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ABSTRACT--Optical interference moir~ methods are analyzed 
using Fraunhoffer diffraction theory to relate general large 
surface deformations to the fringes observed. This analysis 
determines the Almansi strain in the current configuration from 
the gradients of the fringe number function. The analysis 
shows the advantages of an experimental scheme that allows 
the virtual reference grating to be varied. The ability to vary 
the virtual reference grating results in a larger dynamic range 
and the ability to maintain a fringe spacing for maximum 
accuracy. A moir~ microscope has been constructed which 
has this ability. Digital image processing coupled with optical 
filtering and phase control is used to enhance the accuracy of 
the fringe measurements. The variable virtual-reference-grating 
capability is demonstrated by using it to highlight several 
aspects of the deformation field near a crack tip in a single 
crystal of iron-silicon. 

Introduction 
Applications of moir~ methods have been advanced 

since Foucault' first used it for testing lenses and optical 
systems in 1859. Tolenaar, ~ in 1945, gave a geometrical 
interpretation of  the moir~ effect for strain analysis. 
Morse, DureUi and Sciammarella 3 gave a more complete 
analysis of  geometrical moir6 in 1960. Since then geom- 
etrical-interference moir6 has been explained by many 
different authors in monographs, for example Theocaris, 4 
Durelli and Parks, 5 and in chapters of handbooks, such as 
Parks 6 and Chiang. 7 An early (1956) treatment of  the 
diffraction aspects of moir~ was presented in Guild's 
monograph. 8 Since the development of  laser and micro- 
fabrication technologies for the production of fine gratings 
in the 1970's, optical-interference moir~ methods (defined 
below) are now well established and provide far more 
sensitivity than conventional geometrical interference 
moir6. Recently optical interference moir~ has also been 
used and discussed by many others. For example, a 
description of interference moir6, for small deformations, 
was presented by Post2 McKelvie 1~ has discussed the 
influence of  diffraction and aperture size in imaging 
systems on the accuracy of optical-interference moire. In 
the future, nonconventional applications may require 
geometrical-interference moir6 using electron microscopy 
to provide even higher sensitivity. Even though the 
mathematical relationship between the fringes and the 
displacement field is basically the same for both geom- 
etrical and optical interference moir~ methods, they are 
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fundamentally different from the view point of the 
optical-image formation system. 

Moir6 methods can be broken down into two categories: 
geometrical-interference moir~ and optical-interference 
moir6. The most familiar kind of moir~ is geometrical- 
interference moir6, which can be performed with coarse 
gratings (or grids). Usually two gratings are employed, 
one on the specimen and a reference (or interrogation) 
grating. This method may be analyzed with simple 
geometrical arguments ignoring the wave nature of  light 
as explained in the next section. In the method of  optical- 
interference moire, on the other hand, the specimen 
grating used has a spacing that produces a diffraction 
angle so large that the imaging system cannot (or is 
designed not to) collect all of  the diffraction orders 
simultaneously�9 This method takes advantage of the 
diffraction phenomena by illuminating the specimen 
grating with two beams of coherent light and then inter- 
fering two of  the diffracted beams to produce a fringe 
pattern. If  the two illumination beams are assumed to 
interfere producing a virtual reference grating which then 
acts as a reference grating as in the geometrical-moir~ 
method, erroneous analysis will result. The proper analysis 
uses diffraction theory to derive the relationship between 
the specimen deformation and the fringes observed. This 
analysis is presented here. This analysis shows that for a 
given specimen-grating spacing the sensitivity of the method 
is determined by which diffraction orders are interfered. 

�9 J The sensitivity of  geometrical moire without fringe 
multiplication is the lowest sensitivity that is possible 
using optical-interference moire. The optical-interference 
method is IN-MI times as sensitive as the geometrical 
moir~ when Nth order and Mth beams are interfered 
(usually, one of  N and M is negative). 

As mentioned earlier, previous descriptions of optical- 
interference moir~ (in Ref. 9 for example) are limited to 
small deformation kinematics, so that its application was 
mainly limited to elastic deformations. In this paper, 
optical-interference moir~ is analyzed using large deforma- 
tion kinematics aimed at applications involving plasticity. 
The important aspects of plasticity include (1) the deforma- 
tion is usually large, (2) the stress state is dependent on 
the loading (or deformation) history, (3) the deformations 
can be highly inhomogeneous, for example localizations 
can occur, (4)the rotations of  material and the plastic 
spin are important and can be large. In this paper, a 
moir~ microscope is introduced, which has the capability 
to measure these types of  deformations. To remove the 
dependence of  the linear strains on rigid rotations, the 
Almansi strains, which are rotationally invariant, are 
calculated. In addition, a new digital-processing technique 
coupled with the front-end optical control is introduced 
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to increase the accuracy in determining curves of  constant 
fringe phase. Finally, the moir6 microscope is applied to 
the measurement of  plastic-deformation field near the 
crack tip of  an iron-silicon single crystal. Only moir~ 
fringes of  the plastic-deformation field are discussed in 
this paper. 

