The two-body and the many-body problem in QCD from the lattice

Philippe de Forcrand ETH Zürich and CERN

with Michael Fromm (ETH \rightarrow Frankfurt)

and Wolfgang Unger (ETH)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Scope of lattice QCD simulations

Physics of color singlets

• "One-body" physics: confinement

hadron masses form factors, etc..

Scope of lattice QCD simulations

Physics of color singlets

 "One-body" physics: confinement hadron masses form factors, etc..

• "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

QCD phase diagram according to Wikipedia

Here: • "many-body" physics: hadron \leftrightarrow nuclear matter transition

• "two-body": *T* = 0 nuclear interactions

Ph. de Forcrand

A different approach to the sign problem

$$Z = \int \mathcal{D} A \mathcal{D} \, \bar{\psi} \mathcal{D} \, \psi \exp\left(-\frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (\not\!\!\!D + m_i + \mu_i \gamma_0) \psi_i\right)$$

 $\det(\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!/ + m + \mu \gamma_0)$ complex \rightarrow try integrating over the gauge field first!

- Problem: $-\frac{1}{4}F_{\mu\nu}F_{\mu\nu} \rightarrow \beta_{gauge} Tr U_{Plaquette}$, ie. 4-link interaction
- Solution: set $\beta_{gauge} = \frac{2N_c}{g^2}$ to zero, ie. $g = \infty$, strong coupling limit
- Then integral over gauge links factorizes: $\sim \int \prod dU \exp(\bar{\psi}_x U_{x,\hat{\mu}} \psi_{x+\hat{\mu}})$
- analytic 1-link integral \rightarrow only color singlets survive
- perform Grassmann integration last \rightarrow hopping of color singlets

 \rightarrow hadron worldlines

- sample gas of worldlines by Monte Carlo

Note: when $\beta_{gauge} = 0$, quarks are *always* confined $\forall (\mu, T)$, ie. nuclear matter

The price to pay: not continuum QCD

Strong coupling LQCD: why bother ?

Asymptotic freedom:
$$a(\beta_{gauge}) \propto \exp(-\frac{\beta_{gauge}}{4N_c b_0})$$

ie. $a \to 0$ when $\beta_{gauge} \equiv \frac{2N_c}{g^2} \to +\infty$. Here $\beta_{gauge} = 0$!!

- Lattice "infinitely coarse"
- Physics not universal

Nevertheless:

- Properties similar to QCD: confinement and χSB
- Include (perhaps) next term in strong coupling expansion, ie. $\beta_{gauge} > 0$

When $\beta_{gauge}=$ 0, sign problem is manageable \rightarrow complete solution

Valuable insight? understand nuclear interactions

Further motivation

25⁺ years of analytic predictions:
80's: Kluberg-Stern et al., Kawamoto-Smit, Damgaard-Kawamoto μ_c(T = 0) = 0.66, T_c(μ = 0) = 5/3
90's: Petersson et al., 1/g² corrections
00's: detailed (μ, T) phase diagram: Nishida, Kawamoto,...
now: Ohnishi et al. O(β) & O(β²), Münster & Philipsen,...
How accurate is mean-field (1/d) approximation?

• Almost no Monte Carlo crosschecks:

89: Karsch-Mütter \rightarrow MDP formalism $\rightarrow \mu_c(T = 0) \sim 0.63$

92: Karsch et al. $T_c(\mu = 0) \approx 1.40$

99: Azcoiti et al., MDP ergodicity ??

06: PdF-Kim, HMC ightarrow hadron spectrum \sim 2% of mean-field

Can one trust the details of analytic phase-diagram predictions?

