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Introduction

® Planar N =4 Super Yang-Mills 1s the ‘simplest gauge
theory.’

® [t s one of the rare theories where we can obtain explicit
analytic results for multi-loop multi-leg processes.

® The AAS/CFT correspondence allows us to not only get

perturbative answers, but also strong coupling results.

® [inal aim: Solving the planar sector of N=4 Super Yang-
Mills (Integrability).
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Introduction

® In the mean time: Use planar N=4 Super-Yang-Mills to

explore the analytic structure of gauge theory amplitudes at

higher loops.

® Outline of the talk:

= The two-loop six-point remainder function.

= Towards higher-point remainders.
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A duality at work

[See talks by Eden and Heslop]

(MHV) Amplitudes Wilson loops

T = &

Correlation functions

(O(x1)0(x3) ... O(zy))
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Amplitude - Wilson loop duality

® MHYV amplitudes ® Wilson loops
Pi = Li — Li+1 O
Dual
Superconformal superconformal
symmetry symmetry

® Dual conformal invarance puts constraints in
terms of an anomalous Ward 1dentity.
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Anomalous Ward 1dentity

® The solution to the Ward 1identities 1s, e.g., at two-loops,

[ Drummond, Henn,

Korchemsky, Sokatchev]

w® (e) = £, () wM (2¢) + CZt O(e),

® This result is in agreement with an iteration for the
amplitude conjectured at two loops (Anastasiou Bern,
Dixon, Kosower) and beyond (Bern, Dixon, Smirnov).

® This conjecture was shown to tail tor six points!
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Anomalous Ward 1dentity

® The solution to the Ward 1identities 1s, e.g., at two-loops,

[ Drummond, Henn,

Korchemsky, Sokatchev]

w® (e) = fipr () wiD (26) + O + R (u;,) 4 O(e) .

® ... but we can always add an arbitrary function of
conformal invariants and we still obtain a solution to the

Ward identities!

2 2
- Lijatigay
— 2.9

L lit154+1

Uij
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The remainder function

® For on-shell amplitudes with # = 4, 5, we do not have
enough momenta to form non-trivial cross ratios

= The full answer 1s given to all orders by the
inhomogeneous’ solution:

w$? () = £33 () wi (2¢) + CF + O(e)
wi? (e) = fivr () wi (2€) + O, + O(e)

® Lor on-shell amplitudes with 7 = 6 or more, we have non-
trivial cross ratios:

w® (€) = fiyy(€)wg” (2€) + Oy, + RS (ua, ug, uz) + O(e)

S12 545 e — 523 556 e — S34 561
2 = 3 =

U1 =—

9 9 9
5123 5345 5123 5234 5234 S345
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The remainder function

® Dihedral symmetry of the amplitude implies symmetries for
the remainder function.

= For n = 6, the remainder function 1s completely
symmetric.

® Multi-collinear Iimits:

[ Brandhuber, Heslop,
Khoze, Spence, Travaglini]

= For n = 6, the remainder function vanishes in the two-

Rn — Rn—k + 72’l~c—|—4

particle collinear limits.
® [t vanishes in the multi-Regge limit (in the Euclhidean
region).
® Depends on conformal ratios only, but functional form not

fixed by symmetry.
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Strong coupling results

® Using a geometric setup allowed to obtain several special
cases of remainder functions at strong coupling:

= for six edges, in 3+1 dimensions when all cross ratios
are equal

T

R(u,u,u) = ;

1 3
+ 3—ng2 + 3 (log” u + 2Lis (1 — u))
[Alday, Gaiotto, Maldacena]
= for eight edges, in 1+1 dimensions

stron 1 _ 1 I

4 /_I_OO dt |m| sinh ¢ In (1 4 6—27r|m|cosht)

oo tanh(2t + 2i¢)
[Alday, Maldacena]
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Weak coupling

® Anastasiou, Brandhuber, Heslop, Khoze, Spence and
Travaglimi worked out the two-loop Wilson loop diagrams:

® Each of these diagrams 1s an integral, similar to a Feynman
parameter integral.

® Allowed to perform a numerical study of the two-loop
remainder functions.
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Weak coupling

® [or n = 6, many of the integrals can be computed explicitly,
but one 1s particularly "hard’:

fH(pth,pa; (1, Q2, Q3)

= et ) (Iom) [/ (I de)st - o) (s s

1=1

N = 2(p1p2)(p1p3) [041@2(1 —T1) + 04304171] +  2(p1p3) (p2ps) [043041(1 —73) + 0420‘373]
|

+  2(p1p2) (p2p3) 042043(1—72)+0410427'2] + 2041042[2(1?1192)(193@3)—(pgpg)(png)—(p3p1)(p2623)}

+...

