Eleventh Workshop on Non-Perturbative Quantum Chromodynamics

> l'Institut d'Astrophysique de Paris June 6-10, 2011

Hadron interactions from lattice QCD

Kostas Orginos College of William and Mary JLAB

Degrees of Freedom

Quarks, Gluons

Constituent Quarks

Baryons, Mesons

Protons, Neutrons

Nucleonic Densities and Currents

Collective Coordinates

940

Energy (MeV)

Neutron Mass

140 Pion Mass

8 Proton Separation Energy in Lead

> 1.32 Vibrational State in Tin

0.043 Rotational State in Uranium

QCD

Hadron structure and spectrum

Hadronic Interactions Nuclear physics

Physics of Nuclei

Physics of Hadrons

Summary

- The problem
 - Hadron-Hadron scattering phase shifts
 - Binding energies
 - Study systems with more than 2 hadrons
- The calculation
 - Several Evaluation of Euclidean correlators
 - Sector Extract the finite volume energy levels
 - They are related to phase shifts and binding energies in infinite volume
- Recent results

NPLQCD COLLABORATION

Silas R. Beane

New Hampshire

William Detmold William & Mary

Huey-Wen Lin U of Washington

Tom Luu Livermore

Kostas Orginos William & Mary

Assumpta Parreño Barcelona

Martin J. Savage U of Washington

Aaron Torok André Walker-Loud Indiana William & Mary

Elastic Scattering Phases shifts

Maiani-Testa no-go theorem

Luscher: Finite volume two particle spectrum is related to elastic scattering phase shifts

In center of mass coordinates

$$-\frac{1}{m}\frac{\partial^2\Psi}{\partial x^2} + c(k)\delta(x)\Psi = E\Psi$$
$$\Psi = A\left(e^{-ik|x|} + e^{ik|x|+2i\delta(k)}\right)$$
$$E = \frac{k^2}{m}$$

- Wave functions are almost plane waves
- Finite length with periodic boundary conditions
- Wave function needs to be periodic and even under x ---> -x (symmetric under particle exchange)

$$c(k) = -\frac{1}{mk} \tan \delta(k)$$

Luscher Formula

Energy level shift in finite volume:

$$\Delta E_n \equiv E_n - 2m = 2\sqrt{p_n^2 + m^2} - 2m$$

 $P_{n} \text{ solutions of:}$ $p \cot \delta(p) = \frac{1}{\pi L} \mathbf{S} \left(\frac{p^{2}L^{2}}{4\pi^{2}} \right) \qquad \mathbf{S}(\eta) \equiv \sum_{j=1}^{|\mathbf{j}| < \Lambda} \frac{1}{|\mathbf{j}|^{2} - \eta} - 4\pi\Lambda$ $p_{n} \cot \delta(p_{n}) = \frac{1}{a} + \cdots \qquad \frac{1}{a} = \frac{1}{\pi L} S \left(\frac{p_{0}^{2}L^{2}}{4\pi^{2}} \right) + \cdots$

Expansion at $p \rightarrow 0$:

$$\Delta E_0 = -\frac{4\pi a}{mL^3} \left[1 + c_1 \frac{a}{L} + c_2 \left(\frac{a}{L}\right)^2 \right] + \mathcal{O}\left(\frac{1}{L^6}\right)$$

a is the scattering length

 c_1 and c_2 are universal constants

Bound states

$$A(p) = 4\pi + m + m$$

$$A(p) = \frac{4\pi}{m} \frac{1}{p \cot \delta - i p}$$

$$E_{-1} = \sqrt{p^2 + m^2 - 2m} \qquad p^2 < 0$$

$$E_{-1} = -\frac{\gamma^2}{m} \left[1 + \frac{12}{\gamma L} \frac{1}{1 - 2\gamma (p \cot \delta)'} e^{-\gamma L} + \dots \right]$$

 $\boldsymbol{\gamma}$ is the infinite volume binding momentum

Beane et.al. hep-lat/0312004v1

Scattering Phases shifts, Bound States on the Lattice

Maiani-Testa no-go theorem

- Luscher: Finite volume two particle spectrum is related to elastic scattering phase shifts
- Computational problem: Calculate in Euclidean space and finite volume the two particle spectrum
- Extract energy levels from exponentially decaying correlation functions in Euclidean time
- Baryons: Signal to noise ratio grows exponentially with Euclidean time

The Computation

 $\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \prod_{\mu, x} dU_{\mu}(x) \ \mathcal{O}[U, D(U)^{-1}] \ \det \left(D(U)^{\dagger} D(U) \right)^{n_f/2} \ e^{-S_g(U)}$

Monte Carlo Evaluation

$$\langle \mathcal{O} \rangle = rac{1}{N} \sum_{i=1}^{N} \mathcal{O}(U_i)$$

Statistical error $\frac{1}{\sqrt{N}}$

Signal to Noise ratio for correlation functions $C(t) = \langle N(t)\bar{N}(0) \rangle \sim Ee^{-M_N t}$ $var(C(t)) = \langle N\bar{N}(t)N\bar{N}(0)\rangle \sim Ae^{-2M_N t} + Be^{-3m_\pi t}$ $StoN = \frac{C(t)}{\sqrt{var(C(t))}} = \sim Ae^{-(M_N - 3/2m_\pi)t}$

