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We study in detail the magnetic bion confinement mechanism in 
QCD‐like theories with arbitrary numbers of adjoint Weyl 
fermions on R**3xS**1. 

In the case of one Weyl adjoint flavor, we show how it can be 
smoothly deformed into the mechanism of confinement in 
Seiberg‐Witten theory on R**4. This demonstrates quite explicitly 
that the only analytically controlled examples of confinement in 
locally 4d & continuum supersymmetric (Seiberg‐Witten) and 
nonsupersymmetric (QCD(adj)‐a magnetic bion version of 
Polyakov's mechanism) represent facets of the same 
phenomenon.

ABSTRACT:  

 But, first I really need to tell (remind) you what it’s all about.

[Anber, EP, 2011]

[Unsal, EP, 2011]

(as submitted to organizers)



The theme of my talk is about inferring properties of infinite-
volume theory by studying (arbitrarily) small-volume dynamics. 

The small volume may be 

or of characteristic 
size “L”

most of this talk

long history of stumbling (1980-2008) that I won’t review  

some recent (2008+) excitement:

“Eguchi-Kawai” ... “large-N volume independence”...
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periodic adjoint fermions 
(more than one Weyl) - no center 
breaking, so EK reduction holds at all L 

double-trace deformations 
deform measure to prevent center breaking 
at infinite-N, deformation does not affect 
(connected correlators of “untwisted”) observables

          EK reduction valid to arbitrarily small L (single-site) if either:
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“Magnetic bions, multiple-adjoints, and Seiberg-Witten theory”



In 4d theories with periodic adjoint fermions, for small-L, 
confining dynamics is semiclassically calculable.

is now an adjoint 3d scalar Higgs field

but it is a bit unusual - 
a compact Higgs field:

thus, natural 
scale of “Higgs vev” is leading to

such shifts of A   vev absorbed  into shift of KK number “n”4

hence, semiclassical if L << inverse strong scale 

  exactly this happens in theories with more than one periodic Weyl adjoints

  follows from two things, without calculation:
  1.) existence of deconfinement transition in pure YM and 2.) supersymmetry 

in pure YM, at small L (high-T),  Veff min at A  =0 & max at pi/L (Gross,Pisarsky,Yaffe 1980s)

in SUSY Veff=0, so one Weyl fermion contributes the negative of gauge boson Veff
4

Q.E.D.



However, the “Debye screening” is now due to composite 

objects, the “magnetic bions” of the title.

Polyakov’s 3d mechanism of confinement by “Debye screening” 
in the monopole-anti-monopole plasma extends to (locally) 4d theories. 

since SU(2) broken to U(1) at scale 1/L

there are monopole-instanton solutions of finite Euclidean action, constructed 
as follows:
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A
4

gauge equivalent vevs

vv - 2Pi/L

vev at origin
vev at infinity

monopole-instanton of action ~ |2 Pi/L - v|/g 3
2

- use a large gauge transformation to make vev at infinity = v
- action does not change
- x -dependence is induced, hence called “twisted” 4
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0 2Pi/L 4Pi/L 6Pi/L-2Pi/L-4Pi/L-6Pi/L

A
4

gauge equivalent vevs

vv - 2Pi/L

monopole-instanton tower; action ~ |2 k Pi/L - v|/g 3
2

......

“twisted” or “Kaluza-Klein”: monopole embedded in 
4d by a twist by a “gauge transformation” periodic up 
to center - in 3d limit not there! (infinite action)

KK
the lowest action member of the tower can be pictured like this (as opposed to the no-twist):



KK

K. Lee, P.  Yi, 1997

M

KK
Euclidean
D0-brane

Euclidean
D0-brane

magnetic
 

topological
 

suppression

center-symmetric vev coupling matching

M & KK have ‘t Hooft suppression given by:
in SU(N), 1/N-th of
the ‘t Hooft suppression 
factor