Phase diagram from Nishida (2004, mean field, cf. Fukushima)

- Very similar to conjectured phase diagram of $N_f = 2$ QCD
- But no deconfinement here: high density phase is nuclear matter
- Baryon mass = $M_{\text{proton}} \Rightarrow$ lattice spacing $a \sim 0.6$ fm not universal

Phase diagram from Nishida (2004, mean field, cf. Fukushima)

- Very similar to conjectured phase diagram of $N_f = 2$ QCD
- But no deconfinement here: high density phase is nuclear matter
- Baryon mass = $M_{\text{proton}} \Rightarrow$ lattice spacing $a \sim 0.6$ fm not universal

Strong coupling SU(3) with staggered quarks

- $Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\mathcal{D}(U) + m_q)\psi)$, no plaquette term ($\beta_{gauge} = 0$)
 - One complex colored fermion field per site (no Dirac indices, spinless)

- Chemical potential $\mu \ o \exp(\pm a \mu) U_{\pm 4}$
- $\mathcal{D} U = \prod dU \text{ factorizes} \rightarrow \text{ integrate over links}$ Rossi & Wolff

 \rightarrow **Color singlet** degrees of freedom:

- Meson $\overline{\psi}\psi$: monomer, $M(x) \in \{0, 1, 2, 3\}$
- Meson hopping: *dimer*, non-oriented $n_v(x) \in \{0, 1, 2, 3\}$
- Baryon hopping: oriented $\overline{BB}_{V}(x) \in \{0,1\} \rightarrow$ self-avoiding loops C

Point-like, hard-core baryons in pion bath

No πNN vertex

MDP Monte Carlo

$$Z(m_q,\mu) = \sum_{\{M,n_V,C\}} \prod_x \frac{m_q^{M(x)}}{M(x)!} \prod_{x,v} \frac{(3-n_V(x))!}{n_V(x)!} \prod_{\text{loops } C} \rho(C)$$

with **constraint** $(M + \sum_{\pm v} n_V)(x) = 3 \ \forall x \notin \{C\}$

Constraint: 3 blue symbols or a baryon loop at every site

Ph. de Forcrand

MDP Monte Carlo

$$Z(m_q,\mu) = \sum_{\{M,n_V,C\}} \prod_x \frac{m_q^{M(x)}}{M(x)!} \prod_{x,v} \frac{(3-n_V(x))!}{n_V(x)!} \prod_{\text{loops } C} \rho(C)$$

with **constraint** $(M + \sum_{\pm v} n_v)(x) = 3 \ \forall x \notin \{C\}$

The dense (crystalline) phase: 1 baryon per site; no monomer $\rightarrow \langle \bar{\psi}\psi \rangle = 0$

Ph. de Forcrand

MDP Monte Carlo

$$Z(m_q,\mu) = \sum_{\{M,n_V,C\}} \prod_x \frac{m_q^{M(x)}}{M(x)!} \prod_{x,v} \frac{(3-n_V(x))!}{n_V(x)!} \prod_{\text{loops } C} \rho(C)$$

with constraint $(M + \sum_{\pm v} n_V)(x) = 3 \ \forall x \notin \{C\}$

Remaining difficulties:

- Baryons are fermions: mild sign problem from $\rho(C)$ Karsch & Mütter \rightarrow volumes up to $16^3 \times 4 \forall \mu$
- tight-packing constraint \rightarrow local update inefficient, esp. as $m \rightarrow 0$ Solved with worm algorithm (Prokof'ev & Svistunov 1998) Efficient even when $m_q = 0$

Continuous Euclidean time

Wolfgang Unger

• Finite temperature: $T = \frac{1}{N_t a}$ can only vary in *discrete steps* $aT_c \sim 1.4 \rightarrow$ need finer grid in Euclidean time

- Anisotropy γ in Dirac couplings: $\frac{a_s}{a_t}$ vs γ ? $\frac{a_s}{a_t} = \gamma^2$ in mean-field
- Limit $\gamma \rightarrow \infty$, γ^2/N_t fixed is non-monotonic

Continuous Euclidean time

Wolfgang Unger

Bonus: - Simpler and faster: no multiple spatial dimers

- Sign problem goes away (baryons are static)
- Green's functions are functions of $\tau \rightarrow$ analytic continuation?

