Two-loop
 Remainder Functions in $\mathrm{N}=4 \mathrm{SYM}$

Claude Duhr

In collaboration with V. Del Duca and V. A. Smirnov.
11th Workshop on non-perturbative QCD
Paris, June 072011

Introduction

- Planar $\mathrm{N}=4$ Super Yang-Mills is the 'simplest gauge theory.'
- It is one of the rare theories where we can obtain explicit analytic results for multi-loop multi-leg processes.
- The AdS/CFT correspondence allows us to not only get perturbative answers, but also strong coupling results.
- Final aim: Solving the planar sector of $\mathrm{N}=4$ Super YangMills (Integrability).

Introduction

- In the mean time: Use planar $\mathrm{N}=4$ Super-Yang-Mills to explore the analytic structure of gauge theory amplitudes at higher loops.
- Outline of the talk:
\Rightarrow The two-loop six-point remainder function.
\Rightarrow Towards higher-point remainders.

A duality at work

[See talks by Eden and Heslop]

A duality at work

[See talks by Eden and Heslop]

Amplitude - Wilson loop duality

- MHV amplitudes
- Wilson loops

$$
p_{i}=x_{i}-x_{i+1}
$$

Superconformal symmetry

> Dual superconformal symmetry

- Dual conformal invariance puts constraints in terms of an anomalous Ward identity.

Anomalous Ward identity

- The solution to the Ward identities is, e.g., at two-loops,
[Drummond, Henn,
Korchemsky, Sokatchev]

$$
w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+\mathcal{O}(\epsilon)
$$

- This result is in agreement with an iteration for the amplitude conjectured at two loops (Anastasiou Bern, Dixon, Kosower) and beyond (Bern, Dixon, Smirnov).
- This conjecture was shown to fail for six points!

Anomalous Ward identity

- The solution to the Ward identities is, e.g., at two-loops,
[Drummond, Henn,
Korchemsky, Sokatchev]

$$
w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{n}^{(2)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

... but we can always add an arbitrary function of conformal invariants and we still obtain a solution to the Ward identities!

$$
u_{i j}=\frac{x_{i j+1}^{2} x_{i+1 j}^{2}}{x_{i j}^{2} x_{i+1 j+1}^{2}}
$$

The remainder function

- For on-shell amplitudes with $n=4,5$, we do not have enough momenta to form non-trivial cross ratios
\Rightarrow The full answer is given to all orders by the 'inhomogeneous' solution:

$$
\begin{aligned}
& w_{4}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{4}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+\mathcal{O}(\epsilon) \\
& w_{5}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{5}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+\mathcal{O}(\epsilon)
\end{aligned}
$$

- For on-shell amplitudes with $n=6$ or more, we have nontrivial cross ratios:

$$
\begin{gathered}
w_{6}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{6}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)+\mathcal{O}(\epsilon) \\
u_{1}=\frac{s_{12} s_{45}}{s_{123} s_{345}}, \quad u_{2}=\frac{s_{23} s_{56}}{s_{123} s_{234}}, \quad u_{3}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{gathered}
$$

The remainder function

- Dihedral symmetry of the amplitude implies symmetries for the remainder function.
\Rightarrow For $n=6$, the remainder function is completely symmetric.
- Multi-collinear limits:

$$
\mathcal{R}_{n} \rightarrow \mathcal{R}_{n-k}+\mathcal{R}_{k+4}
$$

[Brandhuber, Heslop, Khoze, Spence, Travaglini]
\Rightarrow For $n=6$, the remainder function vanishes in the twoparticle collinear limits.

- It vanishes in the multi-Regge limit (in the Euclidean region).
- Depends on conformal ratios only, but functional form not fixed by symmetry.