M



in a purely bosonic theory, vacuum would be a dilute M-M* plasma - 
but interacting, unlike instanton gas in 4d (in say, electroweak theory) 

electric fields are screened in a charged plasma (“Debye mass for photon”)
in the monopole-antimonopole plasma, the dual photon (3d photon ~ scalar)
obtains mass from screening of magnetic field:

“(anti-)monopole operators” 

Polyakov, 1977:    dual photon mass ~ confining string tension  

aka “disorder operators” - not locally expressed in 
terms of original gauge fields  (Kadanoff-Ceva; ‘t Hooft - 1970s) 

physics is that of Debye screening 

analogy: 

dual photon mass   ~ M-M* plasma density  2

3d Euclidean space-time

also by analogy with Debye mass:

“Polyakov model” = 3d Georgi-Glashow model or compact U(1) (lattice) 

(for us, v = pi/L)



but our theory has fermions and M and KK have zero modes 

disorder operators: 

M:

M*:

KK:

KK*:

each have 2N   zero modes w
index theorem
Nye-Singer 2000,

for physicists: 
Unsal, EP 0812.2085 

topological shift symmetry is intertwined with exact chiral symmetry

U(1) anomalous, but 

chiral symmetry

...
potential (and dual photon mass) allowed, but what is it due to? 

is not

Unsal 2007: dual photon mass is induced by magnetic “bions” - the leading 
cause of confinement in SU(N) with adjoints at small L (including SYM)



3d pure gauge theory vacuum monopole plasma
Polyakov 1977

circles = M(+)/M*(-)



4d QCD(adj) fermion attraction M-KK* at small-L 
Unsal 2007, ....

circles = M(+)/M*(-)

squares = KK(-)/KK*(+)



4d QCD(adj) bion plasma at small-L 
Unsal 2007, ....

circles = M(+)/M*(-)

squares = KK(-)/KK*(+)

blobs = Bions(++)/Bions*(--)



4d QCD(adj) bion plasma at small-L 
Unsal 2007, ....

eL 4 
2  1/g (L)   

L

  L/g (L)   
4 
2 

M + KK* = B - magnetic “bions” - 

-carry 2 units of magnetic charge 
-no topological charge (non self-dual)
(locally 4d nature crucial: no KK in 4d)

  bion stability is due to fermion             
 attraction balancing Coulomb               
 repulsion - results in scales as indicated                        
- bion/antibion plasma screening 
generates mass for dual photon

“magnetic bion confinement” operates at small-L in any theory with 
massless Weyl adjoints, including N=1 SYM (& N=1 from Seiberg-Witten theory)

it is “automatic”: no need to “deform” theory other than small-L 

first time confinement analytically shown in a non-SUSY, 
continuum, locally 4d theory



where we left out further subleading, at small ΛL, contributions. Recalling that β0 = (22 −
4nf )/3, we find:

M
Λ

∼ (ΛL)
8−2n

f

3 e−2πc̃(log 1
ΛL

)
1/2

× (less relevant contributions) , (4.40)

where we use the positive number c̃ = 2πc
�

β0/2.

We note that in the limit of asymptotically small L � 1/Λ, where the perturbative calcu-

lation is justified, the correction to the leading semiclassical result ∼ (ΛL)
8−2n

f

3 is dominated

by dependence
15

of the bion action on the nonzero Higgs mass, ∼ e−4π2c/g(L)
. As the size L

is increased, g(L) increases, hence the exponential decreases—and the corresponding “Higgs

contribution” to the dual photon mass increases. For nf < 4 and nf > 4 this effect does

not change the leading behavior dictated by the first factor on the r.h.s. of (4.40). However,

for the four Weyl adjoint theory, nf = 4, where the leading dependence of M on the S1
size

vanishes, we find that the next leading contribution to
M
Λ , shown in (4.40) is an increasing

function of L. The other terms shown in (4.39) and omitted in (4.40) do not change this

conclusion; this is most easily seen from the fact that their dependence on the gauge coupling

is power-law, rather than exponential.