® The integrals do not explicitly depend on conformal ratios.

® The integrals can however be computed numerically.

[ Anastasiou, Brandhuber, Heslop,
Khoze, Spence, Travaglini]
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An excursion to multi-Regge
kinematics

® Multi-Regge kinematics are defined by
D2 p3
Ys > Yq > ... > Yn—1 > Un

|p3J_‘ = |p4J_’ = ... = |pn—1J_’ = ‘an_‘a

® This implies a hierarchy of scales:

§$>> 81, S9,...,8,-3 > —t1, —to,...,—1ln_3. K2

q2 S2
Pn—1

q1 > S1
P1 Pn
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® Multi-Regge kinematics

|p3L!2 i |Z?zu|2 ~ |p5L!2 i !pm\z

® In the multi-Regge limit, the
cross ratios become trivial:

Multi-Regge limits

Yz > Yq > Ys > Yo

U1

u2

us

S12 545

S$345 S456
5923 S56

5234 5456

534 S61
5234 S$345

~ ]

2

¢

O

O

t
S

t
S

-
-

[ Bartels, Lipatov, Vera;
Brower, Nastase, Schnitzer;

Del Duca, CD, Glover]
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Multi-Regge limits

® Quasi-multi-Regge kinematics

Yz > Yqg = Ys > Ye
|p3L!2 i |Z?zu|2 ~ |p5L!2 i !pm\z

® In the quasi-multi-Regge limat,

the cross ratios stay generic:
uMRK 5 w%@w
1 = — —
(pf + p3)(ps +p5)

 QMRK _ D31 |*ps v

2 = = =
(IpsL +parl® + pypy ) (P4 + 3 )P
[ Del Duca, CD, Glover]

QMRK P61 |“Pa Py
U3 S — 2 +.—
p3 (04 + 05 )(|P3L +Ppar|* +pspy)
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Regge-exactness of Wilson loops

® The result is in fact even stronger:
The (logarithm of the) Wilson-loop 1s Regge-exact in this
limait, 1.e., 1t 1s the same 1n this special kinematics and 1n
arbitrary kinematics
000007309000

Ys > Ya = ... =2 Yn—1 > Yn

2 2
‘pSJ_‘ =~ ... = ‘an_‘
00000/730Q9Q¢
® This limit leaves the conformal cross ratios unchanged
for an arbitrary number of edges.

® This result 1s in fact true for Wilson loops with an

arbitrary number of edges and loops!
[Del Duca, CD, Smirnov]
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The six-point remainder function

® Due to Regge-exactness, 1t 1s enough to compute the
remainder function 1n this restricted area of phase space.

® In the limit, all integrals are

= 5t most three-fold.

= dependent on conformal cross ratios only.

® The resulting integrals are much simpler and can be
solved 1n a closed form, and we can extract the two-loop
six-point remainder function,

w® (e) = i () wd(2e) + Oy + Ry, + O(e)

[ Del Duca, CD, Smirnov]
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The six-point remainder function

® The expression we obtained was considerably simplified

by Goncharov, Spradlin, Vergu and Volovich.

R(uy, g, us) — i (L4(xj,:vi) _ %Li4(1 _ 1/ui)>

=1

_ (Zng 11/%) +J—4+X71T_; (J* +¢(2))

v + . uptuytuzs—1£vVA
o =wrT, T =

A = (’U,l + U9 + U3 — 1)2 — 4U1U,QU3‘

)

2U1U2U3
® Arguments are cross ratios In momentum twistor space:

o {(1234)(4561)

(1245)(3461)

(1456)(2356)

(1256) (3456)
[ Goncharov, Spradlin, Volovich, Vergu]

+
1
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Symbols

® The simplification of the hexagon remainder function
went hand 1in hand with the introduction of a new
mathematical tool: the symbol.

® Hand-waving idea: Associate a ‘tensor calculus’ to
polylogarithms that incorporates the functional 1dentities.

Polylogarithm Symbol

Function Tensor

Functional equation Algebraic 1dentity
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Remainders with more points

® The techniques we developed for the computation of the
six-point remainder function can also be applied to
Wilson loops with more edges.

