co);

input ei;
input [3:0] a,b;
output [3:0] s;

Oazazajag

output co; + 0bsbabbp
' F00 0 0 ¢
wixe (4:0). ¥ YAV Y0

//do 5-bit sum so thd

can only work with tri-state drivers

[Example from Thornton & Reese]

21

imulation using Quartus waveform editor

e N—— e
> .- e e G e)
® |ntegrated with Quartus tool for design simulation and verification
® Enables you to create waveforms easily (in binary, decimal, or
hexadecimal)
® Tutorial availalble on class webpage
® You can also use Mentor Graphics Model for simulation (but it is not
as intuitive) 23

// have access togfarry out

assign y n.{l’bo,a) + {1'b0,b} +

assign 8 = y[370];\ //four-bit output
assign co = y[4]; \//carry-out

endmodule { } is the concatenation operator

[Example from Thornton & Reese]

22

<=
SfS BROWN
o .

Verilog Part 3. Behavioral modeling

® Design is expressed in algorithmic level,
which frees designers from thinking in terms

of logic gates or data flow. reg a, b, C

o All algorithmic or procedural statements in
Verilog can appear only inside two
statements: always and initial.

initial a=1"be;

. always @*
® Each always and initial statement begin
represents a separate activity flow in b=a"1bi;

c=a+b;

Verilog. Remember that activity flows in p
en

Verilog run in parallel.

® You can have multiple initial and
always statements but you can'’t nest them.

24

2/8/2015

ata types: reg, parameter

® reg: Verilog variable type (does not necessarily imply a physical
register). Think of it as a variable or place holder. Unsigned by
default
e reg clock;
e reg[0:40] virt_addr;

® Register arrays or memotries: Used to model register files, RAMs,
ROMs. Modeled in Verilog as a 1-dimensional array of registers.

* reg memlbit[0:1023];
* reg[7:0] membyte[0:1023];

e To access an element in an memory array:
membyte[511];

® parameters: Define constants and cannot be used as variables.

e parameter port_id=5;
25

BT
initial statements
e Aninitial block start at time O, executes exactly once and then
never again.

e If there are multiple initial blocks, each blocks starts to
execute concurrently at time O and each blocks finish execution
independently of the others.

e Multiple behavioral statements must be grouped using begin and
end. If there is one statement then grouping is not necessary.

reg X, y, m;
In procedural statements (initial, initial m=1"be;
always) LHS must be of type registers
(and its derivatives) initial
begin
x = 1 b0;
y = 1'b1
end

27

ata types

® Integers: (signed and real): They are of type reg.
real delta;
integer 1i;
initial
begin
delta = 4el0;
i=4;
end
® Arrays of integers and reals:

integer count[0:7];
Integer matrix[4:0][0:255];

® Strings: can be stored in reg. The width of the register
variables must be large enough to hold the string.
reg [8*19:1] string_value;
initial
string_value = “Hello Verilog World”;

26

= '
always statements

® The always statement starts at time O and
executes the statements in the always block module mux2tol(s,a,b,y)

.. oo o . L t ,a,b;
when the events in its sensitivity list occur =Apat oy

output y;

® Powerful constructs like if, if-else, case, and eoo—

looping are only allowed inside always

blocks. //use boolean ops

always @(a or b or s)

e always statements can be used to begin

i P . y = (b & s)|(a & ~s);

implement both combinational or sequential 4

logic
® Multiple behavioral statements must be endmodule

grouped using begin and end.

® Multiple always statement can appear in

a module
28

2/8/2015

<=
Sfi5 BROWN

Sensitivity list of events

® An event is the change in the value on a
register or a net. Events can be utilized to
trigger the execution of a statement of a
block of statements.

module mux2tol (s,a,b,y);
input s,a,b;
output y;

® The @ symbol is used to specify an event
control.

reg y, na, nb;

//use intermediates
//and implicit event
//list

always @*

® For combinational logic, any net that
appears on the right side of an *“ ="

operator in the always block should be b::i“ .
= & s;
included in the event list. G S
. . y = na | nb;
® [For sequential logic] Statements ond
executed on changes in signal value or at a
endmodule

positive (posedge) or negative (negedge)
transition of the signal.
29

W BROWN

always statements

® Because of the sequential nature of an always block, the same

net can be assigned multiple times in an always block;

® The last assignment takes precedence.

(a) elr takes precedence over 1d if both are ‘1°

always @(ld or clr or d or q_old) q_old

1
begin Id cIr|q i
q = qold; 0 0|qold
if (1d) q = d5 ‘ H]:,L ‘ d
if (clr) q = 0;
— 1 0ld 0
1 110

(logic is not minimal)

B

the order assignments are written in always blocks determines how logic is

BROWN

always statements

Any net assigned within an always block must be declared reg;

* does not imply that net is driven by a register or sequential logic.

