
1

Low Power VLSI System Design
Lecture 13 & 14: Low Power Multicore and

Approximation for Low Power
Prof. R. Iris Bahar

EN2912
October 23 & 25, 2017

EN2912
2

The HW/SW Interface Seminar Series
Jointly sponsored by Engineering and Computer Science

“Hardware-Software Co-design for
Approximate Computing”

Natalie Enright Jerger
Department of Electrical and Computer Engineering

University of Toronto

October 23, 2017
Noon‐1pm
Barus & Holley 190

Lunch will be provided

EN2912
3

Reducing Mis-speculated Instructions
to Save Power

• Executing wrong path instruction is a waste of power
– Does nothing to improve effective IPC either

• IDEA: if branch prediction becomes too speculative, don’t
bother continuing to fetch instruction past branches
– Fetch unit stops reading new instructions from the cache
– Instruction window does not take new instructions
– Instruction execution rate may slow, but only until predicted branches

have been resolved

• How do we know if an instruction flow has become “too
speculative”?
– What do we need to monitor?

EN2912
4

Pipeline Gating

• Low-confidence branch counter records # of unresolved
branches that reported as low-confidence.

• The processor ceases instruction fetch if there are more than N
unresolved low-confident branches in the pipeline.

2

EN2912
5

Do We Need Wide Issue Machines?

• Many programs never achieve IPC values close to the maximum
issue of the machine
– Branch Misprediction
– Dependency Chains
– Cache Misses

• Overall IPC is not indicative of superscalar needs of a program

EN2912
6

Varying Program Needs

• This program shows a nearly 3X difference in IPC across
successive snapshots of the program execution

EN2912
7

Partitioned Cluster Architecture

• Instructions share the fetch,
decode and renaming units

• There is a steering logic that
sends instructions to different
clusters based on scheduling
algorithm

• There is a bypass logic
between the two clusters.

EN2912
8

Clusters

• Each cluster has 5 reservation
stations (RS) feeding 8 special-
purpose functional units.

• The RS hold 8 instr. and permit
out-of-order instruction selection.

• Small clusters reduce complexity
of wake-up and instr. select logic

• Intra-cluster communication is
done in the same cycle as
instruction dispatch.

• Forward data to other clusters
takes at least 2 cycles.

3

EN2912
9

The Pipeline Balancing Approach

• Monitor the varying issue requirements of each program
– Overall issue rate
– Floating point issue rate
– History of past behavior

• IDEA: Tune processor issue and execution resources according
to the needs of the program

• Goal: Reduce power, retain performance

EN2912
10

Our 8-Wide Issue Processor Model

arbiter1
arbiter2

arbiter0

arbiter3

se
ct

io
n0

4 INT, 2 FP, 2 MEM

Register
Rename
Unit

Commit
Unit

Commit
Unit

DCacheDCache
PLB
Monitors

128-entry
Unified
Issue Queue

Left Cluster
Functional UnitsLeft

Register
File

se
ct

io
n1

se
ct

io
n2

se
ct

io
n3

Right
Cluster

Left
Cluster

arbiter3
arbiter2

4 INT, 2 FP, 2 MEM

arbiter0
arbiter1 Right Cluster

Functional UnitsRight
Register
File

EN2912
11

Triggering PLB by Tracking Issue
IPC

• Switch to 4-, 6-, or 8-
wide issue depending
on issue IPC of
previous sampling
window

0

2

4

6

8

1 3 5 7 9 11 13 15 17

Sample Window

Issue Width Issue IPC

EN2912
12

Instruction-Level Parallelism

• When executing a single program, how many independent
operations can be performed in parallel

• How have we taken advantage of ILP so far?
– Pipelining

• overlap different stages from different instructions
• limited by divisibility of an instruction and ILP

– Superscalar
• overlap processing of different instructions in all stages
• limited by ILP

4

EN2912
13

Limits to Superscalars

• Window/register size, branch prediction, and memory access
all influence the IPC of an application.

• There is a limit to the amount of parallelism that can be
extracted from a single processor.

• We can try to improve IPC further with better compilers, value
prediction, memory dependence prediction, multi-path
execution, etc., but all these increase the complexity of the
processor greatly.