Strong coupling results

- Using a geometric setup allowed to obtain several special cases of remainder functions at strong coupling:
\Rightarrow for six edges, in $3+1$ dimensions when all cross ratios are equal

$$
R(u, u, u)=-\frac{\pi}{6}+\frac{1}{3 \pi} \phi^{2}+\frac{3}{8}\left(\log ^{2} u+2 L i_{2}(1-u)\right)
$$

[Alday, Gaiotto, Maldacena]
\Rightarrow for eight edges, in $1+1$ dimensions

$$
\begin{aligned}
R_{8, W L}^{\text {strong }}=- & \frac{1}{2} \ln \left(1+\chi^{-}\right) \ln \left(1+\frac{1}{\chi^{+}}\right)+\frac{7 \pi}{6} \\
& +\int_{-\infty}^{+\infty} \mathrm{d} t \frac{|m| \sinh t}{\tanh (2 t+2 i \phi)} \ln \left(1+e^{-2 \pi|m| \cosh t}\right)
\end{aligned}
$$

[Alday, Maldacena]

Weak coupling

- Anastasiou, Brandhuber, Heslop, Khoze, Spence and Travaglini worked out the two-loop Wilson loop diagrams:

-••
- Each of these diagrams is an integral, similar to a Feynman parameter integral.
- Allowed to perform a numerical study of the two-loop remainder functions.

Weak coupling

- For $n=6$, many of the integrals can be computed explicitly, but one is particularly 'hard':

$$
\begin{aligned}
& f_{H}\left(p_{1}, p_{2}, p_{3} ; Q_{1}, Q_{2}, Q_{3}\right) \\
& :=\frac{\Gamma\left(2-2 \epsilon_{\mathrm{UV}}\right)}{\Gamma\left(1-\epsilon_{\mathrm{UV}}^{2}\right.} \int_{0}^{1}\left(\prod_{i=1}^{3} d \tau_{i}\right) \int_{0}^{1}\left(\prod_{i=1}^{3} d \alpha_{i}\right) \delta\left(1-\sum_{i=1}^{3} \alpha_{i}\right)\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)^{-\epsilon \mathrm{UV}} \frac{\mathcal{N}}{\mathcal{D}^{2-2 \epsilon \mathrm{UV}}},
\end{aligned}
$$

$$
\mathcal{N}=2\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right)\left[\alpha_{1} \alpha_{2}\left(1-\tau_{1}\right)+\alpha_{3} \alpha_{1} \tau_{1}\right]+2\left(p_{1} p_{3}\right)\left(p_{2} p_{3}\right)\left[\alpha_{3} \alpha_{1}\left(1-\tau_{3}\right)+\alpha_{2} \alpha_{3} \tau_{3}\right]
$$

$$
+2\left(p_{1} p_{2}\right)\left(p_{2} p_{3}\right)\left[\alpha_{2} \alpha_{3}\left(1-\tau_{2}\right)+\alpha_{1} \alpha_{2} \tau_{2}\right]+2 \alpha_{1} \alpha_{2}\left[2\left(p_{1} p_{2}\right)\left(p_{3} Q_{3}\right)-\left(p_{2} p_{3}\right)\left(p_{1} Q_{3}\right)-\left(p_{3} p_{1}\right)\left(p_{2} Q_{3}\right)\right]
$$

- The integrals do not explicitly depend on conformal ratios.
- The integrals can however be computed numerically.
[Anastasiou, Brandhuber, Heslop, Khoze, Spence, Travaglini]

An excursion to multi-Regge kinematics

- Multi-Regge kinematics are defined by

$$
\begin{gathered}
y_{3} \gg y_{4} \gg \ldots \gg y_{n-1} \gg y_{n} \\
\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq \ldots \simeq\left|p_{n-1 \perp}\right| \simeq\left|p_{n \perp}\right|,
\end{gathered}
$$

- This implies a hierarchy of scales:

$s \gg s_{1}, s_{2}, \ldots, s_{n-3} \gg-t_{1},-t_{2}, \ldots,-t_{n-3}$.

