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conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit:  Nc →∞  with  λ = g2Nc fixed

only planar diagrams

AdS/CFT duality Maldacena 97

large-λ limit of 4dim CFT ↔ weakly-coupled string theory

(aka weak-strong duality)
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AdS/CFT duality, amplitudes & Wilson loops

planar scattering amplitude at strong coupling Alday Maldacena 07

area of string world-sheet classical solution
neglect O(1/√λ) corrections( )

M ∼ exp

[
i

√
λ

2π
(Area)cl

]

Tuesday, June 7, 2011



AdS/CFT duality, amplitudes & Wilson loops

planar scattering amplitude at strong coupling Alday Maldacena 07

area of string world-sheet classical solution
neglect O(1/√λ) corrections( )

M ∼ exp

[
i

√
λ

2π
(Area)cl

]

amplitude has same form as ansatz for MHV amplitudes at weak coupling

Mn = M (0)
n exp

[ ∞∑

l=1

al
(
f (l)(ε) m(1)

n (lε) + Const(l) + E(l)
n (ε)

)]
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AdS/CFT duality, amplitudes & Wilson loops

computation ``formally the same as ... the expectation value of a Wilson loop
given by a sequence of light-like segments’’

planar scattering amplitude at strong coupling Alday Maldacena 07
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MHV amplitudes ⇔  Wilson loops
agreement between n-edged Wilson loop and n-point MHV amplitude
at weak coupling (aka weak-weak duality)
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MHV amplitudes ⇔  Wilson loops
agreement between n-edged Wilson loop and n-point MHV amplitude
at weak coupling (aka weak-weak duality)

Drummond Henn Korchemsky Sokatchev 07
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Brandhuber Heslop Travaglini 07verified for n-edged 1-loop Wilson loop
up to 6-edged 2-loop Wilson loop

n-edged 2-loop Wilson loops also computed (numerically)
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

no amplitudes are known beyond the 6-point 2-loop amplitude
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MHV amplitudes in planar N=4 SYM
at any order in the coupling, colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient M (L)

n = M (0)
n m(L)

n

Tuesday, June 7, 2011



MHV amplitudes in planar N=4 SYM
at any order in the coupling, colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

∑

pq

F 2me(p, q, P, Q)

at 1 loop
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MHV amplitudes in planar N=4 SYM
at any order in the coupling, colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

∑

pq

F 2me(p, q, P, Q)

at 1 loop

n ≥ 6

at 2 loops, iteration formula for the n-pt amplitude

Anastasiou Bern Dixon Kosower 03

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) + R
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at any order in the coupling, colour-ordered MHV amplitude
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remainder
function
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ansatz for MHV amplitudes in planar N=4 SYM
Bern Dixon Smirnov 05

cusp anomalous dimension, known to all orders of a

collinear anomalous dimension, known through O(a4) 

Korchemsky Radyuskin 86 
Beisert Eden Staudacher 06 

Bern Dixon Smirnov 05 
Cachazo Spradlin Volovich 07

‘t Hooft parameter coupling a =
λ

8π2
(4πe−γ)ε λ = g2N

f (l)(ε) =
γ̂(l)

K

4
+ ε

l

2
Ĝ(l) + ε2 f (l)

2

γ̂(l)
K

Ĝ(l)

E(l)
n (ε) = O(ε)

ansatz generalises the iteration formula for the 2-loop n-pt amplitude mn(2) 

Mn = M (0)
n

[
1 +

∞∑

L=1

aLm(L)
n (ε)

]

= M (0)
n exp

[ ∞∑

l=1

al
(
f (l)(ε)m(1)

n (lε) + Const(l) + E(l)
n (ε)

)]
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Factorisation of a multi-leg amplitude in QCD

Mueller 1981
Sen 1983
Botts Sterman 1987
Kidonakis Oderda Sterman 1998
Catani 1998
Tejeda-Yeomans Sterman 2002
Kosower 2003
Aybat Dixon Sterman 2006
Becher Neubert 2009
Gardi Magnea 2009

to avoid double counting of soft-collinear region (IR double poles), 
Ji removes eikonal part from Ji, which is already in S
Ji/Ji contains only single collinear poles

MN (pi/µ, ε) =
∑

L

SNL(βi · βj , ε) HL

(
2pi · pj

µ2
,
(2pi · ni)2

n2
i µ

2

) ∏

i

Ji

(
(2pi · ni)2

n2
i µ

2
, ε

)

Ji

(
2(βi · ni)2

n2
i

, ε

)

pi = βiQ0/
√

2 value of Q0  is immaterial in S, J
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N = 4 SYM in the planar limit

colour-wise, the planar limit is trivial:
can absorb S into Ji

each slice is square root
of Sudakov form factor

Mn =
n∏

i=1

[
M[gg→1]

(
si,i+1

µ2
, αs, ε

)]1/2

hn({pi}, µ2, αs, ε)

β fn = 0 ⇒ coupling runs only through dimension

ln
[
Γ

(
Q2

µ2
, αs(µ2), ε

)]
= −1

2

∞∑

n=1

(
αs(µ2)

π

)n (
−Q2

µ2

)−nε
[

γ(n)
K

2n2ε2
+

G(n)(ε)
nε

]

⇒ IR structure of N = 4 SUSY amplitudes

Sudakov form factor has simple solution

ᾱs(µ2)µ2ε = ᾱs(λ2)λ2ε

Magnea Sterman 90
Bern Dixon Smirnov 05
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Brief history of the ansatz
the ansatz checked for the 3-loop 4-pt amplitude