After reviewing the results for geometrical moire, a 
mathematical analysis of the fringe formation in optical- 
interference moir~ is presented in the following section. 
The relationship between the fringes and the surface 
Almansi strain is given next. The moir~ microscope is 
described and the digital image processing employed is 
briefly discussed. The advantages of  an adjustable virtual 
reference grating for examination of  the deformation field 
near a crack tip in an iron-silicon single crystal is also 
shown. Preliminary results for this single crystal have 
been presented in Ref. 13 and a more complete study 
appears in a later publication." 

Analysis of Optical-interference Moir~ Method 
To allow comparison between geometrical and optical- 

interference moir~ methods, we will first describe geom- 
etrical moird using the same notation that will later be 
used for optical-interference moire. Figure 1 shows how 
the specimen grid is assigned to material points on the 
specimen surface in the undeformed configuration and 
then deforms with the specimen. The deformed grid is 
imaged through the reference grid to form fringes in the 
deformed configuration. The fringes are formed in such 
a way that the fringe-number difference, d f ,  between 
points P and Q is equal to the difference between the 
numbers of the specimen and reference grids between 
these two points. The number of reference grids in the 
deformed configuration between points P and Q is given 
by g"  dx.  Here dx is the vector PQ. The number of 
specimen grids between these two points can be deter- 
mined from the positions of the points P and Q in the un- 
deformed configuration to be G" dX.  Thus, the fringe- 
number difference between these points is 

d f =  g . d x - G . d X  (1) 

where g and G are the reciprocal grating vectors of the 
reference and specimen gratings respectively. A reciprodal 
grating vector, which can be a function of  position, has a 
direction that is perpendicular to the grating lines and has 
a magnitude equal to the reciprocal of  the grating spacing. 
Equation (1) is the fundamental equation of  moir6. 
Geometrical moird is based on the fact that if the two 
grids are in phase then the light transmission is a maximum 
(bright fringe), and if they are out of  phase the trans- 
mission is a minimum (dark fringe). Therefore, by taking 
the difference between the numbers of  the two grids 
between two points, say P and Q in Fig. 1, we can 
count how many times the two grids are in phase between 
the two points, which is the number of  fringes between 
these two points. Equation (1) is a mathematical state- 
ment of this idea. Grid counting is possible without 
considering the wave nature (more precisely speaking 
phase) of  light. Methods so described are called 'geom- 
etrical moir6'. In real practice, the grid-transmission 
function, expanded in Fourier series, contains higher 
harmonics. These harmonics play the same role as the 
higher diffraction orders in optical-interference moir~ and 
can be used to perform fringe multiplication using optical 
Fourier filtering or numerical Fourier processing. 

Next we will consider optical-interference moire. This 
method interferes selected orders of  the Fraunhoffer 
diffraction field ~2 of  the specimen grating illuminated 
with coherent light. The electric field representation of  
light illumination will be expressed as 

E (x , t )  = Ae  '*~'.'~ (2a) 

where the phase can be expressed, by integrating the 
Eikonal equation, Vr = k, 

x 

~b(x,t) = _ Ix ~ k �9 dx - o~t + ~bo (2b) 

The electric field, E, as a function of the position and 
time of  observation (x,t) ,  has polarization A, wave 
number k ([k I = 27r/X) and ~bo is the constant phase 
angle depending on the choice of the reference point Xo. 
The wavelength and angular frequency of the light are ), 
and o~ respectively. Similarly, the light beam due to 
diffraction of order N from the surface can be expressed as 

where 

E~, = ANe '~  c'''~ (3a) 

x ~ .  d x -  ~ot + ~N (3b) ~ ( x , t )  = J 

The indicates the diffracted beam. These equations 
represent general nonplanar waves because k and k,~ are 
not constants, they vary from ray to ray. The amplitude 
also varies from ray to ray. The electric field representa- 
tions in eqs (2) and (3) should satisfy the wave equa- 
tion which is a reduced form of the Maxwell equation in 
a homogeneous medium. This requires that the polariza- 
tion be harmonic, i.e., V2A = 0, and guarantees that the 
intensity flux is divergence free, i.e., V. { (A"  A)k}  = 
0. However, because of the various noise sources in an 
imaging system, it is desirable to use only the phase 
information for measuring deformations. A scheme for 
accurately measuring only the phase contributions by 
removing the dependence on amplitude is introduced at 
the end of this section. Therefore, we will only be 
interested in determining the phase relationships and will 
not concern ourselves with amplitude or polarization 
variations. 