Thus, the dual photon mass M(nf = 4) increases with increasing L. Since the bion

plasma density is proportional to the square of the dual photon mass, this means that the

topological excitations do not dilute away in the decompactification limit—at least for suffi-

ciently small ΛL, where this calculation is valid. Thus, according to the conjecture of [13],

which ties conformality on R4
to dilution vs. nondilution of the mass gap on R3 × S1 at

increasing L, QCD with N = 2, and nf = 4 Weyl fermions in the adjoint representation

should not exhibit conformal behavior in the large L limit. Taking the “estimate” of [13] at

face value means that the conformal window should be 4 < nf < 11/2, i.e., occur only for

the nf = 5 Weyl adjoints theory. There are loopholes in this argument, of course, pertaining

to the approach to R4
and we will discuss them in the next section.

5. Summary and discussion

In this paper, we studied in some detail the SU(2) gauge theory with nf massless adjoint

Weyl fermions on R3 × S1, our main focus being the bion mechanism of confinement of [2].

We described in detail the tools and approximations involved and discussed the stability of

magnetic bions. The relevant scales in the problem at L � Λ are shown on Figure 1. We used

methods and approximations familiar from QCD instanton calculations. We also studied the

behavior of the mass gap (or string tension) as a function of L at fixed Λ for nf = 5, 4, 3, 2.
Already the earlier leading-order semiclassical result [13] indicated that the nf = 5 theory is

perhaps conformal on R4
, with (likely) a weakly-coupled infrared fixed point. The scenario,

15While the analytic expansion of eqn. (4.11) of the non-BPS action is only valid for asymptotically small
g ∼ mH/mW � 10−3, see [35], the numerical results for the mH/mW ∼ g dependence of the action show that
at weak coupling, g ≤ 1, the action is a monotonically increasing and approximately linear function, hence our
conclusion is valid throughout the weak-coupling regime.
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can calculate mass gap, string tension...

strong scale O(1), positive

Unsal, EP 2009, Anber, EP 2011
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An additional argument, based on effective field theory, is appropriate since we are work-

ing at small L. The BPS and leading twisted (KK) monopole solutions that constitute the

bions of smallest charge and action, i.e. the one most relevant at small L, involve only the

lowest Kaluza-Klein modes (with KK numbers 0,±1, see the explicit solutions (3.25)) of the

fields and can be effectively described by a 3D theory that only involves these lowest modes.
14

The coupling in this 3D theory is given by g(L)/L (we do not distinguish between the energy

scales π/L or 2π/L here, a difference that will only introduce an inessential correction). Since

the 3D theory is Higgsed at the scale π/L, there is no further running of the 3D coupling

and all the physics should be expressed in terms of g(L), obeying the usual (unbroken) 4D

renormalization group equation.

Thus, we argue that the dependence of Zbion on g is given to two-loop order by:

Zbion (g(L)) ∼
1

g
14−8nf

1-Loop (L)
e
− 8π2

g2
2-Loop

(L)
(1+cg2-Loop(L))

(4.37)

where ∼ denotes coefficients that play no role in determining the dependence of the dual-

photon mass M on the energy scale.

4.4 Dual photon mass and previous small-L “estimates” of conformal window

In this subsection, we determine the dependence of the photon mass on the S1
size to two-loop

order. The dual photon mass is given by eqn. (4.6), which after substituting (4.37), reads:

M = 4π

�
8Zbion(g)

g2L2
(4.38)

∼ 1

L
exp

�
− 4π2

g22-Loop(L)
(1 + cg2-Loop) + (2nf − 4) log g21-Loop(L)

�
,

and g(L) is the running coupling at the energy scale 1/L. Plugging the appropriate loop

order of (2.2) into M (recall that β0 = (22− 4nf )/3,β1 = (136− 64nf )/3), we obtain:

M
Λ

∼ exp



−β0
4

�
log

1

Λ2L2

��
1− β1

β2
0

log log
1

Λ2L2

log
1

Λ2L2

�−1

− logΛL+ (4− 2nf ) log log
1

Λ2L2



×

×e−2πc

�

log( 1
ΛL)

β0
2 (1+...)