® We focus on the 1+1 dimensional setup studied at strong

coupling.
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Remainders with more points

® The techniques we developed for the computation of the
six-point remainder function can also be applied to
Wilson loops with more edges.

® We focus on the 1+1 dimensional setup studied at strong
coupling.

® The final answer involves 25.000 terms...
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Remainders with more points

® The techniques we developed for the computation of the
six-point remainder function can also be applied to
Wilson loops with more edges.

® We focus on the 1+1 dimensional setup studied at strong
coupling.

® The final answer involves 25.000 terms...

... but they all collapse to

4

1 1 1
Ry (¢ X7) = =15 — s (14 x") In (1 * x_+> i (1+x7)In (1 " x—‘>

[ Del Duca, CD, Smirnov]
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Remainders in 1+1 dimensions

® Interesting observation: R8 is the simplest function
consistent with the cyclic symmetry and collinear limits.

(2) + 7T4 1 1 1 _ 1
RS,WL(X > X ):—E—§ln(l+x )ln 1+X_+ ln(l—l—X )ln 1+X—_

® Inspired by this simplicity, Heslop and Khoze have
shown by a numerical analysis that this structure extends

beyond eight points:
Ry, = —% ( ; log (i ) 10g(Uiyie ) 10g(Wiyiy) log(u,&-m)) — =5 (n —4)

® This structure was recently confirmed by Gaiotto,
Maldacena, Sever and Vieira using collinear OPE.
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Remainders with more points

® So far, no analytic results are known for remainder
functions 1n general kinematics beyond six points.

® Recently, Caron-Huot computed the symbol of all two-
loop remainder functions.

® Open question: Can we ‘integrate’ the symbol to a
function?
= [nteresting point: The symbol already tells us that
starting from n = 7 classical polylogarithms will no
longer be enough.

O Insight might come from an unexpected front...

Dienstag, 7. Juni 2011



One-loop Hexagons in 6 dimensions

® The massless scalar one-loop hexagon integral m D=6
dimensions

= s finite,
= dual conformally invarant,

- g Weight 3 function.

5 k 1 IDZG _ d6k i
6 B Z7T3 : Dz ’

1 =0

4 o> Dy =k* and Di:(k+Pz’)2, for :=1,...,5.
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One-loop Hexagons in 6 dimensions

® The analytic form of the massless scalar hexagon n 6
dimensions looks very similar to the analytic expression

for the two-loop remainder function!

| Dixon, Drummond, Henn;

_ 1 Del Duca, CD, Smir
[(?—6 = —— Te (u17 Us, US) el Duca, , Smirnov |
L14 Lo5 L3g

3

1 1
Te(uy, ug,uz) = A 2 E La(xiy,xi) 4+ 2CJ + §J3
i=1

R(uy, g, u5) — i <L4(a;j, ) — %Li4(1 _ 1/ui)>

;(ZLIQ 11/uz> +J—4+xg (J° 4+ ¢(2))
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One-loop Hexagons in 6 dimensions

® This similarity motivated the study of more complicated

hexagons:
T \ = s Do(uy, ..., ug) = \/1Ai9 }; 92;3 o(9) La(x],,2; )
T T _ 1 —\)\ 3 _
— Ly(xt, 27) :1—8(61(:1: ) — l(x )) + Ly(x™,27)
AT X (X1T)
vt = x(1,4,7), NI R)=  (, X) (XoT)
ry =x(1,4,7), etc
o ANXGXe)(XINT)
X ) = = i (XX (XA N Ty

[ Del Duca, Dixon, Drummond,
CD, Henn, Smirnov|
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Conclusion & Outlook

® In the last 18 months, a lot of progress was made to
compute multi-leg amplitudes/Wilson loops at strong and
weak coupling:

= Hexagon in 3+1 dimensions

= (ctagon 1n special kinematics (1+1 dimensions)

= All even-sided polygons in 1+1 dimensions.

= The symbols of all polygons in general kinematics.
® Next step: try to nail all two-loop MHV amplitudes.

® Together with all the other fascinating developments in the
field, this might eventually allow to solve the planar sector

of N=4 SYM.
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Back ups
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Symbols

® Simple example:
Lig(x) + In(1 — ) Inx = —Lis (1 — x)

7.‘.2

Symbol(Lis(x)) = —(1 —2) @ x
Symbol(In(l —x)Inz)=(1—-2) x4+ 2R (1 — x)
Symbol(const) = 0

Symbol(Liz(z) +In(l —x)Inz) =2 ® (1 — x)

= —Symbol(Lis(1 — x))
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