When a light beam undergoes a transition such as 
reflection, refraction or diffraction, the phase of the 
incident wave, ~b is perturbed by A r The phase perturba- 
tion made by a diffraction grating is N i ( x ) ,  where if(x) 

o 

Fig. 1--Geometry for the analysis of 
geometrical moir$ 
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is the phase of the grating at the point x and N is the 
diffraction order (see Appendix A). This provides the 
relationship 

~',,(x*, t) = ~b(x*, t) + Nq,(x*) (4) 

where x* denotes the point of diffraction on the deformed 
specimen grating surface. In terms of the quantities 
defined above, eq (4) gives the phase, ff~, of the diffracted 
beam as 

~,, = I x k~.  d x - o ~ t  + 
Xo 

x* 

JXo (k - k'~)" dx + (~o + N,b(x*) (5) 

The Fraunhoffer diffraction condition requires that the 
first-order variation of the phase of the diffracted ray, 

~b~, with respect to the spatial variation 6X* vanish (we 
will only consider the nonrelativistic case here: 6t = 0). 
Therefore the following equation must hold for arbitrary 
6X* on the surface: 

[ k -  k'~+ NV,,~b(x*)] �9 17. 6X* = 0 (6) 

where F is the deformation gradient at x* on the surface 
defined by the relationship dx* = FdX*. Thus, in order 
for eq (6) to hold, the quantity in brackets must be 
proportional to the surface normal n at x*. If we denote 
the wave-number vector of the deformed grating, 
V,,cb(x*), by k~, then this requirement leads to 

k'n = k + N k ,  + ann (7)  

where - an is the proportionality constant which is deter- 
mined by the conditions, I k~l = I kl and k ~ . n  = 0. 
These conditions give 

an = - k �9 n + [(k-  n) 2 - N k , -  (Nk, + 2k)] 1/2  

(8) 

where the plus sign describes the reflected diffracted ray 
and the negative sign the transmitted diffracted ray. 
Equation (7) can be interpreted geometrically as shown 
in Fig. 2. Because the vectors k and kN must have the 
same length, if they are drawn originating at the same 
point their ends must lie on the same circle. The difference 
between these two vectors in the tangent plane of the 
surface is N-k,. This determines the end point for kN on 
the circle. Using this construction the value of a,, can then 
be directly read off the figure as the magnitude of the 
normal component of the difference between k and kn 
which agrees with eq (8). 

In optical-interference moir6, the diffracted rays k'N ") 
and k~ c2~ of  two different incident rays k c1) and k ~2~ are 
collected with a converging lens and interfered on the 
image plane to produce fringes. In order that only the 
desired diffraction orders of  the two incident rays reach 
the image plane, an aperture is used to filter the light 
passing through the focal plane of the lens. If ~ is a unit 
vector along the axis of this lens and x '  is the position 
vector from the axis in the focal plane, the diffracted ray 
k~ intersects the focal plane at x~,, 

{ (k + .~_._+ ,..n_) 
x~ = 1: ( k + N k , + a N n ) ' l ~  - ~} (9) 

where l/is the focal length of the lens. Thus the diffracted 

rays of different orders intersect the focal plane at 
different points. This allows an aperture on the focal 
plane to be used to select the orders of the rays that 
reach the image plane. If ~/is used to denote the gradient 
of the grating phase function in the reference configuration, 

~/ = 2~rG* = Vx,~ = F r" k, (10) 

where ~* is the reciprocal specimen grating vector, we 
can write 

k 8 = ( F r )  -1" 7/ (11) ,  

Replacing k,'s in eqs (8) and (9) using eq (11), eq (9) 
provides a complete description of the focal-plane 
mapping of the diffracted rays as a function of deforma- 
tion gradient. This is the fundamental equation of the 
Fourier filtering of the optical-interference moir6. 

If we assume that the in-plane strain, e, and in-plane 
rotation, oJ, are small then eqs (7), (11) and (9) for the 
case of ~ = n give 

x ~  . . . .  (s ....... [ N ( o ~  - ~)  " ~ + a ~ 6 n ]  + x ~  (~ (12)  
kN" n 

where 

k - ( k  �9 n ) n  + N~ /  
x.~ ̀~ = l/[. [ ( k . n )  2 _ N 2 ) ~ I 2 _ 2 N ~ .  k ] , ,  2 ] 

(13) 

and fin is the change in the surface normal. 
After the desired orders are filtered on the focal plane, 

they pass on to the image plane to form the fringe pattern. 
The intensity function for the resulting fringe pattern, if 
mapped virtually back to the specimen surface, is given by 

I(x*) - - I E ( ~ " +  E~'I  2 =  7N(" + 7u(='+ 

2~N(1) . .~i2) cos �9 (14) 

where ~ = ~ , / ' -  ~ 2 )  is the phase difference between 
Er  c" and E,~ ~2~. This can be obtained from eq (5) as, 
choosing x0 on the specimen surface, 