=" operator in an always block is called a blocking assignment

A latch is inferred when there is a logic path through the always block
that does not assign a value to the output

Synthesis tool assumes blocking assignments are evaluated sequentially.

synthesized.

(a) Incorrect, produces an inferred latch as | (b) Correct, produces combinational logic
no assignment is made to q if1dis *0" W

always @(1d or d) latch always @(ld or d or q_old)

|
1

begin ! begin

if (14) q-d:» d -p Q1. q = q old; ‘ 9ol

and u—e] if (1d) q = d; 4
1 end d
i
i

30

o BROWN

® Very similar to C if(alu_control == @)
° I y =X+ z;
Can also qpp?qr. |n?|de else if (alu_control == 1)
always and initial blocks y=x-z;
else if (alu_control == 2)
; y=x*z
1-F().() else
begin y = x;
y= 1'b1; ’
z= 1'bo;
- end 1
conditional ----=-=-_ N reg [1:0] alu_control;

B
Conditional statements

<

(b) 1d takes precedence over clr if both are *1°

always @(ld or clr or d or q_old)
begin

q = q old;
if (clr) q = 0; ‘
if (1d) q=d;

end

clr

=

0
1
0

- o o

I i

19

q old 0
0 -

d

d

[Example from Thornton & Reese]

31

expression

if (count < 10)
count = count+1;
else

count = 0;

| case (alu_control)
2°de 1y = x + z;
2’dl :y = x - z;
2’d2 1y = x * z;
default: y=x;

' endcase
32

2/8/2015

B

BROWN|

— =
Example: Mux4x1

module mux4xl(out, i@, i1, i2, i3, sl1, s0);
output out;
input ie, i1, i2, i3;

input si1, so;
reg out;

always @(s1 or so

or i@ or il or i2 or i3)

begin
case({s1, s0})
2°de: out = io;
2°d1: out = i1;
2°d2: out = i2;
2°d3: out = i3;
endcase
endmodule

33

<=
SfS BROWN
5

Level sensitive latch (D-Latch)

® The D-latch: an always block that makes a non-blocking
assignment (“<=") of d to g when the q input is non-zero

® When input g is O, the
always block does not
make any assignment to q
e What happens when g 1= 02

e Latch is inferred on q

Use non-blocking
assignments (“<=") as
opposed to blocking
assignments (“=") in always
blocks intended as

(a) level-sensitive storage element
(D-latch)

latch
alwvays @(g or d)

begin d p Q-4
if (g) q <= d; ‘ .
end g z

latch is transparent to changes on d
i\
—

g 1]
L

¢ follows d when g is high

Ed;tri;c};’]ered storage element (D-FF)

® The @ symbol is used to specify
event control.

Statements can be executed on
changes in signal value or at a
positive (posedge) or negative
(negedge) transition

In general, edge-trigged storage
elements are preferred to level-
sensitive because of simpler timing
requirements

® The 1-bit edge-triggered FF
provided by FPGA vendors are
DFF because of simplicity and
speed.

(b) edge-triggered storage element
(data flip-flop, or DFF)
alvays @ (posedge clk) DFF

begin
q <= d; .’ 4 —p g1
end clk—

«— capture the d input

clk !ﬁ

g follows d on rising edge of ¢lk

[Thornton & Reese]

35

sequenflcll |°g'c [from Thornton & Reese]

34

xample from problem 3 from Lab #1

module quest3(CLOCK_50, LEDR);
input CLOCK_50;
output reg [17:0] LEDR;
integer count;
always @(posedge CLOCK_50)
begin

if(count == 50000000)

begin
LEDR[@] <= !LEDR[@];
count <= 0;
end

else count <= count + 1;
end
endmodule

Addo LEDPl:rve;D
e+ \J"m-:»m
22 hockooons =
| e e
EeuAL
CLOCK_50 >
[from Tools -> Netlist Viewers -> RTL Viewer]

36

2/8/2015

SES BROWN

o e
DFF chai
(a) All of these Verilog code fragments synthezize to the same chain of DFFs

H | reg qa, gb

| | . aci
. 1 Teg qa, gb, gc; 1 always 8 (posedge clk) ga <= a;
zeg qa, gb, qo; H ys 8 (po C
lvays @ (posedge clk)!
alvays @ (posedge clk) i o '
bogin i begin . + alvays @(posedge clk) qc <= gb;
' e <= '
qa <= a; i ko B
ab <= qa; ' gb <= qa; 1vays @ (posedge clk) gb <= qa;
qo <= abi Ve
end)

reg qa, gb, qo: (b) a wire

//synthesizes to a wire a
alvays g% —

begin "

@ @) W gaghge ® —F L

o = qa; c
qe = gb; -
end [Thornton & Reese]