• What about power dissipation? EN2912
16

Making Multicore Power Efficient

• For workloads having data and task parallelism that can be
accelerated by multithreading and multiprocessing, there is a
nearly linear speedup with increasing cores

• Use a shared cache
– Separate dedicated L2 caches are too power hungry

• Use low-clock speed processors
• Use Heterogeneous processors on a single die

– High-performance processor used only when needed

• Use Demand-Based Switching (DBS)
– Lower frequency and voltage during periods of low computing demand

EN2912
17

Asymmetric Multiprocessing

• IDEA: have each core expend a varying amount of Energy per
Instruction (EPI) by varying individual processor voltage and
frequency based on the available thread-level parallelism

• Use EPI Throttling
– The more cores in use the lower the frequency/voltage of each.
– parallel phases of code are dynamically assigned to low EPI cores
– sequential phases are assigned to high-EPI cores

• Can afford to run at higher clock for sequential phases since
power is saved during parallel phases.

EN2912
19

Centralized Shared Memory (SMP)

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

5

EN2912
21

Processors
& Caches

Memory I/O

Processors
& Caches

Memory I/O

Processors
& Caches

Memory I/O

Processors
& Caches

Memory I/O

Interconnection network

Directory Directory Directory Directory

Distributed Memory Multiprocessors

EN2912
30

The MESI Protocol

• To provide cache consistency on an SMP, data cache often use
the MESI protocol
– 2 status bits associated per tag to indicate 1 or 4 states:

• Modified: line has been modified and is available only to this
cache. Main memory has stale data.

• Exclusive: line is the same as in main memory, but is not
present in any other cache.

• Shared: line is the same as in main memory and may be
present in other caches.

• Invalid: line does not contain valid data

EN2912
31

Performance Improvements

• What determines performance on a multiprocessor?
– What fraction of the program is parallelizable?
– How does memory hierarchy performance change?

• New form of cache miss: coherence miss
– such a miss would not have happened if another processor did not write

to the same cache line

• False coherence miss: the second processor writes to a different
word in the same cache line
– this miss would not have happened if the line size equaled one word

EN2912
32

Simplifying Assumptions
• All transactions on a read or write are atomic

– on a write miss, the miss is sent on the bus, a block is fetched from
memory/remote cache, and the block is marked exclusive

• Potential problem if the actions are non-atomic: P1 sends a write
miss on the bus, P2 sends a write miss on the bus:
– since the block is still invalid in P1, P2 does not realize that it should write

after receiving the block from P1
– instead, it receives the block from memory

• Fix by keeping track of more state:
– Don’t acquire the block unless all outstanding transactions have completed

6

EN2912
33

Bank Account Example
• Alice and Bob open a shared bank account
• Their initial balance is $0
• Each deposits $100

• We would expect that the balance now be $200

Bob:
Read (Balance)

Balance += $100

Write (Balance)

Balance = $0

Alice:
Read (Balance)

Balance += $100

Write (Balance)
EN2912

34

Bank Account Example

Bob:

Read (Balance)
Balance += $100

Write (Balance)

Balance = $0

Alice:
Read (Balance)
Balance += $100

Write (Balance)

Balance = $100

EN2912
38

Synchronization

• Enable atomic execution of a critical section
• Atomic execution:

– All sub-operations are performed as one unit without interference from
other operations

– Either all operations or none are performed

• A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

• Rely on hardware supplied primitives to implement locks
• Lock == 1 lock is taken

Lock == 0 lock is free

EN2912
39

Multiprocessor Synchronization
• Focus: Shared Memory Model (widely accepted)
• Common Approach: Lock-based Synchronization

– Idea: mutual-exclusive access to shared data (i.e., critical sections)

No
Concurrency

7

EN2912
42

Multicore Synchronization vs.
Parallelism

• Remember why we turned to multicore rather than wider-issue,
superscalar single cores?

• But to make multicore worthwhile we need:
– High Levels of Parallelism among the cores.

• Locks are basically serializing execution among the cores.
– Hampers performance
– Wastes power (spinning on locks)

• Can we make synchronization more efficient?

