
ENGN2912E:		Low	Power	VLSI	System	Design	
	
Homework	Assignment	#3	
Due	November	3,	2017,	by	5pm	
This	homework	is	to	be	done	alone.	
	
	

This	 homework	 assignment	 is	meant	 to	 give	 you	 a	 better	 understanding	 of	 how	 changes	 at	 the	
algorithmic	(behavioral)	level	of	a	finite	impulse	response	(FIR)	filter	can	reduce	power	dissipation	
without	 adversely	 affecting	 the	 accuracy	 of	 the	 algorithm	 itself	 by	 allowing	 a	 controlled	
introduction	of	error	 into	 the	system.	 	A	FIR	 filter	 is	 the	most	basic	 type	of	 filter	 in	digital	 signal	
processing.		With	the	FIR	filter,	we	will	be	taking	an	impulse	function	input	and	convolving	it	with	a	
25‐tap	low‐pass	filter	coefficient	array.	

The	assignment	requires	you	start	with	a	standard	implementation	of	an	FIR	filter	(as	described	in	
behavioral‐level	Verilog)	and	design	a	new	approximate	version	of	it	that	dissipates	less	power.		In	
our	case	we	will	be	using	a	25‐tap	FIR	filter,	where	the	tap	value	indicates	the	number	of	delays	in	
the	filter.		The	tap	value	also	determines	the	memory	required,	number	of	calculations,	and	amount	
of	filtering.			

The	quality	of	an	approximate	version	of	this	design	is	assessed	using	Mean	Squared	Error	(MSE)	
and	 Normalized	 Cross‐Correlation	 (NCC).	 	 The	 frequency	 response	 of	 the	 approximate	 versions	
generated	will	be	 compared	against	 the	 “golden”	 implementation	 (implemented	 in	 software	with	
floating	point	 inputs	 for	 impulse	 input	data	and	coefficients)	 and	 its	 closeness	 is	measured	using	
both	MSE	and	NCC.	Note,	the	original	Verilog	implementation	of	the	FIR	filter	will	also	have	some	
MSE,	given	its	8‐bit	fixed	point	implementation	compared	to	the	ideal	floating	point	computations	
done	in	software.	

The	 comparison	 between	 the	 original	 and	 approximate	 versions	 of	 the	 FIR	 filter	will	 be	 done	 in	
custom	designed	hardware.		That	is,	it’s	not	the	Verilog	code	you	will	be	comparing,	but	rather,	the	
mapping	 of	 the	 two	 Verilog	 descriptions	 to	 actual	 hardware	 implementations.	 	 All	 the	 tools	 you	
need	will	be	available	on	the	CCV	machines.	

For	 this	 assignment,	 we	 will	 be	 using	 a	 mix	 of	 commercial	 tools	 as	 well	 as	 “in	 house”	 tools	
developed	 as	 part	 of	 research	 projects	 in	 our	 lab.	 	 Unlike	 the	 last	 homework	 where	 you	 were	
required	 to	 invest	 some	 time	 and	 effort	 understanding	 how	 to	 use	 the	 Cadence	 tools,	 in	 this	
homework	we	will	be	treating	these	tools	as	“black	boxes”	so	you	will	only	need	to	learn	how	to	run	
a	series	of	scripts	that	call	these	tools	to	evaluate	your	circuits.		The	design	flow	for	this	homework	
assignment	is	shown	on	the	next	page.	

The	ABACUS	tool	is	at	the	heart	of	this	design	flow.		The	idea	is	to	use	ABACUS	to	generate	multiple	
approximate	 versions	 of	 your	 original	 circuit	 and	 guide	 it	 into	 selecting	 an	 appropriate	 “best”	
design	among	all	the	circuits	generated.	 	Note	that	any	approximate	circuit	generated	by	ABACUS	
that	 is	 determined	 to	 have	 a	 change	 in	 accuracy	 beyond	 a	 certain	 threshold	 is	 immediately	
discarded	and	no	longer	considered	for	selection.		The	new	“best”	design	at	the	end	of	the	iteration	
is	then	fed	back	to	ABACUS	n	times	to	generate	new	approximate	circuits,	in	the	hope	that	the	best	
design	can	be	successively	improved	upon.		We	will	choose	to	set	n=10	for	this	assignment.	

	

		

The	Synopsys	Design	Compiler	tool	is	used	to	generate	power	and	area	estimations	for	your	circuit,	
while	a	python	script	is	used	to	compare	the	change	in	accuracy	of	the	approximate	circuit	relative	
to	the	original	design.		As	mentioned	on	the	previous	page,	accuracy	is	measured	by	comparing	the	
MSE	of	the	original	design	with	an	approximate	version.		Note	that	only	if	the	change	in	accuracy	is	
within	a	user‐defined	threshold	will	the	new	approximate	circuit	be	considered	as	a	viable	solution.		
By	checking	accuracy	first,	we	avoid	estimating	the	power	and	area	of	these	unusable	designs.		