(μ, T) phase diagram in the chiral limit $m_q = 0$

- Phase boundary for breaking/restoration of U(1) chiral symmetry
- 2nd order at $\mu = 0$: 3d O(2) universality class
- 1rst order at T = 0: ρ_B jumps from 0 to 1 baryon per site \implies tricrit. pt. TCP Finite-size scaling: $(\mu, T)_{TCP} = (0.65(3), 1.02(3))$ vs (0.577, 0.866) (mean-field) Accuracy of mean-field O(1/d) as expected
- Reentrance caused by *decreasing* entropy in dense phase (saturation) cf. Clausius-Clapeyron: $\frac{dT}{d\mu} = -\frac{\Delta n}{\Delta S} \rightarrow$ vertical at T = 0

Ph. de Forcrand

Nuclear matter: spectroscopy

Can compare masses of differently shaped "isotopes"

• $E(B=2) - 2E(B=1) \sim -0.4$, ie. "deuteron" binding energy ca. 120 MeV • $am(A) \sim a\mu_B^{crit}A + (36\pi)^{1/3}\sigma a^2 A^{2/3}$, ie. (bulk + surface tension) Bethe-Weizsäcker parameter-free (μ_B^{crit} and σ measured separately)

• "Magic numbers" with increased stability: A = 4, 8, 12 (reduced area)

Nuclear potential: more than hard core

• Nucleons are point-like ightarrow no ambiguity with definition of static potential

- Nearest-neighbour attraction \sim 120 MeV at distance \sim 0.5 fm: cf. real world
- Baryon worldlines self-avoiding \rightarrow no direct meson exchange (just hard core)

How do baryons interact beyond hard-core ?

Ph. de Forcrand

How the nucleon got its mass

• Point-like nucleon distorts pion bath cf. Casimir

• Energy = nb. time-like pion lines

Constraint: 3 pion lines per site ($m_q = 0$) \rightarrow energy density = 3/4 in vacuum No spatial pion lines connecting to site occupied by nucleon \rightarrow energy increase

Steric / Entropic effect

• $am_B \approx 2.88 = (3 - 0.75) + \Delta E_{\pi}$, ie. "valence"(78%) + "pion cloud"(22%)

So, in fact, nucleon is not point-like

Point-like "bag" of 3 valence quarks \rightarrow macroscopic disturbance in pion vacuum

So, in fact, nucleon is not point-like

Point-like "bag" of 3 valence quarks \rightarrow macroscopic disturbance in pion vacuum Static baryon prevents monomers = static (*t*-invariant) monomer "source" Linear response \propto Green's fct. of lightest *t*-invariant meson, ie. rho/omega (pion has factor $(-1)^t$)

So, in fact, nucleon is not point-like

Point-like "bag" of 3 valence quarks \rightarrow macroscopic disturbance in pion vacuum Static baryon prevents monomers = static (*t*-invariant) monomer "source" Linear response \propto Green's fct. of lightest *t*-invariant meson, ie. rho/omega (pion has factor $(-1)^t$)

Nuclear interaction via pion clouds

 \bullet Here, baryons make self-avoiding loops \rightarrow no direct meson exchange

(thanks W. Weise)

Interaction comes because of pion clouds

The two pion clouds can interpenetrate at \approx constant energy (2nd order effect) But each set of *valence* quarks disturbs pion cloud of other baryon

Nuclear interaction via pion clouds

(thanks W. Weise)

- \bullet Here, baryons make self-avoiding loops \rightarrow no direct meson exchange
- Interaction comes because of pion clouds

The two pion clouds can interpenetrate at \approx constant energy (2nd order effect) But each set of *valence* quarks disturbs pion cloud of other baryon

$$\implies V_{NN}(R) \approx -2 \times \Delta E_{\pi}(R) \propto \frac{\exp(-\mathbf{m}_{\mathsf{p}/\omega}R)}{R} \times (-1)^{\mathbf{x}+\mathbf{y}+\mathbf{z}}$$

Nuclear interaction via pion clouds

(thanks W. Weise)

- \bullet Here, baryons make self-avoiding loops \rightarrow no direct meson exchange
- Interaction comes because of pion clouds

The two pion clouds can interpenetrate at \approx constant energy (2nd order effect) But each set of *valence* quarks disturbs pion cloud of other baryon

