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Hadronic Interactions
Nuclear physics

QCD

Hadron structure
and spectrum
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Summary
The problem

Hadron-Hadron scattering phase shifts 

Binding energies

Study systems with more than 2 hadrons

The calculation

Evaluation of Euclidean correlators

Extract the finite volume energy levels

They are related to phase shifts and binding energies 
in infinite volume

Recent results
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Elastic Scattering 
Phases shifts  

Maiani-Testa no-go theorem

Luscher: Finite volume two particle spectrum 
is related to elastic scattering phase shifts
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Scattering in One dimension 

Wave functions are almost plane waves

Finite length with periodic boundary conditions

Wave function needs to be periodic  and even under x ---> -x 
(symmetric under particle exchange)

In center of mass coordinates

− 1
m

∂2Ψ
∂x2

+ c(k)δ(x)Ψ = EΨ

Ψ = A
�
e−ik|x| + eik|x|+2iδ(k)

�

E =
k2

m
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Scattering in One dimension 
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Scattering in One dimension 

c(k) = − 1
mk

tan δ(k)
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Scattering in One dimension 
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Scattering in One dimension 
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Luscher Formula

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]

p cot δ(p) =
1

πL
S

(
p2L2

4π2

)

, (1)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ∑

j

1

|j|2 − η
− 4πΛ . (2)

The sum in eq. (2) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [26]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.

3

Expansion at p->0 :  

a is the scattering length 
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presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.

3

Energy level shift in finite volume:  

pn cot δ(pn) =
1

a
+ · · ·

c1 and c2 are universal constants

1

a
=

1

πL
S

(

p2
0L

2

4π2

)

+ · · ·
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Bound states 

A(p) =
4π

m

1

p cotδ − i p

π/

p ! mπ =⇒

p
mπ

L = − C0 (N†N)2 − C2 (N†∇2N)(N†N) + h.c. + . . .

V (p) = C0 + C2 p2 + . . . ≡

A(p) = + + ...+

OCTP 6/2005 – p.13/30

Beane et.al. hep-lat/0312004v1

E−1 =
�

p2 + m2 − 2m p2 < 0

γ is the infinite volume binding momentum

E−1 = −γ2

m

�
1 +

12
γL

1
1− 2γ(p cot δ)�

e−γL + ...

�
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Scattering Phases shifts,
Bound States on the Lattice  

Maiani-Testa no-go theorem

Luscher: Finite volume two particle spectrum is 
related to elastic scattering phase shifts

Computational problem: Calculate in Euclidean space 
and finite volume the two particle spectrum

Extract energy levels from exponentially decaying 
correlation functions in Euclidean time

Baryons: Signal to noise ratio grows exponentially with 
Euclidean time

Monday, June 6, 2011



The Computation
〈O〉 =

1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)

�O� =
1
N

N�

i=1

O(Ui)Monte Carlo Evaluation

Statistical error
1√
N
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Signal to Noise ratio for 
correlation functions

The signal to noise ratio drops exponentially with time

The signal to noise ratio drops exponentially with decreasing pion mass

For two nucleons: StoN(2N) = StoN(1N)2

var(C(t)) = �NN̄(t)NN̄(0)� ∼ Ae−2MN t + Be−3mπt

C(t) = �N(t)N̄(0)� ∼ Ee−MN t

StoN =
C(t)�

var(C(t))
=∼ Ae−(MN−3/2mπ)t

Monday, June 6, 2011



Signal to Noise
323 x 256 

Mπ=390MeV NPLQCD data
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Signal to Noise Effective Mass
323 x 256 

Mπ=390MeV anisotropy factor 3.5 NPLQCD data
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Expected Two Nucleon spectrum
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Needed Time Separation

1 2 3 4
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Conclusion

We need to fit for several low lying states for 
reliable estimation of the ground state of the two 
particle system in a finite box

We need very high statistics to be able to resolve 
excited state contamination
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Spectroscopy Methods
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Spectroscopy Methods

Use multiple correlators and construct linear combinations 
that couple predominately to one state
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Spectroscopy Methods

Use multiple correlators and construct linear combinations 
that couple predominately to one state

“Variational”: Symmetric positive definite 
matrix of correlators [C. Michael, ’85; Luscher&Wolf ’90; ...]

Prony methods: [Fleming ’04; NPLQCD ’08; Fleming et.al. ’09 ]

Matrix Prony [NPLQCD ’08]

Generalized pencil of matrix [Aubin, KO’10]

“variational” for non symmetric matrices
Monday, June 6, 2011



Two Baryon Correlation functions

Single smeared quark source 

Multiple sink interpolating fields

Smeared, Point and Smeared-Point

Resulting a 3x1 matrix

No-need for all-to-all propagators

Very high statistics (300K correlation functions on 2K lattices)

NPLQCD data
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Nucleon-Nucleon

3

mπ (MeV ) a(1S0) (fm) a(3S1) (fm)

353.7 ± 2.1 0.63 ± 0.50 (5-10) 0.63 ± 0.74 (5-9)

492.5 ± 1.1 0.65 ± 0.18 (6-9) 0.41 ± 0.28 (6-9)

593.0 ± 1.6 0.0 ± 0.5 (7-12) −0.2 ± 1.3 (7-12)

TABLE I: Scattering lengths in the 1S0 channel and in the
3S1 −

3D1 coupled channels. The uncertainty is statistical and
the fitting ranges are in parentheses. There is a systematic
error of ∼ 0.1 fm on each scattering length associated with the
truncation of the effective range expansion; i.e. the numbers
exhibited are for −1/p cot δ at the measured energy-splitting.

lengths at the heaviest pion mass are not inconsistent
with the lightest-mass quenched values of Ref. [1]. How-
ever, one should keep in mind the effects of quenching on
the infrared properties of the theory [21].