X* 
~/(x*) = ( (k ~  ( N - M ) ~ ( x * ) +  ~x~ - k(2~) �9 d x +  

q~o (') -- q~o TM (15) 

In eq (14) the oscillating term, cos ~I,, is the moir5 
fringe, thus the fringe number f is given by 

~/ - I "dx  f -  27r x~g - ( M - N )  + f o  

(16) 

The reciprocal grating vector of the virtual reference 
grating, g, is given by 

g = (k ~ -k(2)) / (27r)  (17) 

The constant term in eq (16), fo, is the difference (4)o ") 
-~o(z)/(27r). The sign convention of the diffraction 
orders M and N is chosen in such a way that M - N > 0. 
Using the definition of G* in eq (10), cq (16) can be 
written 

A 
d f  = g .  d x * -  ( M - N ) G * .  dX*  (18) 
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This equation has the same form as eq (1) for geometrical 
moir6 and can be made identical if the definitions of 
virtual reference grating spacing and effective specimen 
grating spacing, as defined in the next paragraph, are 
used. 

The virtual reference grating has the spacing caused by 
the optical interference resulting from the intersection of 
the two illumination beams, each with an angle 0 to the 
optical axis. The resulting virtual reference spacing is 
given by 

d ' " -  1 _ X (19) 
Igl 2 sin 0 

The virtual reference grating then produces fringes by 
interfering with the effective specimen grating. The 
effective ~specimen grating is determined by the specimen 
grating, G*, and the orders of  the diffracted beams that 
are interfered to form the moird fringes. The effective 
specimen grating spacing, D %  is related to the actual 
specimen grating spacing, D ,  by 

1 D 
D ~" --- - -  - (20) I '1 M - N  

where M and N are the orders of the diffracted beams 
which are interfered and G* = ( M - N ) ~ * .  The factor 
M - N  is the sensitivity increase over geometrical moirg. 
If these values of  the grating spacings are used, then the 
determination of the displacements and strains from the 
fringe patterns can proceed identically for both geometrical 
and optical-interference moird in the next section. 

In the analysis of  the fringe patterns above, the illumina- 
tion of the incident beams is not uniform, in general, and 
the efficiencies of the gratings on the specimen vary with 
position. Both of these quantities vary slowly (relative to 
the fringe spacing) with position and contain noise. In 
order to use a single-level binarization method to deter- 
mine lines of constant phase, it is necessary to remove 
these variations from the fringe pattern. A simple way to 
accomplish this is through control of  the relative phase of  
the two incident beams. 

The relative phase of the two beams is 2~rfo = $o " ~ -  
$o t2~. Examination of eq (16) shows that changing fo 
directly changes the phase of the fringes. If we can produce 
two fringe patterns, one with fo = 0 and the other with 
2 r fo  = ~,, then the difference of the two fringe patterns 
will not involve the intensities of the diffracted (or 
incident) beams. For the first choice offo  we can write 

I , ( x * )  = + TM �9 c o s  �9 

(21) 

- -  " / / ~ / / / Z  Specimen 

Fig. 2JGeometr ica l  interpretation of 
diffraction from a grating on a surface 

and for 2 r fo  = ~,, we have 

I2(x*) = 7 N ' " +  7~ '~' + 2 - ~ N ' " "  ~ ~2, cos ( ~ / + $ , )  

(22) 

The difference intensity is then 

Ii(x*) - I2(x*) = 4.E-N"' �9 . ~ 2 ,  sin (~b,/2) sin (~I' + r  

(23) 

which does not involve the intensities of the diffracted (or 
incident) beams other than as a coefficient of  the os- 
cillatory term. If  we binarize this with a threshold of  zero 
to determine the curves along which the fringe l~hase is 
equal to n 7 r -  r  n = integer, then the coefficient of  
sin (~I, + r  does not enter the results. This is because 
we are determining the curves along which sin (~I, + r 
= 0. The constant factor of  sin r  determines the 
contrast of the difference fringes. The greatest contrast 
occurs for a phase difference of  ~r. Because the strains 
only involve the gradients of the fringe number function, 
f ,  and 4~, is a constant, the values of the strains found are 
independent of  the value of  r Thus, this method is 
insensitive to errors in r and it can simply be chosen to 
maximize the contrast. This results in an effective fringe 
multiplication factor of two, which is a direct increase in 
the sensitivity of  the method. 

This process also allows the level for binarization to be 
determined exactly. With this technique the binarization 
threshold is always exactly zero. If  a difference fringe 
image was not used, the average illumination level would 
have to be used. This could lead to errors in determining 
the curves of constant phase. The subtraction process also 
eliminates much of  the noise introduced into the fringe 
pattern by sources of  noise that affects the intensities of 
the illumination beams. 