∼ (ΛL)
β0−2

2 e
−2πc

�
β0
2 log 1

ΛL

�1/2 �
log

1

ΛL

�4−2nf−
β1
4β0

, (4.39)

14Such a theory would be relatively straightforward to obtain via “deconstruction”—see [41] for a construc-
tion of the tower of twisted monopole solutions in such a framework. Since deconstruction approximates
the “extra” dimension only by a finite number of Kaluza-Klein modes, the corresponding tower of twisted
monopoles is also finite.
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14Such a theory would be relatively straightforward to obtain via “deconstruction”—see [41] for a construc-
tion of the tower of twisted monopole solutions in such a framework. Since deconstruction approximates
the “extra” dimension only by a finite number of Kaluza-Klein modes, the corresponding tower of twisted
monopoles is also finite.
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where we left out further subleading, at small ΛL, contributions. Recalling that β0 = (22 −
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size

vanishes, we find that the next leading contribution to
M
Λ , shown in (4.40) is an increasing

function of L. The other terms shown in (4.39) and omitted in (4.40) do not change this

conclusion; this is most easily seen from the fact that their dependence on the gauge coupling

is power-law, rather than exponential.

Thus, the dual photon mass M(nf = 4) increases with increasing L. Since the bion

plasma density is proportional to the square of the dual photon mass, this means that the

topological excitations do not dilute away in the decompactification limit—at least for suffi-

ciently small ΛL, where this calculation is valid. Thus, according to the conjecture of [13],

which ties conformality on R4
to dilution vs. nondilution of the mass gap on R3 × S1 at

increasing L, QCD with N = 2, and nf = 4 Weyl fermions in the adjoint representation

should not exhibit conformal behavior in the large L limit. Taking the “estimate” of [13] at

face value means that the conformal window should be 4 < nf < 11/2, i.e., occur only for

the nf = 5 Weyl adjoints theory. There are loopholes in this argument, of course, pertaining

to the approach to R4
and we will discuss them in the next section.

5. Summary and discussion

In this paper, we studied in some detail the SU(2) gauge theory with nf massless adjoint

Weyl fermions on R3 × S1, our main focus being the bion mechanism of confinement of [2].

We described in detail the tools and approximations involved and discussed the stability of

magnetic bions. The relevant scales in the problem at L � Λ are shown on Figure 1. We used

methods and approximations familiar from QCD instanton calculations. We also studied the

behavior of the mass gap (or string tension) as a function of L at fixed Λ for nf = 5, 4, 3, 2.
Already the earlier leading-order semiclassical result [13] indicated that the nf = 5 theory is

perhaps conformal on R4
, with (likely) a weakly-coupled infrared fixed point. The scenario,

15While the analytic expansion of eqn. (4.11) of the non-BPS action is only valid for asymptotically small
g ∼ mH/mW � 10−3, see [35], the numerical results for the mH/mW ∼ g dependence of the action show that
at weak coupling, g ≤ 1, the action is a monotonically increasing and approximately linear function, hence our
conclusion is valid throughout the weak-coupling regime.
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typical distance between bions is Le
8π2
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at any finite L, would then be that abelianization and abelian confinement take place, albeit

with an exponentially small mass gap, ∼ 1
Le

−O(1)

g2∗ , where g∗ is the small fixed point coupling.

Thus, all mass scales in the theory approach zero as L → ∞.

1

mW

M/�

�L

n f � �5�

Figure 2: Behavior of dual photon mass M and W-boson mass (∼ 1/L) with L for nf = 5. The

behavior to the right of the dotted line at ΛL ∼ 1, is based on the assumed existence of a weakly

coupled infrared fixed point. This theory is thus expected to exhibit abelian confinement at any finite

L with an exponentially small string tension vanishing in the R4
limit.