EN2912
43

Transactional Programming
• Key Features:

– Optimistic (i.e., concurrent) execution of critical sections
– Threads run in isolation
– Atomicity (roll-back in case of conflict)

• Remember: locks are conservative and assume threads
will conflict, even if they are modifying different pieces of
data within the same memory structure

Full
Concurrency

EN2912
45

Transactional Memory Scheme

L1 TC/
VC

CORE

BUS

PRIVATE
MEM

BUS MASTER BUS MASTER BUS MASTER BUS MASTER

SHARED
MEMORY

TC/
VC

CORE

L1 TC/
VC

CORE

L1 TC/
VC

CORE

Bloom Module

…

…

L1

PRIVATE
MEM

PRIVATE
MEM

PRIVATE
MEM

EN2912
46

Managing Memory Contention

• The Bloom Module keeps track of all reads/writes to different
cores

• If more than one transaction writes to the same data address,
this is a synchronization conflict
– At least one transaction will need to ABORT and RETRY

• On an abort
– Stop execution
– Restore state of processor core to beginning of critical section
– Wait
– Retry execution

• What does this imply for performance and power?

8

EN2912
47

Experimental Results
• STAMP benchmarks

– Performance comparison with locks

core count

EN2912
48

Experimental Results
• STAMP benchmarks

– energy consumption comparison with locks

EN2912
49

Making Multicore Power Efficient

• For workloads having data and task parallelism that can be
accelerated by multithreading and multiprocessing, there is a
nearly linear speedup with increasing cores

• Use a shared cache
• Use low-clock speed processors
• Use Heterogeneous processors on a single die

– High-performance processor used only when needed
– Specialized HW can be used to perform some computations

• Use Demand-Based Switching (DBS)
– Lower frequency and voltage during periods of low computing demand

EN2912
50

Asymmetric Multiprocessing
• IDEA: have each core expend a varying amount of Energy per

Instruction (EPI) by varying individual processor voltage and
frequency based on the available thread-level parallelism

• Use EPI Throttling
– The more cores in use the lower the frequency/voltage of each.
– parallel phases of code are dynamically assigned to low EPI cores
– sequential phases are assigned to high-EPI cores

• Can afford to run at higher clock for sequential phases since
power is saved during parallel phases.

• Some core can run at lower voltage, but there is a limit to
voltage scaling before timing and computation errors are
introduced.

9

EN2912
51

Heterogeneous Processing using
Custom Circuits

• Custom circuits (accelerators) can lead to the best performance
and energy-efficient computing implementations

 deployed as IP blocks in SoCs
 used as custom instructions in CPUs
 deployed in FPGAs
 leads to heterogeneous computing
 will be prevalent in dark silicon scenarios

ARM11 core

Image signal
processor

GPU

HD video
processor

UART USB

FLASH

memory
controller

security
engine HDMI

EN2912
52

Does All Computing Need to be
Accurate?

• Some applications have inherent error resilience
– Signal processing
– Computer vision
– Machine learning
– Big data

• Used in diverse applications
– video games
– Embedded cognitive systems
– Robotics
– Unmanned autonomous vehicles

EN2912
53

Approximation via Voltage Scaling

Goal: Trade-off quality of solution to reduce power dissipation

• Dynamic voltage scaling beyond the specifications
– Major power savings occur because dynamic power is reduced by a factor

of Vdd2

– Only Vdd is scaled down, not frequency so performance remains the same
– May introduce intermittent timing errors (or even catastrophic errors)
– May require error detection and (optional) correction circuitry
– Need to determine if errors are critical or not
– May need to (probabilistically) characterize magnitude of error

EN2912
54

Approximation via Custom Circuitry

Goal: Trade-off quality of solution to reduce power dissipation

• Approximate circuit design by construction
– Error can be (deterministically) controlled
– Simpler (approximate) design can deduce design area save power
– Simpler design can mean faster clock time
– Less flexibility: circuit can only produce approximate result.

10

EN2912
55

How can we use Approximate
Circuits to our Advantage?