Ph. de Forcrand

 $\beta = 0 LQCD$

Recap: baryons and their interactions at $\beta = 0$

- Baryons are not point-like: pion cloud $\sim \exp(-m_{
 ho/\omega}r)$
- Nuclear potential:
 - Hard-core from Pauli principle
 - Yukawa potential (times $(-1)^r$) from the two pion clouds
- Precisely like a classical hard-sphere fluid: entropic force
 - "Pion cloud" from ripples around tagged sphere
 - Density-density correlation: $V_{\rm eff}(r) \equiv -\log(g(r)) \sim \exp(-(m+i\Gamma)r)/r$

Conclusions

Summary: complete solution of strong coupling limit

- Phase diagram: take mean-field results with a grain of salt
- [Crude, crystalline] nuclear matter from QCD:
 - tabletop simulations of first-principles nuclear physics
- Nucleon: point-like "bag" (→hard core)+large pion cloud
 - cf. "little bag" model (Brown & Rho)
- Yukawa potential without meson exchange

Outlook

- Include O(β) effects
- Include second quark species \rightarrow isospin ?

First step towards $O(\beta)$: gauge observables at $\beta = 0$

Entropic force

Soft condensed matter: binary mixture of hard spheres

Excluded "halo" around each big sphere

Entropic force:

Total excluded volume decreases when halos overlap \rightarrow attraction

Continuous time: finite-*T* transition ($m_q = 0, \mu = 0$)

Relating the strong-coupling and continuum phase diagrams

 $N_f = 4$ continuum flavors, $m_q = 0$

Relating the strong-coupling and continuum phase diagrams

Can differentiate between the two cases Case *right* favorable for quantitative continuum predictions

Ph. de Forcrand

Density-density correlation (Percus-Yevick approximation)

 $g(r) \equiv \langle \rho(0)\rho(r) \rangle$ relaxes to $\langle \rho \rangle^2$ with damped oscillations \rightarrow liquid

"Potential of mean force" $V_{\text{eff}}(r) \equiv -\log(g(r))$ is hard-core + damped oscillatory

"Potential of mean force" $V_{\text{eff}}(r) \equiv -\log(g(r))$ is hard-core + damped oscillatory

Consistent with Yukawa form
$$\frac{\exp(-mr)}{r} \times \cos(\Gamma r)$$

Backup: Karsch & Mütter's resummation

Karsch & Mütter: Resum into "MDP ensemble" \rightarrow sign pb. eliminated at $\mu = 0$

Backup: Sign problem? Monitor $-\frac{1}{V}\log(\text{sign})$

• $\langle \text{sign} \rangle = \frac{Z}{Z_{\parallel}} \sim \exp(-\frac{V}{T} \Delta f(\mu^2))$ as expected; $\Delta f \sim \mu^2 + O(\mu^4)$ • Can reach $\sim 16^3 \times 4 \ \forall \mu$, ie. adequate

Ph. de Forcrand

(μ, T) phase diagram in the chiral limit $m_q = 0$, and for $m_q \neq 0$

• Phase boundary for breaking/restoration of U(1) chiral symmetry

• 2nd order at $\mu = 0$: 3d O(2) universality class

• 1rst order at T = 0: ρ_B jumps from 0 to 1 baryon per site \implies tricrit. pt. TCP Finite-size scaling: $(\mu, T)_{TCP} = (0.33(3), 0.94(7))$ vs (0.577, 0.866) (mean-field) Beware of quantitative mean-field predictions for phase diagram

(μ, T) phase diagram in the chiral limit $m_q = 0$, and for $m_q \neq 0$

Phase boundary for breaking/restoration of U(1) chiral symmetry

• 2nd order at $\mu = 0$: 3d O(2) universality class

 1rst order at *T* = 0: ρ_B jumps from 0 to 1 baryon per site ⇒ tricrit. pt. TCP Finite-size scaling: (μ, *T*)_{*TCP*} = (0.33(3), 0.94(7)) vs (0.577, 0.866) (mean-field) Beware of quantitative mean-field predictions for phase diagram
 *m*_q ≠ 0: liquid-gas transition *T*_{*CEP*} ~ 200MeV – traj. of CEP obeys tricrit. scaling