
1

Low Power VLSI System Design
Lecture 10: Low Power Memory Design

Prof. R. Iris Bahar
EN2912

October 11, 2017

EN2912
2

SRAMs to Memory

• Last lecture focused on the SRAM cell and the 2D or 3D
memory architecture built from these cells

• Several techniques can be used to reduce power
– Reduce the bit line voltage swing
– Isolate memory cells from the bit lines after sensing
– Use pulsed word lines
– Block addressing
– Sleep transistors

• How to these techniques fit into the “bigger picture” of memory
design?

EN2912
4

Memory Hierarchy

CPU Cache
Main
memory

Secondary
memory

Levels
L1, L2, …
(hardware
implementation,
SRAMs)

Virtual memoryRegisters

(software implementation)

Memory access is checked in fast caches first before
resorting to slow memory at lower levels.

Hierarchical
organization makes
memory look large
and fast

EN2912
5

Locality

• Locality is a principle that makes having a memory hierarchy a
good idea

• If an item is referenced,
– temporal locality: it will tend to be referenced again soon
– spatial locality: nearby items will tend to be referenced soon.

• Why does code have locality?
– loops
– instructions accessed sequentially
– arrays, records

2

EN2912
6

Direct Mapped Cache

• Simple approach: Direct mapped
– block size is one word
– every main memory location can be mapped to exactly one cache

location
– lots of words in the main memory share a single location in the cache

• How is the address composed for the cache?
– cache address is identical with lower bits in the main memory address
– tag (higher address bits) differentiates between competing main

memory words

• We are taking advantage of temporal locality.

EN2912
7

Direct Mapped Cache Example

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

EN2912
8

Cache Access
A d dre ss (s h ow ing b it pos it io ns)

20 10

Byte
offset

V a lid T ag D a taIn de x

0

1

2

10 21

10 22

10 23

T a g

Ind ex

H it D ata

20 32

3 1 30 1 3 12 11 2 1 0

EN2912
11

Flexible Placement of Blocks
• Direct mapped cache

– a memory block can go exactly in one place in the cache
– use the tag to identify the referenced word
– easy to implement, but rigid placement can cause high miss rate

• Fully associative cache
– a memory block can be placed in any location in the cache
– search all entries in the cache in parallel
– requires a comparator associated with each cache entry

• Set-associative cache
– a memory block can be placed in a fixed number of locations
– n locations: n-way set-associative cache
– a block is mapped to any of n locations in a set
– Requires searching all locations of the set

3

EN2912
12

Types of Cache Misses

• Compulsory misses: happens the first time a memory word is
accessed
– the misses for an infinite cache

• Capacity misses: happens because the program touched many
other words before re-touching the same word
– the misses for a fully-associative cache

• Conflict misses: happens because two words map to the same
location in the cache
– the misses generated while moving from a fully-associative to a direct-

mapped cache
EN2912

13

Locating a Block

• Address portions

– Index selects the set.
– Tag chooses the the block by comparison.
– Block offset is the address of the data within the block.

• The costs of an associative cache
– comparators and multiplexers
– time for comparison and selection

block offsetindextag

EN2912
14

4-Way Set-Associative Cache
Address

22 8

V TagIndex

0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4 - to -1 m ultip lexor

H it Data

123891011123031 0

EN2912
15

9-T CAM Cell

match

WL
!BL BL

M2M3

 Writes progress as in a
standard SRAM cell

 Compares the stored data
(Q and !Q) to the bit line
data
 Precharged match line tied

to all cells in a row
 If Q and BL match, x is

discharged through M2 or
M3 and thus M1 is OFF
keeping the match line high

 Else if Q and BL don’t match,
x is charged to VDD – VT and
the match line discharges

Q !Q
x

M1

4

EN2912
16

4x4 CAM Design

Read/Write Circuitry

Hit

match[0]

match[1]

match[2]

match[3]

match/write data

WL[0]

WL[1]

WL[2]

WL[3]

precharge/match

WL[0]
of data array
(implemented
as a standard
SRAM)

0

1

1

1

1

 1

0

 0

 1

 0

 0

1 1 0 0

1 0 1 1

1 1 1 0

0 0 0 0

1 0 1 1

 1

What is this function?

EN2912
17

Content addressable memories
• Memories addressed by their content. Typical applications include

cache tags, translation lookaside buffers (TLBs), and instruction
queues.

Address issued by CPU (page size = index bits + byte select bits)

Tag Data

=

Tag Data

=

Hit Desired word

VA Tag PA

Most TLBs are small
(<= 256 entries)
and thus fully associative
(CAM implementation)

Hit

2way Associative Instruction Cache

EN2912
18

Issues for
Set-Associative Caches

• Set-associative caches have a significant HW overhead
• Tag lookup is more complicated
• The CPU would like the data as soon as possible

– For direct mapped caches, there is only one choice of which data to
send

– What about a set-associative cache?

• Can you send the data to the CPU before the tag has been
checked?

• What about power concerns?

EN2912
19

Saving Power by Understanding
Memory Needs of Application

• Depending on the applications, cache misses may be
predominantly capacity, conflicts, or compulsory

• Depending on the application, the working set may be large or
small

• IDEA: Allocate only enough caching resources as application
demands
– Unused portions are gated and powered off
– Reconfigure associativity to meet power/performance needs

• Can save both dynamic and static (leakage) power

• How do you know what the resource needs of your
application are?

5

EN2912
20

Saving Power by Understanding
Data Access Behavior

• General nature of cache line usage:
– cache lines typically have a flurry of frequent use when first brought into

the cache, and then have a period of “dead time” before being evicted.