Multi-Regge limits

- Multi-Regge kinematics

$$
\begin{gathered}
y_{3} \gg y_{4} \gg y_{5} \gg y_{6} \\
\left|p_{3 \perp}\right|^{2} \simeq\left|p_{4 \perp}\right|^{2} \simeq\left|p_{5 \perp}\right|^{2} \simeq\left|p_{6 \perp}\right|^{2}
\end{gathered}
$$

- In the multi-Regge limit, the cross ratios become trivial:

$$
\begin{aligned}
& u_{1}=\frac{s_{12} s_{45}}{s_{345} s_{456}} \simeq 1 \\
& u_{2}=\frac{s_{23} s_{56}}{s_{234} s_{456}} \simeq \mathcal{O}\left(\frac{t}{s}\right) \\
& u_{3}=\frac{s_{34} s_{61}}{s_{234} s_{345}} \simeq \mathcal{O}\left(\frac{t}{s}\right)
\end{aligned}
$$

[Bartels, Lipatov, Vera;
Brower, Nastase, Schnitzer;
Del Duca, CD, Glover]

Multi-Regge limits

- Quasi-multi-Regge kinematics

$$
\begin{gathered}
y_{3} \gg y_{4} \simeq y_{5} \gg y_{6} \\
\left|p_{3 \perp}\right|^{2} \simeq\left|p_{4 \perp}\right|^{2} \simeq\left|p_{5 \perp}\right|^{2} \simeq\left|p_{6 \perp}\right|^{2}
\end{gathered}
$$

- In the quasi-multi-Regge limit, the cross ratios stay generic:

$$
\begin{aligned}
u_{1}^{\mathrm{QMRK}} & =\frac{s_{45}}{\left(p_{4}^{+}+p_{5}^{+}\right)\left(p_{4}^{-}+p_{5}^{-}\right)} \\
u_{2}^{\mathrm{QMRK}} & =\frac{\left|p_{3 \perp}\right|^{2} p_{5}^{+} p_{6}^{-}}{\left(\left|p_{3 \perp}+p_{4 \perp}\right|^{2}+p_{5}^{+} p_{4}^{-}\right)\left(p_{4}^{+}+p_{5}^{+}\right) p_{6}^{-}} \\
u_{3}^{\mathrm{QMRK}} & =\frac{\left|p_{6 \perp}\right|^{2} p_{3}^{+} p_{4}^{-}}{p_{3}^{+}\left(p_{4}^{-}+p_{5}^{-}\right)\left(\left|p_{3 \perp}+p_{4 \perp}\right|^{2}+p_{5}^{+} p_{4}^{-}\right)}
\end{aligned}
$$

[Del Duca, CD, Glover]

Regge-exactness of Wilson loops

- The result is in fact even stronger:

The (logarithm of the) Wilson-loop is Regge-exact in this limit, i.e., it is the same in this special kinematics and in arbitrary kinematics

$$
\begin{gathered}
y_{3} \gg y_{4} \simeq \ldots \simeq y_{n-1} \gg y_{n} \\
\left|p_{3 \perp}\right|^{2} \simeq \ldots \simeq\left|p_{n \perp}\right|^{2}
\end{gathered}
$$

- This limit leaves the conformal cross ratios unchanged for an arbitrary number of edges.
- This result is in fact true for Wilson loops with an arbitrary number of edges and loops!
[Del Duca, CD, Smirnov]

The six-point remainder function

- Due to Regge-exactness, it is enough to compute the remainder function in this restricted area of phase space.
- In the limit, all integrals are
\Rightarrow at most three-fold.
\Rightarrow dependent on conformal cross ratios only.
- The resulting integrals are much simpler and can be solved in a closed form, and we can extract the two-loop six-point remainder function,

$$
w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{n, W L}^{(2)}+\mathcal{O}(\epsilon)
$$

[Del Duca, CD, Smirnov]

The six-point remainder function

- The expression we obtained was considerably simplified by Goncharov, Spradlin, Vergu and Volovich.

$$
R\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)
$$

$$
-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\chi \frac{\pi^{2}}{12}\left(J^{2}+\zeta(2)\right)
$$

