

A NEW FORM OF PLANETARY SURFACE MOBILITY: <u>HOPPERS</u>

Farah Alibay

PhD Candidate, Space Systems Laboratory Massachusetts Institute of Technology

falibay@mit.edu

February 16th 2012

OVERVIEW

- The origins of hopping
- The basics of hopping
- TALARIS
- Current Research
 - Hopper Modeling
 - Navigation
 - Titan Hopper
 - Fractionated Mobility Systems

Questions

PLANETARY HOPPING

Google Lunar X-Prize

First commercial team to land on the moon, traverse 500 meters, and return imagery wins grand prize of \$20M, with bonus prizes up to \$5M. At least 90% of the funding must be raised privately.

Teams

Next Giant Leap: SNC, Draper, MIT, LL RCSP: Dynetics, Draper, Andrews, UAH

WHAT IS HOPPING?

- Most vehicles that have landed on other planets have either:
 - Orbited from up-high
 - Landed and sat still in one place
 - Landed and slowly rolled along the surface
- Hopping takes the platform that "sat still in one place" and blasts it off the surface to go land somewhere new

Copyright © 2012 by the Charles Stark Draper Laboratory, Inc. & the Massachusetts Institute of Technology. All rights reserved

HOPPER TRAJECTORIES: HOVER HOP

Smaller peak Thrust to Weight ratio required, side thrusters needed

<u>Fixed attitude, fixed altitude</u> provides stable platform for science instruments and surface observation

Gentler, controlled landing

TERRAIN FREEDOM

Rapid Regional Access

Ability to Scale Cliffs and Access Hazardous Terrain

"ULTRA-PRECISE" LANDINGS

Hopper golf analogy: Achieve precision placement through several hops instead of a single landing

- "Hit the big fairway, approach, and chip in, instead of going for the hole in one"
- Land safely, determine location, then start hopping to the desired landing location

HOPPER PARTNERSHIP: DRAPER & MIT

$\underline{\mathbf{T}} \text{errestrial} \ \underline{\mathbf{A}} \text{rtificial} \ \underline{\mathbf{L}} \text{unar} \ \underline{\mathbf{A}} \text{nd} \ \underline{\mathbf{R}} \text{educed} \ \text{Grav} \underline{\mathbf{I}} \text{ty} \ \underline{\mathbf{S}} \text{imulator}$

What is TALARIS?

Terrestrial hopper platform consisting of dual propulsion systems, capable of mimicking the gravity environment of other planetary bodies

Why Draper and MIT?

- This is a very tough Systems & GNC problem
- Together, we create a unique capability to develop new technologies by bringing together bright and motivated staff and students
- Hoppers build on Draper's heritage of landing GNC

The TALARIS team began development of hoppers in 2009

TALARIS: VEHICLE CONFIGURATION

PROPULSION SYSTEM

Hybrid Propulsion System

• Electric Ducted Fan (EDF) System

• Provides constant vertical thrust equal to 5/6 of vehicle weight

Cold Gas (CG) System

- Controls attitude and all maneuvering
- "Sees" 1/6 of the vehicle's weight: simulates flight in lunar g

Copyright $\textcircled{\sc c}$ 2012 by the Charles Stark Draper Laboratory, Inc. & the Massachusetts Institute of Technology. All rights reserved

BUILDING AND TESTING

Concept development Subsystem design Component tests Characterization tests Integrated system tests

Copyright © 2012 by the Charles Stark Draper Laboratory, Inc. & the Massachusetts Institute of Technology. All rights reserved

VIDEO: TESTING PROGRAM

VIDEO: MASTEN XOMBIE (USING GENIE)

AREAS OF CURRENT RESEARCH

The TALARIS group currently consists of:

- 3 PhD Students
- 3 Masters Students
- Several undergraduate students

These are part of 100+ students who have worked on TALARIS over the years.

Ongoing research within the group includes:

- Hopper Vehicle Modeling
- Landing Navigation
- Titan Hopper Concepts
- Fractionated Robotic Architectures
- NASA Microgravity University flight in June 2012

HOPPER MODELING

Copyright © 2012 by the Charles Stark Draper Laboratory, Inc. & the Massachusetts Institute of Technology. All rights reserved

PRECISE AND SAFE LANDING

Heritage from NASA ALHAT Program (Autonomous Landing and Hazard Avoidance Technology).

- Autonomous, human interactive, descent and landing GNC
- Terrain relative navigation
- Hazard detection & avoidance
- Sensors: 3D imaging LIDAR, Ground relative velocimeter, altimeter, IMU, StarCamera

Image

Segmented BW Image

Copyright C 2012 by the Charles Stark Draper Laboratory, Inc. & the Massachusetts Institute of Technology. All rights reserved

MODIFIED HOPPER FOR TITAN

- Gliding Hop Trajectory: Flight path takes advantage of dense atmosphere
- In Situ Cold Gas
 Propulsion: Enables
 repeated, short-range hops
- Electric Ducted Fans: Effectively reduce weight of vehicle during vertical flight modes

FRACTIONATED MOBILITY SYSTEM ARCHITECTURES

FRACTIONATION

A system composed of *physically independent* (i.e., structurally separate) constituents that can, but do not have to, *collaborate to provide benefit/value* to the beneficiaries and beneficiary stakeholders of that respective system

Fractionation offers an **opportunity** to:

- Increase return for a given mass
- Increase robustness
- Address complexity

Copyright © 2012 by the Charles Stark Draper Laboratory, Inc. & the Massachusetts Institute of Technology. All rights reserved

HETEROGENEOUS FRACTIONATED ARCHITECTURES

• Takes advantages of the strengths of several types of mobility systems

- Hoppers can travel large distances quickly
- Rovers can visit very precise locations and have significant heritage
- Walkers, wheeled vehicles and hybrids also have their advantages
- Functionality is spread across several vehicles
 - Science performed simultaneously at different sites
 - Goals achieved more quickly
 - Increased robustness and reliability

EXAMPLE OF A HOPPER AND MICROROVER SYSTEM

Assumptions:

- 250kg baseline hopper, 4 hops
- 15 microrovers @ 3kg each, 0.5 m/s
- 20 kg infrastructure

 \rightarrow adds 90 kg to the system

A 35% increase in system mass leads to an accessible area which is 3 orders of magnitude greater

Copyright © 2012 by the Charles Stark Draper Laboratory, Inc. & the Massachusetts Institute of Technology. All rights reserved

SUMMARY

Hoppers offer unique & exciting opportunities in planetary surface <u>exploration</u>

- Rapid regional access
- Cliff Scaling
- Travel across hazardous terrain
- Precision landing
- Adaptable for several planetary bodies
- Fractionated heterogeneous architectures