The lowest pion mass at which we have calculated is
at the upper limit of where we expect the EFT describ-
ing NN interactions to be valid [22, 23, 24, 25, 26, 27].
While some controversy remains regarding the details
of the NN EFT, in our present analysis, we have con-
strained the chiral extrapolation using BBSvK power-
counting [27] (≡KSW power-counting [25, 26]) and W
power-counting [22, 23, 24] in the 1S0-channel and BB-
SvK power-counting in the 3S1 −3D1 coupled channels.
The recent lattice QCD determinations of the light-quark
axial-matrix element in the nucleon by LHPC [28] and
its physical value are used to constrain the chiral expan-
sion of gA. Our lattice calculations of the nucleon mass
and pion decay constant [20] —as well as their physi-
cal values— are used to constrain their respective chi-
ral expansions. In addition to the quark-mass depen-
dence these three quantities contribute to the NN sys-
tems, there is dependence on the quark masses at next-
to-leading order (NLO) from pion exchange, and from
local four-nucleon operators that involve a single inser-
tion of the light-quark mass matrix, described by the
“D2” coefficients [6, 7, 8]. The results of this lattice
QCD calculation constrain the range of allowed values
for the D2’s, and consequently the scattering lengths in
the region between mπ ∼ 350 MeV and the chiral limit,
as shown in fig. 3 and fig. 4. With only one lattice point
at the edge of the regime of applicability of the EFT, a
prediction for the scattering lengths at the physical pion
mass is not possible: the experimental values of the scat-
tering lengths are still required for an extrapolation to
the chiral limit and naive dimensional analysis (NDA)
is still required to select only those operator coefficients
that are consistent with perturbation theory. The regions
plotted in the figures correspond to values of C0 – the
coefficient of the leading-order quark-mass independent
local operator – and D2 that fit the lattice datum and
the physical value, and are consistent with NDA; indeed
we have D2(Λ)m2

π/C0(Λ) ∼ ±0.10 in both channels (at

physical mπ), at a renormalization scale Λ ∼ 350 MeV.
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sign of the D2 coefficient. As the lattice point used to
constrain the EFT is at the upper limits of applicabil-
ity of the EFT, we expect non-negligible corrections to
these regions from higher orders in the EFT expansion.
It is clear from fig. 3 and fig. 4 that even a qualitative
understanding of the chiral limit will require lattice cal-
culations at lighter quark masses.
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3

mπ (MeV ) a(1S0) (fm) a(3S1) (fm)

353.7 ± 2.1 0.63 ± 0.50 (5-10) 0.63 ± 0.74 (5-9)

492.5 ± 1.1 0.65 ± 0.18 (6-9) 0.41 ± 0.28 (6-9)

593.0 ± 1.6 0.0 ± 0.5 (7-12) −0.2 ± 1.3 (7-12)

TABLE I: Scattering lengths in the 1S0 channel and in the
3S1 −

3D1 coupled channels. The uncertainty is statistical and
the fitting ranges are in parentheses. There is a systematic
error of ∼ 0.1 fm on each scattering length associated with the
truncation of the effective range expansion; i.e. the numbers
exhibited are for −1/p cot δ at the measured energy-splitting.
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H-Dibaryon

Λ-Λ  bound state (uuddss)

proposed 1977 by R. Jaffe

Monday, June 6, 2011



H-Dibaryon
Negative energy shift is observed in finite 
volume

Use multiple (large) volumes to extract 
infinite volume energy γ

Finite volume corrections are big if binding 
energy is small

E−1 = −γ2
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I=0 S=-2 two baryons
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 BH= 16.6 ± 2.1 ± 4.6 MeV 

statistical systematic
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NPLQCD: arXiv:1012.3812
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(Published April 20, 2011)Mπ=390MeV

2+1 Clover anisotropic fermions

Monday, June 6, 2011



E−1 = −γ2

m

�
1 +

12
γL

1
1− 2γ(p cot δ)�

e−γL + ...

�

 BH= 16.6 ± 2.1 ± 4.6 MeV 

statistical systematic

Continuum limit?

Physical pion mass?

Isospin 
breaking?

Electromagnetism?

H-Dibaryon

NPLQCD: arXiv:1012.3812

Phys. Rev. Lett. 106, 162001 
(Published April 20, 2011)Mπ=390MeV

2+1 Clover anisotropic fermions

Monday, June 6, 2011



E−1 = −γ2

m

�
1 +

12
γL

1
1− 2γ(p cot δ)�

e−γL + ...

�

 BH= 16.6 ± 2.1 ± 4.6 MeV 

statistical systematic

Continuum limit?

Physical pion mass?

Isospin 
breaking?

Electromagnetism?

H-Dibaryon

NPLQCD: arXiv:1012.3812

Phys. Rev. Lett. 106, 162001 
(Published April 20, 2011)Mπ=390MeV

2+1 Clover anisotropic fermions

Monday, June 6, 2011



H-dibaryon 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
�20

�10

0

10

20

30

40

50

mΠ2 �GeV2�

B H
�MeV

�

HALQCD : nf�3
NPLQCD : nf�2�1

arXiv:1103.2821
Monday, June 6, 2011



Conclusions
Two nucleon systems are quite challenging

Deuteron has not been observed

Progress has been made in quenched QCD and very heavy 
pion masses (CP-PACS: arXiv:1105.1418, Phys.Rev.D81:111504,2010)

Some evidence of bound h-dibaryon at heavy pion masses

What happens at the physical pion mass?

Energy estimation methodology needs further development

Better interpolating fields

Cost of correlation function construction

More than 2 baryon systems 

Realistic computations are still very expensive and it is difficult to 
make progress
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CPPACS: Quenched heavy pion 
Phys.Rev.D81:111504,2010
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