Eleventh Workshop on Non-Perturbative Quantum Chromodynamics
l'Institut d'Astrophysique de Paris June 6-10, 2011

Hadron interactions from

lattice QCD
Kostas Orginos
College of William and Mary JLAB

Proton Separation Energy in Lead

Vibrational State in Tin

Nucleonic Densities and Currents

Summary

- The problem
- Hadron-Hadron scattering phase shifts
- Binding energies
- Study systems with more than 2 hadrons
- The calculation
- Evaluation of Euclidean correlators
- Extract the finite volume energy levels
- They are related to phase shifts and binding energies in infinite volume
- Recent results

Silas R. Beane New Hampshire

William Detmold William \& Mary

Huey-Wen Lin
U of Washington

Tom Luu Livermore

Kostas Orginos William \& Mary

Assumpta Parreño Barcelona

Martin J. Savage U of Washington

Aaron Torok André Walker-Loud Indiana William \& Mary

Elastic Scattering Phases shifts

- Maiani-Testa no-go theorem
- Luscher: Finite volume two particle spectrum is related to elastic scattering phase shifts

Scattering in One dimension

In center of mass coordinates

$$
\begin{gathered}
-\frac{1}{m} \frac{\partial^{2} \Psi}{\partial x^{2}}+c(k) \delta(x) \Psi=E \Psi \\
\Psi=A\left(e^{-i k|x|}+e^{i k|x|+2 i \delta(k)}\right) \\
E=\frac{k^{2}}{m}
\end{gathered}
$$

- Wave functions are almost plane waves
- Finite length with periodic boundary conditions
- Wave function needs to be periodic and even under x---> -x (symmetric under particle exchange)

Scattering in One dimension

Scattering in One dimension

$$
c(k)=-\frac{1}{m k} \tan \delta(k)
$$

Scattering in One dimension

Scattering in One dimension

$$
\begin{aligned}
& c(k)=-\frac{1}{m k} \tan \delta(k) \\
& k L+2 \delta=2 n \pi
\end{aligned}
$$

Luscher Formula

Energy level shift in finite volume:

$$
\Delta E_{n} \equiv E_{n}-2 m=2 \sqrt{p_{n}^{2}+m^{2}}-2 m
$$

P_{n} solutions of:

$$
\begin{array}{lr}
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\frac{p^{2} L^{2}}{4 \pi^{2}}\right) & \mathbf{S}(\eta) \equiv \sum_{\mathbf{j}}^{|\mathrm{j}|<\Lambda} \frac{1}{|\mathbf{j}|^{2}-\eta}-4 \pi \Lambda \\
p_{n} \cot \delta\left(p_{n}\right)=\frac{1}{a}+\cdots & \frac{1}{a}=\frac{1}{\pi L} S\left(\frac{p_{0}^{2} L^{2}}{4 \pi^{2}}\right)+\cdots
\end{array}
$$

Expansion at $p->0$:

$$
\Delta E_{0}=-\frac{4 \pi a}{m L^{3}}\left[1+c_{1} \frac{a}{L}+c_{2}\left(\frac{a}{L}\right)^{2}\right]+\mathcal{O}\left(\frac{1}{L^{6}}\right)
$$

c_{1} and c_{2} are universal constants
a is the scattering length

Bound states

$$
A(p)=1
$$

$$
E_{-1}=\sqrt{p^{2}+m^{2}}-2 m \quad p^{2}<0
$$

$$
E_{-1}=-\frac{\gamma^{2}}{m}\left[1+\frac{12}{\gamma L} \frac{1}{1-2 \gamma(p \cot \delta)^{\prime}} e^{-\gamma L}+\ldots\right]
$$

γ is the infinite volume binding momentum
Beane et.al. hep-lat/0312004vl

Scattering Phases shifts,

Bound States on the Lattice

- Maiani-Testa no-go theorem
- Luscher: Finite volume two particle spectrum is related to elastic scattering phase shifts
- Computational problem: Calculate in Euclidean space and finite volume the two particle spectrum
- Extract energy levels from exponentially decaying correlation functions in Euclidean time
- Baryons: Signal to noise ratio grows exponentially with Euclidean time

The Computation

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int \prod_{\mu, x} d U_{\mu}(x) \mathcal{O}\left[U, D(U)^{-1}\right] \operatorname{det}\left(D(U)^{\dagger} D(U)\right)^{n_{f} / 2} e^{-S_{g}(U)}
$$

Monte Carlo Evaluation

$$
\langle\mathcal{O}\rangle=\frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left(U_{i}\right)
$$

Statistical error $\frac{1}{\sqrt{N}}$

Signal to Noise ratio for correlation functions

$$
\begin{gathered}
C(t)=\langle N(t) \bar{N}(0)\rangle \sim E e^{-M_{N} t} \\
\operatorname{var}(C(t))=\langle N \bar{N}(t) N \bar{N}(0)\rangle \sim A e^{-2 M_{N} t}+B e^{-3 m_{\pi} t} \\
S t o N=\frac{C(t)}{\sqrt{\operatorname{var}(C(t))}}=\sim A e^{-\left(M_{N}-3 / 2 m_{\pi}\right) t}
\end{gathered}
$$