• What’s the cost of holding these unused lines in the cache?
• IDEA: Turn off cache lines that are no longer useful

– Shut off power supply to cache line save leakage energy

• How do we know when a cache line is no longer useful?
– Keep track of the last time it was accessed

• What factors do we have to consider to implement this scheme?
– What happens to data stored in the cache line?
– What if our “usefulness estimator” is wrong?

EN2912
21

Saving Power by Understanding
Cache Locality Behavior

• General nature of accesses within a cache:
– during a fixed period of time the activity in a cache is only centered on

a small subset of the lines.

• Not all lines need to be accessed right away
• IDEA: Keep the “hot lines” in active mode and the “cold lines”

in a standby state
– Standby state does not erase current data

• What is the cost of re-accessing cold lines?
• How does this compare in terms of performance and power to

gating off Vdd?

EN2912
22

Saving Power at the Architecture
Level

• The cache is a major source of power dissipation for a
microprocessor

• But it’s not the only source
• What about other resource structures within a microprocess?

EN2912
23

Microprocessor Pipeline

6

EN2912
24

Instruction Level Parallelism

• Instruction-level parallelism: overlap among instructions: Due to
pipelining or multiple instruction execution

• What determines the degree of ILP?
– dependences: property of the program
– hazards: property of the pipeline

• Upper Bound on single Pipeline Throughput
Limited by IPC = 1

• Inefficient Unification Into Single Pipeline
Long latency for each instruction

• Performance Lost Due to Rigid Pipeline
Unnecessary stalls

EN2912
25

Stalls in an Inorder Pipeline

Instructions are in order
with respect to any one
stage i.e. no dynamic
reordering

Stalled InstructionBypassing
of stalled

instruction
NOT

allowed

Backward
propagation of
stalling

EN2912
26

Architectures for
Instruction-Level Parallelism

Scalar Pipeline (baseline)

Pipeline Depth = D

Operation Latency = 1

Peak IPC = 1

1
2 3 4

5 6

IF DE EX WB

1 2 3 4 5 6 7 8 90

TIME IN CYCLES (OF BASELINE MACHINE)

SU
C

C
ES

SI
VE

IN
ST

R
U

C
TI

O
N

S

D

EN2912
27

Superpipelined Machine
Superpipelined Execution

Instruction Parallelism = DxM
Operation Latency = M minor cycles
Peak IPC = 1 per minor cycle (M per baseline cycle)

1
2

3
4

5

IF DE EX WB
6

1 2 3 4 5 6

major cycle = M minor cycles
minor cycle

7

EN2912
28

Superscalar Machines
Superscalar (Pipelined) Execution

Instruction Parallelism = DxN

Operation Latency = 1 baseline cycles
Peak IPC = N per baseline cycle

IF DE EX WB

1
2
3

4
5
6

9

7
8

N

EN2912
30

Limitations of Inorder Pipelines
• Clocks per Instruction (CPI) of inorder pipelines degrades very

sharply if the machine parallelism is increased beyond a
certain point, i.e. when NxM approaches average distance
between dependent instructions

• Forwarding is no longer effective
 must stall more often

» Pipeline may never be full due to frequent dependency stalls!!

IF DE EX WB

1
2
3

4
5
6

9

7
8

EN2912
31

In-order Issue into
Diversified Pipelines

• • •

• • •

• • •

• • •

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3
Issue stage needs to check:

1. Structural Dependence
2. RAW Hazard
3. WAW Hazard

Inorder
Inst.

Stream

EN2912
32

Out of Order Execution -
General Scheme

Fetch &
Decode

Instruction
pool

Retire
(commit)

In-order In-order

Execute

Out-of-order

Many high performance processors use out of order
execution. Most of them are doing the fetching and the
retirement IN ORDER, but it executes in OUT OF ORDER

8

EN2912
33

A Modern(ish) Superscalar Processor

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

In
 O

rd
er

O
ut

 o
f

O
rd

er
In

 O
rd

er

Completion Buffer

EN2912
36

Out of Order Execution

• Execute instr. based on “data flow” rather than program order.
• Basic idea:

– The fetch is done fast enough to “fill-out” a window of instructions.
– Of all instructions in the window, look for those ready to execute:

• All the data the instructions are dependent on, are ready
• Resources are available.

• As soon as the instruction is executed it needs to signal to all
the instructions which are depend on it that the input is ready.
– Triggers “wake-up” and “instruction select” for next cycle

• Advantages:
– Help exploit Instruction Level Parallelism (ILP)
– Help cover latencies (e.g., cache miss, divide)

EN2912
37

The Cost of Speculation

• How does the processor find enough “ready” instructions?
– Look beyond branch boundaries

• Modern processor have fairly sophisticated branch prediction
mechanisms (in HW and SW)

• Front end fills instruction window with instructions down path of
predicted branch

• What happens if the branch prediction is wrong?
• What is the cost in terms of performance and power of

keeping these “wrong path” instructions in the instruction
window?

EN2912
38

Reducing Mis-speculated Instructions
to Save Power

• Executing wrong path instruction is a waste of power
– Does nothing to improve effective IPC either

• IDEA: if branch prediction becomes too speculative, don’t
bother continuing to fetch instruction past branches
– Fetch unit stops reading new instructions from the cache
– Instruction window does not take new instructions
– Instruction execution rate may slow, but only until predicted branches

have been resolved

• How do we know if an instruction flow has become “too
speculative”?
– What do we need to monitor?

9

EN2912
39

Pipeline Gating

• Low-confidence branch counter records # of unresolved
branches that reported as low-confidence.

• The processor ceases instruction fetch if there are more than N
unresolved low-confident branches in the pipeline.