The new result that we found here concerns the nf = 4 theory, where the leading semi-

classical result for the mass gap is L independent. The next-to-leading small-ΛL behavior of

the mass gap is that it increases with L at fixed Λ. Recent lattice studies, see [42], indicate

that the nf = 4 theory is conformal on R4
, apparently with a small fixed-point coupling and

an anomalous dimension of the fermion bilinear at the fixed point in good agreement with

one-loop perturbation theory. These results, combined with our analysis, then advocate for

the following behavior of the nf = 4 theory on R3 × S1. As L is increased, for L � Λ−1
,

the coupling and the mass gap increase. As L further increases past L ∼ Λ, the coupling
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An additional argument, based on effective field theory, is appropriate since we are work-

ing at small L. The BPS and leading twisted (KK) monopole solutions that constitute the

bions of smallest charge and action, i.e. the one most relevant at small L, involve only the

lowest Kaluza-Klein modes (with KK numbers 0,±1, see the explicit solutions (3.25)) of the

fields and can be effectively described by a 3D theory that only involves these lowest modes.
14

The coupling in this 3D theory is given by g(L)/L (we do not distinguish between the energy

scales π/L or 2π/L here, a difference that will only introduce an inessential correction). Since

the 3D theory is Higgsed at the scale π/L, there is no further running of the 3D coupling

and all the physics should be expressed in terms of g(L), obeying the usual (unbroken) 4D

renormalization group equation.

Thus, we argue that the dependence of Zbion on g is given to two-loop order by:

Zbion (g(L)) ∼
1

g
14−8nf

1-Loop (L)
e
− 8π2

g2
2-Loop

(L)
(1+cg2-Loop(L))

(4.37)

where ∼ denotes coefficients that play no role in determining the dependence of the dual-

photon mass M on the energy scale.

4.4 Dual photon mass and previous small-L “estimates” of conformal window

In this subsection, we determine the dependence of the photon mass on the S1
size to two-loop

order. The dual photon mass is given by eqn. (4.6), which after substituting (4.37), reads:

M = 4π

�
8Zbion(g)

g2L2
(4.38)

∼ 1

L
exp

�
− 4π2

g22-Loop(L)
(1 + cg2-Loop) + (2nf − 4) log g21-Loop(L)

�
,

and g(L) is the running coupling at the energy scale 1/L. Plugging the appropriate loop

order of (2.2) into M (recall that β0 = (22− 4nf )/3,β1 = (136− 64nf )/3), we obtain:

M
Λ

∼ exp



−β0
4

�
log

1

Λ2L2

��
1− β1

β2
0

log log
1

Λ2L2

log
1

Λ2L2

�−1

− logΛL+ (4− 2nf ) log log
1

Λ2L2



×

×e−2πc

�

log( 1
ΛL)

β0
2 (1+...)

∼ (ΛL)
β0−2

2 e
−2πc

�
β0
2 log 1

ΛL

�1/2 �
log

1

ΛL

�4−2nf−
β1
4β0

, (4.39)

14Such a theory would be relatively straightforward to obtain via “deconstruction”—see [41] for a construc-
tion of the tower of twisted monopole solutions in such a framework. Since deconstruction approximates
the “extra” dimension only by a finite number of Kaluza-Klein modes, the corresponding tower of twisted
monopoles is also finite.
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The question about the approach to infinite 4d in the non-SUSY 
case is very interesting... 
          ... but let’s turn to SUSY first: 

We argued that “magnetic bions” are responsible for 
confinement in N=1 SYM at small L - a particular case of our 
Weyl adjoint theory - a “Polyakov like” confinement.  

This remains true if N=1 obtained from N=2 by soft breaking.

On the other hand, we know monopole and dyon condensation 
is responsible for confinement in N=2 softly broken to N=1 at 
large L (Seiberg, Witten `94)

So, in different regimes we have different pictures of confinement 
in softly broken N=2 SYM. 
(Both regimes are Abelian and quantitatively understood. )

Do they connect in an interesting way? Unsal, EP in progress
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Figure 1: Taking different paths in the u-L plane. The horizontal direction, u, is the modulus of

Seiberg-Witten theory and the vertical, L, is the size of S1
. Ref. [2] studied the softly broken N = 2

theory on R3×S1
by using elliptic curves through path A. In this work, we reexamine the same theory

along the path BCD in moduli space. The CD branch always remains semi-classical and allows us

to understand the relation between the topological defects responsible for confinement at small-L and

large-L in detail.

is perturbed by an N = 1 preserving mass term for Φ, it exhibits confinement of electric

charges due to magnetic monopole or dyon condensation.