- The signal to noise ratio drops exponentially with time
- The signal to noise ratio drops exponentially with decreasing pion mass
- For two nucleons: $\operatorname{stoN}(2 N)=\operatorname{StoN}(1 N)^{2}$

Signal to Noise

Signal to Noise Effective Mass

Expected Two Nucleon spectrum

Needed Time Separation $e^{-\Delta E \delta t} \approx 10^{-2}$

anisotropy factor 3.5
Two particle state

Conclusion

We need to fit for several low lying states for reliable estimation of the ground state of the two particle system in a finite box

We need very high statistics to be able to resolve excited state contamination

Spectroscopy Methods

Spectroscopy Methods

Use multiple correlators and construct linear combinations that couple predominately to one state

Spectroscopy Methods

Use multiple correlators and construct linear combinations that couple predominately to one state

- "Variational": Symmetric positive definite matrix of correlators [c. Michael, '85; Luscher\&Wolf '90; ...]
- Prony methods: [Fleming '04; NPLQCD '08; Fleming et.al. '09]
- Matrix Prony [NplQCD '08]
- Generalized pencil of matrix [Aubin, Ko'10]
- "variational" for non symmetric matrices

Two Baryon Correlation functions

- Single smeared quark source
- Multiple sink interpolating fields
- Smeared, Point and Smeared-Point
- Resulting a 3×1 matrix
- No-need for all-to-all propagators
- Very high statistics (300K correlation functions on 2 K lattices)

$20^{3} \times 128$

$24^{3} \times 128$

$32^{3} \times 256$

Nucleon-Nucleon
 \section*{NPLQCD: Phys.Rev.Lett. 972006}

Fukugita et al. '95: Quenched heavy pions

New result

NN (triplet)

New result

H-Dibaryon

proposed 1977 by R. Jaffe

$\Lambda-\Lambda$ bound state (uuddss)

H-Dibaryon

- Negative energy shift is observed in finite volume
- Use multiple (large) volumes to extract infinite volume energy
- Finite volume corrections are big if binding energy is small

H-Dibaryon

$16^{3} \times 128 \quad 2.0 \mathrm{fm}$ useless
 $20^{3} \times 128 \quad 2.5 \mathrm{fm}$ marginal
 $24^{3} \times 128 \quad 3.0 \mathrm{fm}$ good $32^{3} \times 2564.0 \mathrm{fm}$ excellent
 $2+1$ Clover anisotropic fermions

$E_{-1}=-\frac{\gamma^{2}}{m}\left[1+\frac{12}{\gamma L} \frac{1}{1-2 \gamma(p \cot \delta)^{\prime}} e^{-\gamma L}+\ldots\right]$

H-Dibaryon

$\mathrm{I}=0 \mathrm{~S}=-2$ two baryons

Lambda

H-Dibaryon

$$
E_{-1}=-\frac{\gamma^{2}}{m}\left[1+\frac{12}{\gamma L} \frac{1}{1-2 \gamma(p \cot \delta)^{\prime}} e^{-\gamma L}+\ldots\right]
$$

$M_{\pi}=390 \mathrm{MeV}$
$2+1$ Clover anisotropic fermions

NPLQCD: arXiv:1012.3812

$\mathrm{B}_{\mathrm{H}}=16.6 \pm 2.1 \pm 4.6 \mathrm{MeV}$

Phys. Rev. Lett. 106, 162001 (Published April 20, 2011)

statistical systematic

H-Dibaryon

$$
E_{-1}=-\frac{\gamma^{2}}{m}\left[1+\frac{12}{\gamma L} \frac{1}{1-2 \gamma(p \cot \delta)^{\prime}} e^{-\gamma L}+\ldots\right]
$$

$\mathrm{B}_{\mathrm{H}}=16.6 \pm 2.1 \pm 4.6 \mathrm{MeV}$

$M_{\pi}=390 \mathrm{MeV}$
$2+1$ Clover anisotropic fermions

statistical systematic

Continuum limit?
Physical pion mass?

Isospin
breaking?
Electromagnetism?

H-Dibaryon

$$
E_{-1}=-\frac{\gamma^{2}}{m}\left[1+\frac{12}{\gamma L} \frac{1}{1-2 \gamma(p \cot \delta)^{\prime}} e^{-\gamma L}+\ldots\right]
$$

$\mathrm{B}_{\mathrm{H}}=16.6 \pm 2.1 \pm 4.6 \mathrm{MeV}$

$M_{\pi}=390 \mathrm{MeV}$
$2+1$ Clover anisotropic fermions

statistical systematic

Continuum limit?
Physical pion mass?

Isospin
breaking?
Electromagnetism?

H-dibaryon

arXiv:1103.2821

Conclusions

- Two nucleon systems are quite challenging
- Deuteron has not been observed
- Progress has been made in quenched QCD and very heavy pion masses (CP-PACS: arXiv:1105.1418, Phys.Rev.D81:111504,2010)
- Some evidence of bound h-dibaryon at heavy pion masses
- What happens at the physical pion mass?
- Energy estimation methodology needs further development
- Better interpolating fields
- Cost of correlation function construction
- More than 2 baryon systems
- Realistic computations are still very expensive and it is difficult to make progress

Helium

CPPACS: Quenched heavy pion

Phys.Rev.D81:111504,2010