® Each non-blocking assignment synthesizes to a single DFF where its input is
the output of another non-blocking assignment

® The ordering of these non-blocking assignments within an always block
does not matter. 37

<22
SIS BROWN

" Loops in Verilog

for (count = @; count < 128; count = count + 1)
begin
end
count = @; Must contain a number
4= or a signal value; only
count = 9; rep(.eat(128): evaluated once at the
while (count < 128) begin - beginning
begin .
. count = count +1;
count = count +1; end
end

® |t is sometimes easier to use counts and if-then statements to
create loops
39

<=
SfS BROWN
5

Blockit;;_v;)on-bloc ing statements

(a) Blocking assignments - RHS values applied to LHS immediately

always @ (posedge clk) oS\S. iR
2 :—y\“” ql g2 [Thornton & Reese]
Q
d >

d
R

Sis

(b) Non-blocking assignments - all RHS values applied to LHS after always b

always @(posedge clk) ““‘\“:;» DFF DFF
begin, . =t e

ql q2
ql ;(:‘id; d DQ D Q!
q2'g=,ql;
i U""ih.'.\,‘h clk—p clk=p

non-blocking assignments

® Zero-delay blocking assignments: assignment from right-hand-side
(RHS) to left-hand-side (LHS) is completed w.o. any intervening Verilog
¢ The assignment blocks the execution of the other Verilog code
® Non-blocking assignments within always block: all RHS expressions
are evaluated, and only assigned to LHS targets after the always
block completes. 38

oop ;;t;iﬁsis

15.0]-1eg0

[{rou(15.0]

module loop(CLOCK_50, A, out);
input CLOCK_50;

input [15:0] A;

output reg [15:0] out;

reg [15:0] r;
reg [4:0] count;

initial out = 16'de;

always @(posedge CLOCK_50) b
begin [
oo |
r <= A;
for(count = @; count <= 16'd15; count = count+1)
begin

if (count % 2 == @) out[count] <= r[count];
else out[count] <= ~r[count];
end
end
endmodule

40

2/8/2015

10

oopﬁsﬁynfhesis with counts & if-then

module loop(CLOCK_5@, A, out);
input CLOCK_50;
input [3:0] A; s
output reg [6:0] out N
re, 3:0] r, count, B;
in%tgal ! ot]
begin

out = 4'b0;

count = 4'de;
end h'._{/

always @(posedge CLOCK_50) “

ouls. 0]-regd

always @(posedge CLOCK_5@)
begin
if (count <= 3)
begin
out <= out + r;
count <= count + 1;
end
end
endmodule

41

BROWN

Avoid combinational loops

Output oscillates: period is
dependent upon adder delay

always @+ 2
= w89 e R
a[7:0] ’s

(a) A combinational loop

y=y+a;

Output can only change on

(b) Sequential element in feedback path

/ the active clock edge
always @ (posedge clk)
e clk
y<=y+a; *
= L0 EDOEOOEDE

al7:0]

Time

[Thornton & Reese]

42

= e
Guidelines (1)
® Combinational logic:
e Use continuous assign statements to model simple combinational
logic
® Use always @(*) and blocking assignments (=) to model more
complicated combinational logic
e If an always block for combinational logic contains logic
pathways due to if-else branching or other logic constructs, assign

every output a default value at the beginning of the block.

e Ensures that all outputs are assigned a value regardless of path taken
through the logic, avoiding inferred latches on outputs.

[Thornton/ Reese & Harris]

43

Guigéilznes to avoid frustration (2)

® Sequential logic:

e Use non-blocking assignments (<=) in always blocks that are
meant to represent sequential logic

* Use posedge sensitivity to ensure DFF

® Do not make assignments to the same signal in more than one
always statement or continuous assign statement

® Avoid mixing blocking and non-blocking assignments in the
same always block.

[Thornton/ Reese & Harris]

a4

2/8/2015

11

enches in ModelSim

module tb;

= reg [7:0] a;
reg [7:0] b;
wire [7:0] c;

add_module addl(a, b, c);
initial

begin
#5 b = 20;
#10 b = 50;

$monitor("%d", c);
end

always
#10 a=$random;

always

#10 if(c %2 == 0)
$display("even\n");

B glhE ETEE—A endmodule

® Testbenches are just scripts for simulation, but are not synthesizable

® New Verilog commands enable precise timing simulation and
monitoring of outputs.
® Need to learn to work with it for Mentor Graphics ModelSim

® Optional for this class 45

:gnalf&b Il for in-system debugging

vpe A Name

[*]
<
o

® Enable debugging FPGA

® Insert probes and additional HW to capture internal signals
and relay them over JTAG USB in the form of waveform

displays

® Very valuable for identifying bugs after implementation

e See tutorial on course website

® Make sure to disable/remove signalTap after you are done

with debugging.

46

2/8/2015

12