The	fitness	evaluation	will	help	you	guide	the	process.		This	is	a	short	program	written	in	MATLAB	
that	evaluates	a	cost	function	weighing	accuracy,	power,	and	area	such	that		

ݏݏ݁݊ݐ݂݅ ൌ ߙ	 ∗ ݕܿܽݎݑܿܿܽ ߚ	 ∗ ݎ݁ݓ ߛ	 ∗ ܽ݁ݎܽ

It	is	up	to	you	to	determine	what	values	to	use	for	the	weight	parameters	α,	β,	and	γ.			

The	 final	 results	you	obtain	 for	your	approximate	FIR	circuits	will	vary	greatly	depending	on	 the	
values	you	choose	for	accuracy	threshold,	fitness	threshold	and	α,	β,	γ	parameters.		You	will	need	to	

spend	 some	 time	 tweaking	 these	 values	 to	understand	how	 they	affect	 the	 results	 and	how	 they	
may	 be	 set	 to	 generate	 the	 “best”	 approximate	 design	 possible.	 	 To	 accomplish	 this	 goal,	 follow	
these	steps:	

1. On	the	course	webpage,	you	can	find	a	tar	file	called	abacus_archive.tar	containing	a	folder	
with	everything	you	need	for	this	assignment.	Copy	this	tar	file	onto	your	home	directory	on	
the	CCV	machines.		There	are	several	ways	to	transfer	files	to	the	CCV	machines.		If	you	want	
to	use	a	GUI,	WinSCP	works	well.		For	the	host	address	use	transfer.ccv.brown.edu.	
	

2. Extract	the	files	from	the	tar	file	using:	
tar –xvf abacus_archive.tar
Once	extracted,	you	will	find	a	folder	for	the	ABACUS	tool	named	ABACUS_ENGN2912.	This	
folder	will	 contain	 several	 folders	 called	DataAnalyze,	Modified,	Original,	Population,	trunk	
and	two	scripts	to	run	the	entire	flow	‐‐‐	launch_ABACUS.sh,	and	run_ABACUS_flow.			
	

3. The	script	 file	run_ABACUS_flow	is	 the	one	you	want	to	open	and	edit.	 	Open	it	using	your	
favorite	linux	text	editor(e.g.,	Vim,	Gedit,	etc.).		Once	open,	you	will	see	accuracy	thresholds	
and	 fitness	 weight	 parameters	 defined	 from	 line	 31	 onto	 line	 38.	 You	 will	 not	 need	 to	
change	anything	besides	these	lines.			
	

4. Select	 an	 accuracy	 threshold	 for	 the	MSE.	 Keep	 the	 NCC	 threshold	 as	 it	 is.	 Note	 that	 the	
hardware	implementation	of	the	filter	already	has	an	MSE	of	76	compared	to	the	software	
floating	point	 implementation.	It	 is	advised	that	accuracy	threshold	values	range	from	76‐
200	for	the	approximate	variants.	
	

5. Select	values	for	the	weight	parameters	α,	β,	and	γ.	 	As	a	guide,	it	is	suggested	that	you	set	
these	 parameters	 such	 that	 they	 sum	 up	 to	 1.	 	 The	 relative	 difference	 between	 these	
parameters	 is	perhaps	more	 important	that	their	absolute	value.	 	Explain	and	 justify	your	
rationale	in	choosing	these	values.			
	

6. Verify	 the	 permissions	 on	 the	 following	 executable	 files:	 launch_ABACUS.sh,	
run_ABACUS_flow,	odin_II.exe	(found	 in	 ./trunk/ODIN_II/ODIN_II)	 by	 typing	ls –l	 to	 see	
permission	 status.	 	Make	 sure	 all	 3	 files	 are	 owner	 executable	 and	 change	 permission	 as	
needed	using	chmod).			
	

7. Test	 out	 the	 ABACUS	 flow	 by	 directly	 executing	 the	 script	 run_ABACUS_flow	 to	 start	 the	
circuit	synthesis	process	to	generate	an	approximate	circuit.		Before	you	do	this,	is	it	a	good	
idea	 to	 change	 lines	 25–26	 of	 the	 script	 to	 produce	 fewer	 generations	 (just	 for	 your	 test	
run).	 	Also,	make	 sure	ModelSim	 and	Design	Compiler	 are	 loaded	before	 you	 execute	 the	
script	or	you	will	get	error	messages	about	vsim	or	dc_shell	no	being	found.		These	tools	can	
be	loaded	with	the	commands:	
module load synopsys
module load modelsim/10.1a
	
Note	 that	you	will	 get	 some	error	messages	 that	LD_PRELOAD	cannot	be	preloaded.	 	You	
can	 ignore	 this.	 	The	script	will	print	out	 the	area,	power,	 and	accuracy	 information	after	
each	call	to	ABACUS	(i.e.,	after	each	of	the	n	iterations).	 	Record	area,	power,	and	accuracy	
results	for	all	designs	(i.e.,	after	the	nth	generation).			