Deformation Analysis with Moir~ Methods 

In the previous section, the equations relating the 
fringe number to the surface position in the deformed 
configuration have been derived for both moir6 methods. 
Examination of  eqs (1) and (18) shows that both geom- 
etrical and optical-interference moir6 methods are 
described by an equation of the same form. This equation 
is 

d f =  P ' g ' d x - G ' d X  (24) 

where the position vector X locates the surface material 
point in the undeformed configuration, which is located 
at x in the deformed (current) configuration. The projec- 
tion tensor, P, is related to the normal to the surface, 
n,  through 

P = l - n  ~ n (25) 

where I is the intensity tensor and | indicates tensor 
product. Equation (24) holds with and without P. How- 
ever, we have introduced the projection tensor into eq 
(24) to map the virtual reference grating onto the sur- 
face of  the specimen. By doing this the quantities (P  �9 g), 
x, G and X are all measured in the specimen surface 
coordinates. In the notation of  the last section they would 
have been starred. For simpficity in this section the stars 
are omitted. 
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If  linear gratings are used for the specimen and inter- 
rogation gratings, g and G are constant vectors. This 
allows eq (24) to be integrated to give 

f-fo =g-x-G-X 

Introducing the displacement vector u, defined by 

(26) 

u = x - X (27) 

eq (26) can be rewritten as 

G" u = (f-A)- (g- G) �9 x (28) 

Equation (28) shows that two independent G vectors (and 
g vectors) are required to measure the two in-plane dis- 
placement components on the object plane. The last term 
in eq (28) represents the carrier frequency of  the fringe 
pattern. In many applications, g is set equal to G nullify- 
ing the carrier frequency of the fringe pattern. 

If we again consider eq (24) for the general case, we 
can rewrite it as 

(F-~)  r .  G = P . ( g - V  f )  (29) 

where F is the surface-deformation gradient tensor. The 
projection tensor has appeared again because the gradient 
of f is taken in the object plane and then projected onto 
the specimen surface. To completely determine the surface 
strain field, two specimen gratings G ' and G 2 must be 
used, together with the information on the out of  plane 
displacement. A compact representation of the surface 
strains can be found if we first form the second-order 
specimen-grating tensor I', as 

2 
I" = ~ G" | G" (30) 

~ = 1  

For each specimen grating G% a different interrogation 
grating g-  is used to produce a fringe pattern f*. Equa- 
tion (29) holds for each choice of c~ with G, g and f 
replaced by G% g" and f% but the ,deformation gradient 
is the same in both cases. By taking the tensor product of 
both sides of eq (29) with G a for both values of r and 
adding the results, we find 

(F-~) r = H- r -~ (31) 

where 
2 

H = E P ' ( g ~ - V f  ~) | G ~ (32) 
t x= l  

Then the inverse of the finger deformation tensor becomes 

(F"  Fr)  -1 = H"  r - ' "  ( P - 0  r" H r (33) 

and this provides a finite strain measure (Almansi strain) 
in the deformed configuration. Because we have the 
complete information of the displacement field, we could 
determine the other finite strain measures such as Green 
strain in the undeformed configuration. However, because 
we can only view the deformed configuration in experi- 
ments, the Almansi strain is a more useful measure. The 
Almansi strain is defined to be 

E" = �89 [ I -  ( F -  F O - ' I  (34) 

If  we use a pair of linear specimen gratings of  pitch D 
that are orthogonal, then I ~ becomes 

r = ~ i (35) 
(D*02 

where D "~ is related to D through eq (20). In this case, 
eq (33) reduces to 

2 
( r ' r r )  -' = ( D ~ )  2 ]~ P ' ( g * - V f * ) |  ( g ' - V f " ) ' P r  

a = l  

06) 
thus we have 

2 
1 [ l - ( D e * )  2 ~ P ' ( g " - V f * )  | E" = T 

(g* - v y * ) .  p~]  (37) 

As shown in eqs (30)-(34), the Almansi strain measure 
depends, in general, on the direction of the undeformed 
specimen grating, G. However, if the specimen gratings 
are orthogonal in the undeformed configuration, the 
strain measure is not dependent on the direction of G, as 
shown by eq (37). This indicates that if in practice 
orthogonal specimen gratings are produced, it is not 
necessary to record their initial directions. Only their 
spacing need be known. This is simply another way of 
noting that the Almansi strain is rotationally invariant. 
Therefore, unlike the linear strain measure, calculating 
the Almansi strains does not introduce any errors caused 
by the rigid-body motion of  the specimen. 

Equation (37) shows that the observed strain is the 
projection of  the surface strain onto the object plane. If 
the deformed specimen surface and the object plane of 
the imaging system are not aligned, the projection must 
be taken into consideration. However, if the misalign- 
ment is small, the difference between the surface strain 
and the observed strain is second order. If  it is necessary 
to include this correction, then the projection tensor can 
be constructed for the surface by measuring the slope of 
the surface using image shearing interferometry." 