Ref. [2] studied the N = 2 SYM and its softly broken N = 1 version on R3× S1
by using

elliptic curves through path-A. However, if we would like to understand the relation between

the topological defects (and field theories) at large and small S1
, there are some intrinsic

difficulties associated with path-A. In particular, the large-S1
theory is magnetically weakly

and electrically strongly coupled, and the small-S1
one is electrically weakly (by asymptotic

freedom) and magnetically strongly coupled. This means that, when L ∼ 1, |u| � 1, both

electric and magnetic couplings are order one, and we do not know how to address this

domain in field theory. To avoid this diffuculty, we propose a compactification (path-C) at

large-u where the theory is always electrically weakly coupled, regardless of the S1
-size L.

Path-D is also always weakly coupled, either because the u-modulus is large or because an

additional modulus, the Wilson line along S1
, is turned on (also note that in the small-L

domain the N = 2 theory always abelianizes, with long-distance dynamics described by a

three dimensional hyper-Kähler nonlinear sigma model [2]).

1.2 Conclusions

We find, by using the techniques of Ref. [2] and of our current work, that a locally four

dimensional generalization [3,4] of Polyakov’s 3d instanton mechanism of confinement [5] takes

over in the small-L mass-perturbedN = 2 theory. To elucidate, note that the theory possesses

3d instanton (and anti-instanton) solutions, which, when embedded in R3×S1
, have magnetic,

Qm =
�

S2
∞

F , and topological, QT =
�

R3×S1 F �F charges, normalized to (Qm, QT ) = ±
�
1, 1

2

�
.

There are also twisted instantons (and anti-instantons), which carry charges (Qm, QT ) =

±
�
−1, 1

2

�
. The mass gap for gauge fluctuations and confinement in the mass-perturbedN = 2

theory arise due to Debye screening by topological defects with charges (Qm, QT ) = (±2, 0).

This mechanism of confinement was called the “magnetic bion” mechanism in [3, 4] and we

show here that it also takes place in the N = 1 mass deformation of Seiberg-Witten theory at
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L

u

path A - difficult: two mutually nonlocal descriptions at large L 
to merge into one at small L

path BCD - easier: C, D can be arranged always semiclassical
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L

u

dyon tower (sum over electric charges) 
of particles with Euclidean worldlines 
around S 
= dyon pseudoparticle tower

monopole-instantons and twisted 
monopole-instantons
=“KK tower” described earlier

1
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L

u

dyon tower (sum over electric charges) 
of particles with Euclidean worldlines 
around S 
= dyon pseudoparticle tower

monopole-instantons and twisted 
monopole-instantons
=“KK tower” described earlier

It turns out the sums over the instanton contributions of the two towers are 
identical and are related by Poisson duality:

1



where S(1, ne) is the action of the dyon (??). Substituting back into (1.2), the generalized
Poisson duality is:

�

n∈Z
e
− 4π

g2
4

√
(vL)2+(ω+2πn)2

=
�

ne∈Z

vL

π
cos δne K1(S(1, ne))eiωne

=
�

ne∈Z

vL

π
cos δne

�
π

2S(1, ne)
e−S(1,ne)eiωne (1.7)

In the second line, we used the asymptotic expansion for K1(x) ≈
�

π
2xe−x, x → ∞. In the

semi-classical domain discussed in the bulk of the paper, we assumed cos δne ≈ 1 for the low-
lying dyon band, and used the non-relativistic approximation for the dyon mass of eqn. (??)
and the expansion (??) for the twisted instanton action. Inserting these expansions, on both
sides, we obtain exactly (??) of Section ??; the prefactors also match exactly.