$x_{i}^{ \pm}=u_{i} x^{ \pm}, x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}}, \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}$

- Arguments are cross ratios in momentum twistor space:

$$
u_{1}=\frac{\langle 1234\rangle\langle 4561\rangle}{\langle 1245\rangle\langle 3461\rangle}, \quad x_{1}^{+}=-\frac{\langle 1456\rangle\langle 2356\rangle}{\langle 1256\rangle\langle 3456\rangle}
$$

[Goncharov, Spradlin, Volovich, Vergu]

Symbols

- The simplification of the hexagon remainder function went hand in hand with the introduction of a new mathematical tool: the symbol.
- Hand-waving idea: Associate a 'tensor calculus' to polylogarithms that incorporates the functional identities.

Polylogarithm	Symbol
Function	Tensor
Functional equation	Algebraic identity

Remainders with more points

- The techniques we developed for the computation of the six-point remainder function can also be applied to Wilson loops with more edges.
- We focus on the $1+1$ dimensional setup studied at strong coupling.

Remainders with more points

- The techniques we developed for the computation of the six-point remainder function can also be applied to Wilson loops with more edges.
- We focus on the $1+1$ dimensional setup studied at strong coupling.
- The final answer involves 25.000 terms...

Remainders with more points

- The techniques we developed for the computation of the six-point remainder function can also be applied to Wilson loops with more edges.
- We focus on the $1+1$ dimensional setup studied at strong coupling.
- The final answer involves 25.000 terms...
... but they all collapse to

$$
R_{8, W L}^{(2)}\left(\chi^{+}, \chi^{-}\right)=-\frac{\pi^{4}}{18}-\frac{1}{2} \ln \left(1+\chi^{+}\right) \ln \left(1+\frac{1}{\chi^{+}}\right) \ln \left(1+\chi^{-}\right) \ln \left(1+\frac{1}{\chi^{-}}\right)
$$

[Del Duca, CD, Smirnov]

Remainders in $1+1$ dimensions

- Interesting observation: R8 is the simplest function consistent with the cyclic symmetry and collinear limits.

$$
R_{8, W L}^{(2)}\left(\chi^{+}, \chi^{-}\right)=-\frac{\pi^{4}}{18}-\frac{1}{2} \ln \left(1+\chi^{+}\right) \ln \left(1+\frac{1}{\chi^{+}}\right) \ln \left(1+\chi^{-}\right) \ln \left(1+\frac{1}{\chi^{-}}\right)
$$

- Inspired by this simplicity, Heslop and Khoze have shown by a numerical analysis that this structure extends beyond eight points:

$$
R_{n}=-\frac{1}{2}\left(\sum_{\mathcal{S}} \log \left(u_{i_{1} i_{5}}\right) \log \left(u_{i_{2} i_{6}}\right) \log \left(u_{i_{3} i_{7}}\right) \log \left(u_{i_{4} i_{8}}\right)\right)-\frac{\pi^{4}}{72}(n-4)
$$

- This structure was recently confirmed by Gaiotto, Maldacena, Sever and Vieira using collinear OPE.

Remainders with more points

- So far, no analytic results are known for remainder functions in general kinematics beyond six points.
- Recently, Caron-Huot computed the symbol of all twoloop remainder functions.
- Open question: Can we 'integrate' the symbol to a function?
\Rightarrow Interesting point: The symbol already tells us that starting from $n=7$ classical polylogarithms will no longer be enough.
- Insight might come from an unexpected front...

One-loop Hexagons in 6 dimensions

- The massless scalar one-loop hexagon integral in $\mathrm{D}=6$ dimensions
\Rightarrow is finite,
\Rightarrow dual conformally invariant,
\Rightarrow a weight 3 function.

$$
I_{6}^{D=6}=\int \frac{\mathrm{d}^{6} k}{i \pi^{3}} \prod_{i=0}^{5} \frac{1}{D_{i}},
$$

$D_{0}=k^{2}$ and $D_{i}=\left(k+p_{i}\right)^{2}$, for $i=1, \ldots, 5$.