For the usual case of  I P . g l  = [G[ = l / D "  and 
orthogonal (P �9 g m, p �9 g c2~), this becomes 

2 

= [ f  ,. v f o ] -  E A ( D " ) 2 P  �9 { s y m  =1 

2 

• Z; v f * .  v f* }.  1 ,T (38) 
2 ==1 

where sym []  denotes the symmetric part of a second- 
order tensor. If the strains are assumed to be small, the 
second term is of second order. The projection Is the 
identity if the changes in the surface normal are also 
small and initially g was parallel to a planar specimen 
surface. Under these conditions, the linear strain e is given 
by 

2 

e = (De') 2sym [ ~ ga | Vf~] (39) 
c~-----1 

Even for small strain problems this is not a good strain 
measure to use in practice. The strains given by eq (39) 
depend on the rigid-body rotations which appear as 
fictitious shear strains. To avoid this problem the specimen 
has to be carefully aligned. If it is not, this dependence 
leads to large errors in the measured strain. This required 
alignment imposes unnecessary restrictions on the ex- 
perimental setup, complicating, for instance, real-time 
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measurements and other useful developments of  the 
method. Therefore, it is advisable to use eq (37), even 
for small strain measurements. 

As shown in eq (31), the deformation gradient, F, can 
be measured using moir6 methods. Thus, the local rotation, 
R, and the pure deformation, U, can also he determined 
from F = R"  U. Various local rotation measures, such 
as continuum, crystal and plastic rotations (or spins) are 
important in micromechanics of solids. Calculation of  
these rotation measures is beyond the scope of  this paper 
and will appear elsewhere." 

The Microscope Apparatus 

The microscope described here illuminates the specimen 
with two beams of  coherent light to produce fringes. 
Previous methods have employed a mirror to reflect half 
of  a beam onto its other half, but this makes adjustment 
of  the system difficult. In order to allow a variable virtual 
reference grating and high magnification, a more versatile 
optical system was developed. The microscope employs a 
beam splitter in the optical path of  the imaging system to 
allow through-the-lens illumination of  the specimen with 
the virtual reference grating. The two beams directed into 
this splitter are adjustable in spacing and orientation 
around an axis centered between the two beams and 
parallel to them. This allows a virtual reference grating 
to be produced with a range of  spacings and any orienta- 
tion. A schematic of  this system is shown in Fig. 3. 

The He-Ne laser [at (a) in Fig. 3] produces a beam 
which is expanded, spatially filtered and collimated by the 
two lenses and a pinhole at (b). A beam steerer (c) allows 
the beam to be accurately aligned along the axis of  the 
assembly of  parts (d)-(f). This is necessary because of  the 
rotation of  the first beam splitter assembly [(e) and (f)] 
about this axis. The lens at (d) is chosen and placed to 
produce a collimated beam exiting from the objective 
lens (h). The incoming laser beam is offset from the system 
axis by the glass plate (e). It is this offset that controls the 
virtual reference grating spacing. The beam splitter (f) 
produces two beams whose spacing is related to the tilt of  
the glass plate (e). These two components can be rotated 
about their center line to rotate the reference grating 
orientation. After partial reflection in the second beam 
splitter (g), these two beams are focused by the objective 
lens 0a) and cross at its focal plane. Since the diameter of 
these beams is finite, the volume of  virtual grating 
produced includes the specimen (i), which is at a distance 
from the objective lens slightly greater than its focal 
length. Not shown is the wedge used to vary the phase of 
one of the illumination beams. This is inserted between 
elements (f) and (g) of the microscope. This point is at 
the focal point of lens (d) and thus the wedge produces a 
uniform phase change across the whole beam. 

The remaining system elements make up the imaging 
system, which selects and interferes the desired diffraction 
beams. The iris (j) is located at the focal plane of the 
objective lens (h) and is used to pick out the diffraction 
beams to be combined into a fringe pattern on the camera 
screen (k). Both the diameter of  the iris opening and its 
location need to be adjustable to allow the best quality 
fringe pattern to be produced with the desired diffracted 
beams as outlined in 'Analysis of  Optical-interference 
Moir~ Method' above. The television camera is connected 
to a frame grabber installed in a microcomputer, as well 
as a monitor and VCR for real-time data storage and later 
review of  test results. The frame grabber allows the images 

of  the fringe patterns to he stored and manipulated 
digitally on the computer. These digital images can also 
be directly printed on a laser printer. The digital data- 
reduction procedures will be discussed in the next section. 

In a previous publication, 13 we calculated a theoretical 
calibration curve and compared it to measured results 
using a grating of  known spacing. Very good agreement 
was found between the predictions and the experimental 
findings. 