Now, one might ask, what quantities in the N = 2 theory does a Poisson duality like
(1.7) relate? In fact, this question was already addressed in [1]. It turns out that the r.h.s.
of (1.7) is proportional to the large-L dyon tower contribution to the Kähler potential, where
the complex moduli v (= A5+iA6) and σ−ib = σ−i4πω

g2
4

, recall (??), are used to parameterize
the hyper-Kähler manifold. More explicitly, the contributions of the dyon tower to the Kähler
potential are given by:1

Kdyon =
1

√
2π

3
2 L

3
2 |v|

1
2

�

nm=±1

�

ne∈Z

e
−L|v|

s„
4π
g2
4

«2

+n2
e+iωne+iσnm

��
4π
g2
4

�2
+ n2

e

� 1
4

, (1.8)

while the Poisson resummed Kähler potential, expressed now as a sum over the contributions
of winding solutions, and thus appropriate at small L, is:

Kwinding = Kdyon =
1

πL2|v|
�

nm=±1

�

nw∈Z
e
− 4πL

g2
4

q
|v|2+(ω+2πnw

L )2
+iσnm

. (1.9)

Note that Kwinding = Kdyon is precisely equivalent our equation (1.7) in the g2
4 → 0 limit

(i.e., with cos δne ≈ 1).
The sum over the dyon tower contributions to the Kähler potential was obtained in [1]

by solving the equations [2] obeyed by the hyper-Kähler metric on the moduli space of the
N = 2 theory on R3×S1 iteratively for weak coupling. Thus, the Kähler potentials (1.8) and
(1.9) are valid in the limit |v|� ΛN=2, but for arbitrary values of |v|L . Note that the regime
where (1.8), (1.9) are valid, |v|ΛN=2 � 1, there is no “wall-crossing,” thus this is a regime
different from the large L regime |v|L� 1 regime considered in [2]. We also note that in [1],
instead of the Kähler potential for v and σ − ib (1.9), the Kähler metric component gvv∗ was
actually given, but it is a simple matter to check their equivalence at weak coupling.

1Up to an overall constant, which is the same in (1.8) and (1.9).
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Instanton corrections to K, in complex structure: 
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L A4

can be inferred from solution by Chen, Dorey, Petunin (2010) of  “wall-crossing” equations 
of Gaiotto, Moore, Neitzke (2008): an iterative solution, obtained at weak-coupling  
 v >> Lambda, but arbitrary vL:
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large-L sum over electric charges of dyon pseudoparticles

small-L sum over winding numbers of twisted monopole-instantons

Nontrivial to check their equivalence by a semiclassical calculation 
(for general value of the moduli as fermion zero modes are different and only sums are equivalent)...
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Figure 4: 3d-instantons in the magnetic charge +1 tower in the regime a4 � a5 � a4/g2
4 . The

tower is composed of deformation of BPS monopole instantons and KK twisted anti-instantons. The
properties of fermionic zero modes is dictated by the leading a5 dependence for the low winding number
instantons.

3.4 3d-instanton/4d-dyon tower Poisson duality

The statement of Poisson duality, which has been studied in N = 4 gauge theories in [12,13]
and recently in the N = 2 context in [14], is as follows: the small-L (3.7) and large-L
(3.17) instanton sums, which, at first sight, look completely different, are in fact equivalent
expressions, and one is the Poisson resummation11 of the other:
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Both of these are viewed as instanton sums: the first sum, (3.17), over the winding number
incorporates 3d monopole-instantons and twisted (or winding) monopole-instantons and their
Kaluza-Klein tower. The second, (3.7), which should perhaps be called a dyon sum, as its
salient features are dictated by 4d dyons, is a sum over the electric charges of the dyon
tower. In this case, the instantons at large-L are realized through dyon particles whose
worldlines wrap around the large circle. As discussed earlier, the large-L series converges fast
for Lvg2

4 � 1 and the small-L series converges fast for Lvg2
4 � 1.