One-loop Hexagons in 6 dimensions

- The analytic form of the massless scalar hexagon in 6 dimensions looks very similar to the analytic expression for the two-loop remainder function!

$$
\begin{gathered}
I_{6}^{D=6}=\frac{1}{x_{14}^{2} x_{25}^{2} x_{36}^{2}} \mathcal{I}_{6}\left(u_{1}, u_{2}, u_{3}\right) \\
\mathcal{I}_{6}\left(u_{1}, u_{2}, u_{3}\right)=\frac{1}{\sqrt{\Delta}}\left[-2 \sum_{i=1}^{3} L_{3}\left(x_{i+}, x_{i-}\right)+2 \zeta_{2} J+\frac{1}{3} J^{3}\right] \\
R\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right) \\
-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\chi \frac{\pi^{2}}{12}\left(J^{2}+\zeta(2)\right)
\end{gathered}
$$

One-loop Hexagons in 6 dimensions

- This similarity motivated the study of more complicated hexagons:

$$
\begin{aligned}
\Phi_{9}\left(u_{1}, \ldots, u_{6}\right) & =\frac{1}{\sqrt{\Delta_{9}}} \sum_{i=1}^{4} \sum_{g \in \mathcal{S}_{3}} \sigma(g) \mathcal{L}_{3}\left(x_{i, g}^{+}, x_{i, g}^{-}\right) \\
\mathcal{L}_{3}\left(x^{+}, x^{-}\right) & :=\frac{1}{18}\left(\ell_{1}\left(x^{+}\right)-\ell_{1}\left(x^{-}\right)\right)^{3}+L_{3}\left(x^{+}, x^{-}\right)
\end{aligned}
$$

$$
\chi(i, j, k):=-\frac{\langle 4 \overline{7}\rangle\left\langle X_{i} X_{k}\right\rangle\left\langle X_{j} 17\right\rangle}{\langle 1 \bar{\gamma}\rangle\left\langle X_{j} X_{k}\right\rangle\left\langle X_{i} 47\right\rangle}
$$

$$
\bar{\chi}(i, j, k):=-\frac{\langle\overline{4} 7\rangle\left\langle X_{i} X_{k}\right\rangle\left\langle X_{j} \overline{1} \cap \overline{7}\right\rangle}{\langle\overline{1} 7\rangle\left\langle X_{j} X_{k}\right\rangle\left\langle X_{i} \overline{4} \cap \overline{7}\right\rangle}
$$

[Del Duca, Dixon, Drummond, CD, Henn, Smirnov]

Conclusion \& Outlook

- In the last 18 months, a lot of progress was made to compute multi-leg amplitudes/Wilson loops at strong and weak coupling:
\Rightarrow Hexagon in 3+1 dimensions
\Rightarrow Octagon in special kinematics ($1+1$ dimensions)
\Rightarrow All even-sided polygons in $1+1$ dimensions.
\Rightarrow The symbols of all polygons in general kinematics.
- Next step: try to nail all two-loop MHV amplitudes.
- Together with all the other fascinating developments in the field, this might eventually allow to solve the planar sector of $\mathrm{N}=4 \mathrm{SYM}$.

Back ups

Symbols

- Simple example:

$$
\mathrm{Li}_{2}(x)+\ln (1-x) \ln x=-\mathrm{Li}_{2}(1-x)-\frac{\pi^{2}}{6}
$$

$\operatorname{Symbol}\left(\operatorname{Li}_{2}(x)\right)=-(1-x) \otimes x$
$\operatorname{Symbol}(\ln (1-x) \ln x)=(1-x) \otimes x+x \otimes(1-x)$
$\operatorname{Symbol}($ const $)=0$
$\operatorname{Symbol}\left(\operatorname{Li}_{2}(x)+\ln (1-x) \ln x\right)=x \otimes(1-x)$

$$
=-\operatorname{Symbol}\left(\operatorname{Li}_{2}(1-x)\right)
$$