Digital Data Processing 
In the previous section we have already mentioned that 

the output of  the video camera is connected to a frame 
grabber which allows the images to be stored and mani- 
pulated digitally on a computer. The frame grabber stores 
each video frame as a 512 x 480 array of 256 grey levels 
for a total storage requirement of approximately 256 
kilobytes per frame. The large amounts of  data involved 
make any image processing undertaken computationally 
expensive. At this stage in the system development, only 
schemes simple enough to run in a reasonable amount of  
time on a personal computer have been implemented. 
Only the fringe locations are used at this stage so the 
fringes can be reduced to simple white and black patterns. 
Thus the first attempt at fringe data reduction is to reduce 
the fringe patterns to two level images through binariza- 
tion. Once a binary image is obtained it is straightforward 
to detect the fringe edges and store the data as line seg- 
ments which can then be used to determine the fractional 
fringe number on a regularly spaced grid of points. The 
displacements and strains can then be calculated at these 
evenly spaced points. The details of these calculations will 
be presented in Ref. 11. Here we will only present the 
images at each step in the process. The specimen is 
described in Appendix B. 

Figures 4 and 5 are the original fringe images that differ 
in phase by r .  These two images can be subtracted to 
remove most of the background noise from the fringes 
and accurately determine the binarization level as discussed 
above. The difference image is shown in Fig. 6. A binariza- 
tion process is then applied to Fig. 6 to give Fig. 7(a). 
Figure 7(b) shows the result of binarizing one of the 
original fringe images at its average illumination level. The 
added noise in this figure as well as the clearly inaccurate 
location of the lines of constant phase show the importance 
of using the subtraction process. A smoothing algorithm 
is then used to remove the 'salt and pepper' noise from 
the binary image in Fig. 7(a). This final image is shown in 
Fig. 8. A semi-automatic edge tracing routine is then used 
to trace the edges of the fringes which are curves of  
constant phase. These data are then stored as (x ,y )  
points on the curves shown in Fig. 9. Determination of 
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Fig. 3--Schematic of the microscope 
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the displacement and its gradient then can proceed using 
these data. 

Characteristic Results 
With coarse gratings the basic diffraction angle is 

relatively small, and this small angle results in a narrow 
strain dynamic range. Since the Fourier filtering aperture 
must also be relatively small, this results in large sensitivity 
to surface tilt which appears as a horizontal dead spot 
(no fringes) emanating from the notch tip in Fig. lO(a). 
Ordinary optical microscopy shows that the dead spot is 
located at the place where the local surface tilt is large. In 
this paper we only present the moir~ fringes associated 

with the horizontal displacement component, the crack- 
opening direction. Figure 10(a) shows the moire fringes 
around the crack tip formed with virtual reference 
grating, g, chosen to display the fringe kinks, which 
indicate jumps in strain. The fringes do not show, at our 
current resolution, any fringe steps which would indicate 
jumps in displacement. However, closer examination of 
the fringe kinks shows that the strains change from one 
state of strain to another across a very narrow band. Two 
of the three sectors in Fig. 10(a) also appear to have 
parallel and equally spaced fringes. This indicates that the 
extensional strain in horizontal direction is constant in 
these sectors. Figures lO(b) and 10(c) show the fringe 
patterns when we adjust g to null out the fringes in each 

Fig. 4--An original fringe image Fig. 7(a)--Binarization of fringes 
in Fig. 6 

Fig. 5--A fringe image whose phase 
differs by 7r from the fringes in Fig. 4 

Fig. 7(b)--Binarization of fringes 
in Fig. 4 

Fig. 6--The difference between 
Figs. 4 and 5 

Fig. 8--Smoothed version of the 
fringes in Fig. 7(a) 
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of these sectors. The constant strain regions extend from 
the crack tip to the point at which the far field variations 
due to the external boundaries become large. This is 
noticeable in Fig. 10(c) as the widely spaced fringes at 
the upper right in the nuUed sector. 

Conclusion and Future Work 
An initial version of a moir~ microscope has been 

introduced. The device uses optical interference moir~ and 
has the capability of controlling the pitch and the direc- 
tion of the virtual reference grating. This allows a fringe 
pattern to be produced that is optimal for analysis. By 
subtracting fringe patterns whose phases differed by 7r, a 
large amount of noise was removed and the constant 
phase lines were determined accurately. This process is 
required because of the large amounts of noise always 
present in greatly magnified moir~ fringes. 

Comprehensive analyses of optical interference moir~ 
and the associated fringes have been presented. This 
analysis shows that the orthogonality of the checkered 
specimen grating greatly simplifies the fringe analysis. The 
effective accuracy of the specimen grating and the 
controllability of the virtual reference grating are the most 
important factors highlighted by the analysis. In addition, 
fringe analysis using digital image processing also improves 
the utility of the system. 