• Low power / low area

• High throughput

• Dynamic power management

• Concurrent error detection and correction

EN2912
56

Approximate Circuit Use #1

• Approx. Circuit is less complex
• Low power / low area

exact circuit approx
circuit

EN2912
57

Approximate Circuit Use #2

• Small, less complex approximate version can be replicated
multiple times
– Similar to the multicore idea

• High Throughput
– Run multiple circuits in parallel!

exact circuit

Approx.
circuit

Approx
. circuit

Approx.
circuit

Approx.
circuit

EN2912
58

Approximate Circuit Use #3

• Sometimes we may need the extra accuracy
• Dynamically switch between the two modes as needed
• Save power when using the approximate version

11

EN2912
59

Approximate Circuit Use #4

• Sometimes there can be a “single event upset” (SEU) that
causes a circuit to temporarily function incorrectly

• A typical approach to error resilience is to duplicate the circuit
or use Triple Modular Redundancy

• Duplicating a full version of a circuit can be very costly in terms
of area and power

• Instead, use an appox. version

Approx.
circuit

original
circuit

inputs bounded
error

checker

error

outputs

EN2912
61

ABACUS: Automated Behavioral
Approximate Circuit Synthesis

• Automated high-level
approximate circuit synthesis

• Enables large-scale
approximations

• Error is controllable
• No prior application-specific

knowledge is required
• Approx. synthesis is transparent to

the design flow (ASIC or FPGA)

simula on compila on
& synthesis

original design files

testbenches

variant 1 variant 2

power

accuracy

original
design

variants

ASIC
or FPGA

design flow

EN2912
63

How does ABACUS work?

ABACUS overall approach:
1. Capture input design HDL in the form of Abstract Syntax

Tree (AST).
2. Analyze the AST and modify it to generate approximate

variant approximate ASTs
3. Convert the AST to HDL and push through the design for

evaluation

original exact
design description

AST modified AST approximate
design description

EN2912
64

Two Key Questions:
original exact

design description
AST modified AST approximate

design description

1. What kind of transformations can be applied to the ASTs?
power

accuracy

original
design

variants

2. How do we avoid the exponential increase in design
search space resulting from these transformations?

12

EN2912
65

1. Approximate Hardware
transformations

1. Data type simplifications
e.g.: Truncate some least significant bits and shift results

2. Operation transformations
e.g.: replace an adder with an approximate adder

3. Arithmetic expression transformations
e.g:

4. Variable to constant substitutions
e.g: analyze signals and substitute by a constant if standard dev. is low

5. Loop transformations
e.g.: unroll loop apply 1-4 transformations; substitute result of one

iteration from previous iterations

EN2912
66

2. Stochastic Greedy Design
Space Exploration

power

accuracy

original
design

variants

0. Let current design be original design.
Repeat for multiple generations:
1. Assign probabilities for various transformations.
2. Apply transformations randomly at applicable locations on current design.
3. Evaluate designs for accuracies.
4. Synthesize designs that pass accuracy threshold.
5. Rank the designs based on a combined objective of power and accuracy.
6. Retain the best designs as the current designs for the next generation.

EN2912
67

Experimental results

0.0

5.0

10.0

15.0

20.0

25.0
30.0 30.1 30.2 30.3 30.4 30.5 30.6

Po
w
er
 S
av
in
g
(%

)

PSNR (dB)

Block Matcher ‐10.0

0.0

10.0

20.0

30.0

40.0
75.0 80.0 85.0 90.0 95.0 100.0

Po
w
er
 S
av
in
g
(%

)

Accuracy (%)

FIR
0.0

10.0

20.0

30.0

40.0

50.0

60.0
60.0 65.0 70.0 75.0 80.0 85.0

Po
w
er
 S
av
in
g
(%

)

Accuracy (%)

Perceptron

• Evaluated on three representative
designs using standard 45 nm ASIC
flow (Synopsys Design Compiler and
MentorGraphics ModelSim).

0%

10%

20%

30%

40%

50%

60%

FIR Perceptron block
matching

Po
w
er

 sa
vi
ng
s

EN2912
70

Original circuit description
(Verilog)

testbench
Input data
(Verilog)

multiple
approximate

circuits
(Verilog)

ABACUS

Synopsys
Design

Compiler
area/power
estimations

ModelSim Accuracy
(orig.

circuit)

ModelSim
accuracy

comparison
(PYTHON)

Within
Accuracy
Threshold?

Synopsys
Design

Compiler

yes

no

discard design
Fitness

Evaluation
(MATLAB)Best fit

approx,
circuit

(Verilog)

N=10
iterations
completed

?

no

N=N+1

yes

end

Homework #3

