
A NEW FORM OF PLANETARY SURFACE MOBILITY: 
HOPPERS 

Farah Alibay 

PhD Candidate, Space Systems Laboratory 

Massachusetts Institute of Technology 

falibay@mit.edu 

 

February 16th 2012 

 

mailto:falibay@mit.edu


OVERVIEW 

2 

- The origins of hopping 

- The basics of hopping 

- TALARIS 

 

- Current Research 

- Hopper Modeling 

- Navigation 

- Titan Hopper 

- Fractionated Mobility Systems 

 

- Questions 

Copyright © 2012 by the Charles Stark Draper Laboratory, Inc. & 

the Massachusetts Institute of Technology. All rights reserved 



PLANETARY HOPPING 

Google Lunar X-Prize 

 First commercial team to land on the moon, 

traverse 500 meters, and return imagery wins 

grand prize of $20M, with bonus prizes up to 

$5M. At least 90% of the funding must be raised 

privately. 
 

 

Teams  

 Next Giant Leap: SNC, Draper, MIT, LL 

 RCSP: Dynetics, Draper, Andrews, UAH 
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WHAT IS HOPPING? 

 Most vehicles that have landed on other planets have either: 

 Orbited from up-high 

 Landed and sat still in one place 

 Landed and slowly rolled along the surface 

 Hopping takes the platform that “sat still in one place” and 

blasts it off the surface to go land somewhere new 

Descend 

Brake Accelerate 

Ascend 

Coast 
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HOPPER TRAJECTORIES: HOVER HOP 

Smaller peak Thrust to Weight ratio required, side thrusters needed 

Fixed attitude, fixed altitude provides stable platform 

for science instruments and surface observation 

Gentler, controlled landing 
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TERRAIN FREEDOM 

Rapid Regional Access 

Mars Rovers 

20 km  

Several Years 

Hopper  

Hundreds of km 

Several Hours 

Ability to Scale Cliffs and  

Access Hazardous Terrain 
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Hopper golf analogy: Achieve precision placement through several hops instead of a single 

landing 

 “Hit the big fairway, approach, and chip in, instead of going for the hole in one” 

 Land safely, determine location, then start hopping to the desired landing location 

“ULTRA-PRECISE” LANDINGS 

Land & Hop:  

-Relaxed landing ellipse from orbit 

-Precision through hopping 

Precision Landing:  

-Single shot 

-Smaller landing ellipse required 

Desired Landing Site 
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Terrestrial Artificial Lunar And Reduced GravIty Simulator  

HOPPER PARTNERSHIP: DRAPER & MIT 

 

What is TALARIS? 

Terrestrial hopper platform consisting of dual propulsion 

systems, capable of mimicking the gravity environment of 

other planetary bodies 

 

Why Draper and MIT? 

 This is a very tough Systems & GNC problem 

 Together, we create a unique capability to develop 

new technologies by bringing together bright and 

motivated staff and students 

 Hoppers build on Draper’s heritage of landing 

GNC 

 

The TALARIS team began development of 
hoppers in 2009 
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TALARIS: VEHICLE CONFIGURATION 

Carbon fiber 

structure 

On-board computer 

8 Cold gas 

thrusters 

Electric Ducted 

Fans (EDFs) x 4 

12 Lithium 

polymer batteries 
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Hybrid Propulsion System 
 
• Electric Ducted Fan (EDF) System 

• Provides constant vertical thrust 

equal to 5/6 of vehicle weight 

 

• Cold Gas (CG) System 

• Controls attitude and all 

maneuvering  

• “Sees” 1/6 of the vehicle’s weight: 

simulates flight in lunar g 

 

Electric Ducted  

Fans x 4 

PROPULSION SYSTEM 

Compressed Gas 

Thrusters x 8 

(4 horiz., 4 vert.) 
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BUILDING AND TESTING 

 Concept development 

 Subsystem design 

 Component tests 

 Characterization tests 

 Integrated system tests 

 

 11 
Copyright © 2012 by the Charles Stark Draper Laboratory, Inc. & 

the Massachusetts Institute of Technology. All rights reserved 



VIDEO: TESTING PROGRAM 
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VIDEO: MASTEN XOMBIE (USING GENIE) 
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AREAS OF CURRENT RESEARCH 
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The TALARIS group currently consists of: 

 3 PhD Students 

 3 Masters Students 

 Several undergraduate students 

These are part of 100+ students who have 

worked on TALARIS over the years. 

 

Ongoing research within the group includes: 

 Hopper Vehicle Modeling 

 Landing Navigation 

 Titan Hopper Concepts 

 Fractionated Robotic Architectures 

 NASA Microgravity University flight 

in June 2012 
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HOPPER MODELING 
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Payload 

Planetary body/region 

1. Biological Analysis Bay 

2. Sample collection arm 

3. Magnetometer 

4. X-ray spectrometer 

Mars 

HOPPER SYSTEM 

Mass: 567 kg 
Power: 86 W average, 114 W pk 
Dev Cost: $328.8 M 
Build Cost: $25.7 M 
Ops Cost: $25.7 M 

Engine TRL: 4 

Additional 

design insight 
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PRECISE AND SAFE LANDING 

Heritage from NASA ALHAT Program (Autonomous 

Landing and Hazard Avoidance Technology). 

 Autonomous, human interactive, descent and 

landing GNC 

 Terrain relative navigation 

 Hazard detection & avoidance 

 Sensors: 3D imaging LIDAR, Ground relative 

velocimeter, altimeter, IMU, StarCamera 
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MODIFIED HOPPER FOR TITAN 
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 Gliding Hop Trajectory: 

Flight path takes advantage 

of dense atmosphere 

 

 In Situ Cold Gas 

Propulsion: Enables 

repeated, short-range hops 

 

 Electric Ducted Fans: 

Effectively reduce weight of 

vehicle during vertical flight 

modes 
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FRACTIONATED MOBILITY SYSTEM ARCHITECTURES 
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Fractionation offers an opportunity to: 

• Increase return for a given mass 

• Increase robustness  

• Address complexity 

FRACTIONATION 
A system composed of physically independent (i.e., 

structurally separate) constituents that can, but do not have 

to, collaborate to provide benefit/value to the beneficiaries and 

beneficiary stakeholders of that respective system 
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HETEROGENEOUS FRACTIONATED ARCHITECTURES 

19 

 Takes advantages of the strengths of several types of mobility systems 

 Hoppers can travel large distances quickly 

 Rovers can visit very precise locations and have significant heritage 

 Walkers, wheeled vehicles and hybrids also have their advantages 
 

 Functionality is spread across several vehicles 

 Science performed simultaneously at different sites 

 Goals achieved more quickly 

 Increased robustness and reliability 

+ 

+ 

or 
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EXAMPLE OF A HOPPER AND MICROROVER SYSTEM 
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Assumptions: 

- 250kg baseline hopper, 4 hops 

- 15 microrovers @ 3kg each, 0.5 m/s 

- 20 kg infrastructure 

adds 90 kg to the system 

 

Hopper 

Trace 

Hopper + 

MicroRover 

Trace 

A 35% increase in system mass leads to an accessible 

area which is 3 orders of magnitude greater  
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SUMMARY 
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Hoppers offer unique & exciting 

opportunities in planetary surface 

exploration 
 

• Rapid regional access 

• Cliff Scaling 

• Travel across hazardous terrain 

• Precision landing 

• Adaptable for several planetary 

bodies 

• Fractionated heterogeneous 

architectures 
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