The microscope has been successfully used to study the 
deformation field near a crack tip in an iron-silicon single 
crystal. This is a demonstration of the applicability of the 
microscope to highly inhomogeneous large deformations. 
Many interesting features of anisotropic plasticity of near 
crack-tip deformation have been observed and a future 
publication" will elaborate on the results given in Ref. 13. 
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Appendix A 
Diffraction on a Deformed Grating 

Diffraction on a deformed grating is depicted in Fig. 
11. The incident light beam is represented by eq (1). If  
transfer (transmittivity or reflectivity) function of the 
deformed grating, T, is considered as a periodic function 
of  X* but not an explicit function of  F(X*),  then T can 
be represented as a Fourier series in X* space, 

T(x*) = ~ tNe'N| (A1) 
N ~ - o o  

Therefore, the  boundary condition right after the light 
goes through the deformed grating is expressed as 

E(x*+,t)  = ~ t~Aett~c~*,,~+n| 

With this boundary condition, the high spatial frequency 
field above the cut off frequency, I k] ,  decays exponen- 
tially from the boundary and only finite number of  
diffraction order survives at far field. For the surviving 
Nth order diffraction field, the electric field can be 
expressed in eq (3), satisfying the boundary condition 
given as the Nth term in the series of eq (A2). This 
shows that the surviving far-field, Fraunhoffer diffraction 
field, has the phase relation as given in eq (4). 

Error estimation for moir~ interferometry is out of the 
scope of this paper. However, the following comments 
will be noted. Dynamic range, on F, of the moird method 
due to aperture size can be easily assessed with eq (9). 
The Rayleigh criterion ~2 enters into eq (5) for the un- 
certainty of the phase due to the finite-size area of the 
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Fig. 11 - -D i f f rac t i on  on a deformed grat ing 

grating participating in the diffraction process and 
moire-fringe formation. The phase variation represented 
as the left-hand side of eq (6) should be bound by the 
diffraction limit. Nevertheless the most serious error 
sources in moir6 interferometry are the original quality of 
the grating and the change of the grating quality caused 
by surface deformation. If the original quality of the 
grating is poor, the Fourier series representation of the 
grating in eq (A1) is no longer accurate. If the grating 
quality changes with the surface deformation, then the 
transfer function, T, is not only a function of  X* but 
also a time-history functional of  F. If  we consider a 
monotonic deformation path for the grating deforma- 
tion, T can be represented as a function of  X* and F, 
say, T(X*,F) .  Assuming T is analytic with respect to F, 
it can be expanded as 

OT(X*,I)  
T(X*,F)  = T(X*,I )  + OF : ( F - I )  + . . . .  

(A3) 

The first term in eq (A3) can be expressed as eq (A1). 
However, the transfer function, T, has extra terms in eq 
(A3), which cause extra phase contribution in ~-~(x*, t). 
The extra phase contribution can be taken into account in 
the expression of  ~{x* ,F(x*)} ,  and then the reciprocal 

1 grating vector in eq (18) should be replaced by - ~ z  Vx*cI" 

where 

Vx,& = 27rG* + ~ : (Vx.F) �9 F (A4) 

As shown in this equation, if the deformation is uniform, 
i.e., V, ,F = 0, then such an error disappears. If the 
deformation is highly inhomogeneous and the deforma- 
tion is large, such an error may not be negligible. 

Appendix B 

Specimen Specifications 
The single crystal of  Fe-Si considered here has dimen- 

sions of 7.45 mm x 6.00 mm x 26.05 mm. This bar was 
extended to the  length of 51.95 mm by welding 12.95- 
mm long polycrystalline bars of the same cross section to 
each end. Then a crack-like single-edge notch was intro- 
duced at the center of the crystal to a depth of 2.05 mm 
and a width of  200 #m. The prospective crack-propaga- 
tion direction is [100] the crack plane is (011), and the 
crack front is aligned in the [01 I] direction. 

The specimen was loaded in a four-point bending fix- 
ture by an Instron machine in displacement control. The 
inner span of the loading points on the unnotched face of 
the specimen was 20 mm, and the outer span on the 
notched side was 30 mm. All the moir~ pictures reported 
in this paper correspond to the deformed configuration 
after final unloading. 

A grid made up of  two orthogonal gratings with 5-/~m 
spacing was photo-lithographically deposited on the 
polished specimen surface, The Plate Impact Laboratory 
at Brown University used a Ronchi ruled grating and a 
double-exposure contact print to produce this grid. 
'Kodak Thin Film Resist' (KTFR) photo resist was spin 
coated onto the specimen surface. An ultravoilet lamp 
w a s  used for the exposures because KTFR has maximum 
sensitivity at a wavelength of 400 nm. 
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