The signal to noise ratio drops exponentially with time

- The signal to noise ratio drops exponentially with decreasing pion mass
- For two nucleons: $StoN(2N) = StoN(1N)^2$

32³ x 256 M_π=390MeV

Signal to Noise

NPLQCD data

Signal to Noise Effective Mass

NPLQCD data

 $32^3 \times 256$ M₁=390MeV

anisotropy factor 3.5

Expected Two Nucleon spectrum

Needed Time Separation $e^{-\Delta E \delta t} \approx 10^{-2}$

Conclusion

We need to fit for several low lying states for reliable estimation of the ground state of the two particle system in a finite box

We need very high statistics to be able to resolve excited state contamination

Spectroscopy Methods

Spectroscopy Methods

Use multiple correlators and construct linear combinations that couple predominately to one state

Spectroscopy Methods

Use multiple correlators and construct linear combinations that couple predominately to one state

Variational": Symmetric positive definite matrix of correlators [c. Michael, '85; Luscher&Wolf '90; ...]
Prony methods: [Fleming '04; NPLQCD '08; Fleming et.al. '09]
Matrix Prony [NPLQCD '08]
Generalized pencil of matrix [Aubin, KO'10]

"variational" for non symmetric matrices

Two Baryon Correlation functions

- Single smeared quark source
- Multiple sink interpolating fields
 - Smeared, Point and Smeared-Point
- Resulting a 3x1 matrix
- No-need for all-to-all propagators
- Very high statistics (300K correlation functions on 2K lattices)

NPLQCD data

 $20^3 \times 128$

 $24^3 \times 128$

$32^3 \times 256$

Nucleon-Nucleon NPLQCD: Phys.Rev.Lett.97 2006

BBSvK: Beane Bedaque Savage van Kolck '02 W: Weinberg '90;Weingberg '91; Ordonez et.al '95

Fukugita et al. '95: Quenched heavy pions

New result

New result

proposed 1977 by R. Jaffe

Λ - Λ bound state (uuddss)

- Negative energy shift is observed in finite volume
- Solution Use multiple (large) volumes to extract infinite volume energy y
- Finite volume corrections are big if binding energy is small

$$E_{-1} = -\frac{\gamma^2}{m} \left[1 + \frac{12}{\gamma L} \frac{1}{1 - 2\gamma (p \cot \delta)'} e^{-\gamma L} + \dots \right]$$

 $16^3 \times 128$ 2.0fmuseless $20^3 \times 128$ 2.5fmmarginal $24^3 \times 128$ 3.0fmgood $32^3 \times 256$ 4.0fmexcellent

M_π=390MeV 2+1 Clover anisotropic fermions

$$E_{-1} = -\frac{\gamma^2}{m} \left[1 + \frac{12}{\gamma L} \frac{1}{1 - 2\gamma (p \cot \delta)'} e^{-\gamma L} + \dots \right]$$

$$E_{-1} = -\frac{\gamma^2}{m} \left[1 + \frac{12}{\gamma L} \frac{1}{1 - 2\gamma (p \cot \delta)'} e^{-\gamma L} + \dots \right]$$

B_{H} = 16.6 ± 2.1 ± 4.6 MeV

NPLQCD: arXiv:1012.3812

M_π=390MeV 2+1 Clover anisotropic fermions Phys. Rev. Lett. **106**, 162001 (Published April 20, 2011)

statistical systematic

$$E_{-1} = -\frac{\gamma^2}{m} \left[1 + \frac{12}{\gamma L} \frac{1}{1 - 2\gamma (p \cot \delta)'} e^{-\gamma L} + \dots \right]$$

B_{H} = 16.6 ± 2.1 ± 4.6 MeV

NPLQCD: arXiv:1012.3812

M_π=390MeV 2+1 Clover anisotropic fermions Phys. Rev. Lett. **106**, 162001 (Published April 20, 2011)

Continuum limit? Physical pion mass? statistical systematic Isospin breaking? Electromagnetism?

$$E_{-1} = -\frac{\gamma^2}{m} \left[1 + \frac{12}{\gamma L} \frac{1}{1 - 2\gamma (p \cot \delta)'} e^{-\gamma L} + \dots \right]$$

B_{H} = 16.6 ± 2.1 ± 4.6 MeV

NPLQCD: arXiv:1012.3812

Phys. Rev. Lett. **106**, 162001 (Published April 20, 2011)

statistical systematic

Continuum limit? Physical pion mass? Isospin breaking? Electromagnetism?

Monday, June 6, 2011

M_π=390MeV

2+1 Clover anisotropic fermions

H-dibaryon

arXiv:1103.2821

Conclusions

- Two nucleon systems are quite challenging
 - Deuteron has not been observed
 - Progress has been made in quenched QCD and very heavy pion masses (CP-PACS: <u>arXiv:1105.1418</u>, Phys.Rev.D81:111504,2010)
- Some evidence of bound h-dibaryon at heavy pion masses
 - What happens at the physical pion mass?
- Energy estimation methodology needs further development
 - Better interpolating fields
 - Cost of correlation function construction
- More than 2 baryon systems
- Realistic computations are still very expensive and it is difficult to make progress

Helium

CPPACS: Quenched heavy pion Phys.Rev.D81:111504,2010

³He NPLQCD: 2+1 dynamical 390MeV pion

