

SIA Roadmap for Processors (1999)						
Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Logic transistors/cm ²	6.2M	18M	39M	84M	180M	390M
Clock (GHz)	1.25	2.1	3.5	6.0	10.0	16.9
Chip size (mm²)	340	430	520	620	750	900
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf. Power (W)	90	130	160	170	175	183
<u> </u>		S	Source: <u>h</u>	ttp://wwv	v.semich	l lips.orœ

FROWN

$$i(t) = C \frac{dv(t)}{dt} = \frac{[V - v(t)]}{R}$$

$$\frac{dv(t)}{dt} = \frac{V - v(t)}{RC}$$

$$\int \frac{dv(t)}{V - v(t)} = \int \frac{dt}{RC}$$

$$\ln[V - v(t)] = \frac{-t}{RC} + A$$
Initial condition, $t = 0$, $v(t) = 0 \rightarrow A = \ln V$

$$v(t) = V[1 - e^{\frac{-t}{RC}}]$$
EN2912
Lecture 1-24

FROWN

$$v(t) = V[1 - e^{\frac{-t}{RC}}]$$

$$i(t) = C \frac{dv(t)}{dt} = \frac{V}{R} e^{\frac{-t}{RC}}$$
EN2912
Lecture 1.25

EXAMPLE
Total Energy Per Charging
Transition from Power Supply

$$E_{trans} = \int_{0}^{\infty} Vi(t)dt = \int_{0}^{\infty} \frac{V^{2}}{R} e^{\left(\frac{-t}{RC}\right)} dt$$

$$E_{trans} = CV^{2}$$