

QCD and **String** Theory

(Review)

Shigeki Sugimoto (IPMU)

(The main part is based on works with T.Sakai, H.Hata, S.Yamato, K. Hashimoto, T.Imoto)

Eleventh Workshop on Non-Perturbative QCD, June 6, 2011 @ l'Institut d'Astrophysique de Paris

1 /21

Hadrons can be described by **string theory without using quarks and gluons!**

These two look completely different. But, they are conjectured to be equivalent!

\star D-brane and gauge theory

\star D-brane as curved background

D-brane

curved background corresponding to the D-brane

 $U(N_c)$ gauge theory

<u>Plan of Talk</u>

- ✓ ① Introduction
 - **2** Construction of QCD
 - 3 Applications
 - **4** Conclusion

2 Construction of QCD ★ QCD in string theory

★ Holographic QCD

Now we are ready to discuss the applications

But, don't trust too much !

- Solution We have only estimated the leading terms in $1/N_c$, $1/\lambda$ expansions
- Solution The model deviates from real QCD at high energy $\sim M_{KK} \sim 1 \text{GeV}$
- quark masses are neglected

But, don't be too pessimistic.

- Solution The effect of "cut off" at M_{KK} is milder than lattice cut off.
- Remember "quench approximation" works in lattice QCD
- At least, we should not give up before trying.

• Meson effective theory is written as a 5 dim $U(N_f)$ YM-CS theory in a curved background.

$$S_{5\text{dim}} \simeq S_{YM} + S_{CS} \qquad k(z) = 1 + z^{2} \qquad \text{CS5-form}$$

$$S_{YM} = \kappa \int d^{4}x dz \operatorname{Tr} \left(\frac{1}{2} h(z) F_{\mu\nu}^{2} + k(z) F_{\mu z}^{2} \right) \qquad S_{CS} = \frac{N_{c}}{24\pi^{2}} \int_{5} \omega_{5}(A)$$

$$(k(z) = (1 + z^{2})^{-1/3}$$

$$A_{\mu}(x^{\mu}, z) = \sum_{n \ge 1} B_{\mu}^{(n)}(x^{\mu})\psi_{n}(z)$$
complete sets of

$$A_{z}(x^{\mu}, z) = \sum_{n \ge 0} \varphi^{(n)}(x^{\mu})\phi_{n}(z)$$
complete sets of
functions of \mathcal{Z}

$$\varphi^{(0)} \sim \text{pion} \quad B_{\mu}^{(1)} \sim \rho \text{ meson} \quad B_{\mu}^{(2)} \sim a_{1} \text{ meson} \quad \cdots$$

$$S_{5\text{dim}}(A) = S_{4\text{dim}}(\pi, \rho, a_{1}, \rho', a_{1}', \cdots)$$
traditional meson offective set

traditional meson effective action¹⁴

A lot of old models are reproduced without making any phenomenological assumptions!

Skyrme model[Skyrme 1961]Vector meson dominance[Sakurai 1960, Gell-Mann-Zachriasen 1961]Gell-Mann Sharp Wagner model[Gell-Mann –Sharpe-Wagner 1962]nextHidden local symmetry[Bando-Kugo-Uehara-Yamawaki-Yanagida 1985]

masses and couplings roughly agree with experimental data.

						ovporimont
	_			coupling	Vour moder	experiment
mass	ρ	a_1	ρ^{r}	f_{π}	[92.4 MeV]	92.4 MeV
exp.(MeV)	776	1230	1465	L_1	0.584×10^{-3}	$(0.1 \sim 0.7) \times 10^{-3}$
our model	[776]	1189	1607	L_2	1.17×10^{-3}	$(1.1 \sim 1.7) \times 10^{-3}$
ratio	[1]	1.03	0.911	L_3	-3.51×10^{-3}	$-(2.4 \sim 4.6) \times 10^{-3}$
	1			L_9	8.74×10^{-3}	$(6.2 \sim 7.6) \times 10^{-3}$
				L ₁₀	-8.74×10^{-3}	$-(4.8 \sim 6.3) \times 10^{-3}$
	input			$g_{ ho\pi\pi}$	4.81	5.99
	•			$g_ ho$	0.164 GeV ²	0.121 GeV ²
				$g_{a_1 ho\pi}$	4.63 GeV	$2.8 \sim 4.2 \text{ GeV}$

- we meson decay ($\omega \to \pi^0 \gamma$ and $\omega \to \pi^0 \pi^+ \pi^-$)
- Our model predicts that the relevant diagrams for $\omega \to \pi^0 \gamma$ and $\omega \to \pi^0 \pi^+ \pi^-$ are

Exactly the same as the GSW model !

[Gell-Mann -Sharp-Wagner 1962]

Furthermore, we find

$$\Gamma(\omega \to \pi^{0}\gamma) = \frac{N_{c}^{2}}{3} \frac{\alpha}{64\pi^{4} f_{\pi}^{2}} \left(\sum_{n=1}^{\infty} \frac{c_{n} g_{\rho^{n}}}{m_{\rho^{n}}^{2}} \right)^{2} |\mathbf{p}_{\pi}|^{3} = \frac{N_{c}^{2}}{3} \frac{\alpha}{64\pi^{4} f_{\pi}^{2}} \frac{g_{\rho\pi\pi}^{2}}{g_{\rho\pi\pi}^{2}} |\mathbf{p}_{\pi}|^{3}$$

reproduces the proposal given by Fujiwara et al ! [Fujiwara-Kugo-Terao-Uehara-Yamawaki 1985] 16 Other mesons, including higher spin mesons, are obtained as excited string states.

1st excited states

 $\rightarrow a_2(1320), b_1(1235), \pi(1300), a_0(1450), \cdots$

- 2nd excited states
 - $\rightarrow \rho_3(1690), \pi_2(1670), \cdots$

• 3rd excited states mass: $m_N \simeq \sqrt{\frac{N}{\alpha'} + \frac{M_{KK}}{2\sqrt{2}}}$ $\rightarrow a_4(2040), \cdots$ $(N = 1, 2, 3, \cdots)$

(See arXiv:1005.0655 for more details)

= soliton in the 5dim theory

We can analyze the spectrum, magnetic moments, charge radii by quantizing this soliton. cf) Skyrme model

Properties of nucleons

	our result	exp.
$\langle r^2 \rangle_{I=0}^{1/2}$	0.74 fm	0.81 fm
$\langle r^2 \rangle_{I=1}^{1/2}$	0.74 fm	0.94 fm
$\langle r^2 \rangle_A^{1/2}$	0.54 fm	0.67 fm
$g_{I=0}$	1.7	1.8
$g_{I=1}$	7.0	9.4
g_A	0.73	1.3

[Hashimoto-Sakai-S.S. 2008]

[See also, Hong-Rho-Yee-Yi 2007, Hata-Murata-Yamato 2008, Kim-Zahed 2008]

nucleon ele-mag form factor

Hadrons can be described by **string theory** without using quarks and gluons!