 Area	 and	 Power	 reports	 for	 the	 original	 design	 should	 be	 stored	 under	
Original/output/	as	area_rpt	and	pwr_rpt	

 Information	 for	 approximate	 designs	 will	 be	 stored	 in	 the	 folder	
DataAnalyze/Data/FilesInfo_G<Generation>.txt.	 There	 will	 be	 a	 file	 for	 each	
generation	with	reports	about	the	MSE,	NCC,	Area	Saving%	and	Power	Saving%	
	

8. Given	the	results	you	got	for	part	7,	adjust	your	accuracy	threshold	and	repeat	step	4.		You	
may	need	to	do	this	a	few	times	to	get	a	good	understanding	of	how	you	can	best	guide	the	
process	 toward	a	good	solution.	Please	understand,	each	run	of	 the	ABACUS	flow	with	10	
generations	can	take	up	to	several	hours	(2–3),	so	plan	your	runs	accordingly.	It	may	be	a	
good	 idea	 to	 run	 the	 tool	 for	 fewer	 generations	 (again,	 by	 adjusting	 lines	 25–26	 in	 the	
script)	 to	 just	 check	 how	 your	 accuracy	 thresholds	 and	 fitness	 weights	 are	 affecting	 the	
results.	Note	that	for	your	final	results	you	must	set	the	number	of	generations	back	to	10.		
	
IMPORTANT:	 You	will	 need	 to	 allocate	 resources	 and	 time	on	 the	CCV	machine	 for	 your	
script.	These	configurations	are	already	managed	in	the	launch_ABACUS.sh	script.	Therefore,	
to	launch	the	entire	flow,	run	the	launch_ABACUS.sh	script	by	typing		
sbatch launch_ABACUS.sh		
	

9. Given	the	design	points	you	got	so	far,	 try	adjusting	the	fitness	parameters,	α,	β,	and	γ	 (as	
well	 as	 the	 fitness	 threshold)	 to	 see	 if	 you	 can	 improve	 upon	 your	 design	 further	 by	
repeating	steps	4	and	5.	
	

10. Generate	 a	 table	 showing	 threshold	 values	 used,	α,	β,	 and	 γ	 values	 and	 power,	 area,	 and	
accuracy	results	obtained	with	these	values.	 	Graph	power	savings	vs.	accuracy	for	all	 the	
designs	you	obtained	from	the	tool	as	shown	in	the	example	below:	

	

11. The	ABACUS	toolflow	automatically	produces	pdf	images	of	the	impulse	response	and	filter	
response	of	the	approximate	designs	compared	to	the	ideal	floating	point	implementation.		
Print	out	these	results	for	what	you	consider	the	five	best	designs.		These	pdf	files	are	saved	
in	the	DataAnalyze	folder	as	figure_G<Generation>F<fileno.>.pdf	
	

12. Include	 a	 comprehensive	 discussion	 on	 your	 results.	 	 How	did	 adjustments	 in	 parameter	
values	and	 thresholds	change	your	results?	 	What	was	your	rationale	 for	 the	adjustments	
throughout	the	process?		What	design	would	you	consider	best	and	why?	
	

More	 about	 the	 ABACUS	 tool	 can	 be	 found	 in	 the	 following	 publications.	 	 Their	 content	may	 be	
helpful	in	completing	this	assignment:	

‐10

‐5

0

5

10

15

0 100 200 300

P
o
w
e
r
Sa
vi
n
g
%

MSE

[1] K.	Nepal,	Y.	Li,	R.	 I.	Bahar,	and	S.	Reda,	 “ABACUS:	 	A	Technique	 for	Automated	Behavioral	
Synthesis	 of	 Approximate	 Computing	 Circuits,”	 ACM/IEEE	Design	Automation	and	Test	 in	
Europe,	March	2014.	

[2] Kumud Nepal, Soheil Hashemi, Hokchhay Tann, R. Iris Bahar, Sherief Reda, “Automated High-
Level Generation of Low-Power Approximate Computing Circuits,” IEEE Transactions on
Emerging Topics in Computing (TETCSI), Aug. 2016.	