The origin of the Poisson duality (3.19) can be simply understood as follows. In the regime
when the expansions (3.2) and (3.17) make sense, i.e., at weak coupling and when Lv � 1,
one can interpret the two sums in (3.19) in terms of the semiclassical expansion around a BPS
monopole-instanton solution of zero charge/zero winding, respectively, of action 4πvL

g2
4

. This

11For completeness, in Appendix B.1 we prove a more general relation, which implies (3.19).
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But, in an appropriate regime, same 4-fermi terms appear, and the “wall-crossing” 
consequence K(dyon)=K(winding) can be semiclassically tested      [Chen et al 2010]
 - in this limit, Poisson duality can also be more simply understood, sans wallXing, but no time...
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small-L physics well described by a few twisted
monopole-instantons (as we’d already done) 
- or an infinite sum over charged dyons

large-L physics well described by a few dyons 
- or an infinite sum over twisted monopole instantons

The moral is that the dyons, whose condensation at large-L causes 
confinement, are related by Poisson resummation to the twisted 
monopole-instantons that form the small-L magnetic bions - which are 
responsible for confinement at small L, as was already described. 



To conclude, we have found an - albeit indirect - relation between 
the 4d monopole/dyon condensation confinement of Seiberg and 
Witten and the small-L magnetic bion-induced “Polyakov-like” 
confinement. 

5. Phase diagram, abelian (non-’t Hooftian) large-N limits, and discussion

On R4, confinement in SU(2) gauge theory with N = 2 supersymmetry softly broken down to
N = 1 (m� 1) is a version of abelian confinement. By this we mean that the long-distance
effective Lagrangian is an abelian U(1) gauge theory, despite the fact that microscopic theory
is a non-abelian SU(2). The confinement of the electric charges is due to magnetic monopole
or dyon condensation [1].

On the other hand, in the limit m � 1, where the adjoint Higgs multiplet decouples
and the theory reduces to pure N = 1 SYM theory, there exists no description of the gauge
dynamics where abelianization takes place. It is usually believed that there is no phase
transition as the mass term is dialed from small to large and the theory moves from a regime
of abelian confinement to non-abelian confinement.

In the pure N = 1 SYM theory, as well as in a large-class of non-supersymmetric gauge
theories which remain center symmetric upon compactification down to small radius, it has
been recently understood that the LΛN=1 � 1 regime also exhibits abelian confinement.
The confinement of the electric charges is now due to the magnetic bion mechanism [3, 4].
Analogous to the mass-deformed theory, it is usually believed that there is no phase transition
as the radius is dialed from small to large. At large-L, it is expected that a non-abelian
confinement should take place.
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Figure 5: The N = 2 theory broken down to N = 1 exhibits confinement. At small m and/or
small L (in units of Λ) the dynamics abelianizes at large distances and the theory exhibits abelian
confinement. The phase diagram in the m-L plane for the small-N theory is shown on the left figure,
where the shaded areas indicate the calculable regimes at small and large L. The third (u) direction—
which allows to smoothly connect the topological excitations responsible for confinement at large and
small L via Poisson duality—is also indicated. At large-N , shown on the right figure, the calculable
semi-classical confinement regime shrinks to a narrow sliver both in m and L, in a correlated manner,
as explained in the text.

At what values of m and L does the metamorphosis from the abelian confinement (which
we analytically understand) to the non-abelian confinement (which is not yet understood)
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The magnetic bion mechanism also applies to large classes of non-
supersymmetric theories and can be used to study the approach to R  .4
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At what values of m and L does the metamorphosis from the abelian confinement (which
we analytically understand) to the non-abelian confinement (which is not yet understood)
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The magnetic bion mechanism also applies to large classes of non-
supersymmetric theories and can be used to study the approach to R  .

Does the relation between small and large L topological excitations  in 
SUSY have anything to teach us about non-SUSY dynamics?

... it is perhaps early to tell, but the Poisson resummation of                    
    nonperturbative effects has interesting implications in finite-T  YM

Unsal, EP, 11xx.yyyy - or next workshop...
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