2-loop 5-pt amplitude Cachazo Spradlin Volovich 06 
Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05
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Brief history of the ansatz
the ansatz checked for the 3-loop 4-pt amplitude

2-loop 5-pt amplitude Cachazo Spradlin Volovich 06 
Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

R(2)
n = m(2)

n (ε)− 1
2

[
m(1)

n (ε)
]2
− f (2)(ε) m(1)

n (2ε)− Const(2)

at 2 loops, the remainder function characterises the deviation from the ansatz

R(2)
6 known numerically

Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Drummond Henn Korchemsky Sokatchev 08
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

analitically Duhr Smirnov VDD 09

the ansatz fails on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08
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Wilson loops & Ward identities
N=4 SYM is invariant under SO(2,4) conformal transformations

Drummond Henn Korchemsky Sokatchev 07
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the solution of the Ward identity for special conformal boosts 
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for n = 4, 5,  R is a constant
for n ≥ 6,    R is an unknown function of conformally invariant cross ratios
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Wilson loops & Ward identities
N=4 SYM is invariant under SO(2,4) conformal transformations

the Wilson loops fulfill conformal Ward identities

the solution of the Ward identity for special conformal boosts 
is given by the finite parts of the BDS ansatz + R

for n = 4, 5,  R is a constant
for n ≥ 6,    R is an unknown function of conformally invariant cross ratios

Drummond Henn Korchemsky Sokatchev 07

for n = 6, the conformally invariant cross ratios are

thus x2
k,k+r = (pk + . . . + pk+r−1)2

u1 =
x2

13x
2
46

x2
14x

2
36

u2 =
x2

24x
2
15

x2
25x

2
14

u3 =
x2

35x
2
26

x2
36x

2
25

1

2

6

3

4

5

pi = xi − xi+1xi are variables in a dual space s.t.
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Wilson loops

W [Cn] = Tr P exp
[
ig

∮
dτ ẋµ(τ)Aµ(x(τ))

]

closed contour       made by light-like external momentaCn
pi = xi − xi+1

Alday Maldacena 07
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Wilson loops

W [Cn] = Tr P exp
[
ig

∮
dτ ẋµ(τ)Aµ(x(τ))

]

closed contour       made by light-like external momentaCn
pi = xi − xi+1

non-Abelian exponentiation theorem: vev of Wilson loop as an exponential,
allows us to compute the log of W

〈W [Cn]〉 = 1 +
∞∑

L=1

aLW (L)
n = exp

∞∑

L=1

aLw(L)
n

Gatheral 83
Frenkel Taylor 84

through 2 loops w(1)
n = W (1)

n w(2)
n = W (2)

n − 1
2

(
W (1)

n

)2

Alday Maldacena 07
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(
W (1)

n
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Alday Maldacena 07

relation between 1 loop amplitudes & Wilson loops

w(1)
n =

Γ(1− 2ε)
Γ2(1− ε)

m(1)
n = m(1)

n − n
ζ2

2
+O(ε) Brandhuber Heslop Travaglini 07
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Wilson loops
Wilson loops fulfill a Ward identity for special conformal boosts
the solution is the BDS ansatz + R
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Wilson loops
Wilson loops fulfill a Ward identity for special conformal boosts
the solution is the BDS ansatz + R

w(2)
n (ε) = f (2)

WL(ε) w(1)
n (2ε) + C(2)

WL + R(2)
n,WL +O(ε)

at 2 loops

f (2)
WL(ε) = −ζ2 + 7ζ3ε− 5ζ4ε

2with

(to be compared with f (2)(ε) = −ζ2 − ζ3ε− ζ4ε
2 for the amplitudes)

R4,WL = R5,WL = 0
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Wilson loops fulfill a Ward identity for special conformal boosts
the solution is the BDS ansatz + R

arbitrary function of conformally invariant cross ratios

with x2
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Wilson loops
Wilson loops fulfill a Ward identity for special conformal boosts
the solution is the BDS ansatz + R

arbitrary function of conformally invariant cross ratios

with x2
k,k+r = (pk + . . . + pk+r−1)2

R(2)
n,WL

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

duality Wilson loop ⇔ MHV amplitude is expressed by

R(2)
n,WL = R(2)

n

w(2)
n (ε) = f (2)
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Collinear limits of  Wilson loops
collinear limit  a||b

R6 → 0 R7 → R6 Rn → Rn-1

Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
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Collinear limits of  Wilson loops
collinear limit  a||b

R6 → 0 R7 → R6 Rn → Rn-1

triple collinear limit  a||b||c

R6 → R6 R7 → R6 R8 → R6 + R6 Rn → Rn-2 + R6

Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
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Collinear limits of  Wilson loops
collinear limit  a||b

R6 → 0 R7 → R6 Rn → Rn-1

triple collinear limit  a||b||c

R6 → R6 R7 → R6 R8 → R6 + R6 Rn → Rn-2 + R6

quadruple collinear limit  a||b||c||d

R7 → R7 R8 → R7 R9 → R6 + R7 Rn → Rn-3 + R7

Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

Rn → Rn-1

(k+1)-ple collinear limit  i1||i2|| · · · ||ik+1

Rn → Rn-k + Rk+4

(n-4)-ple collinear limit  

i1||i2|| · · · ||in−3(n-3)-ple collinear limit  

i1||i2|| · · · ||in−4

Rn-1 → Rn-1

Rn → Rn
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Collinear limits of  Wilson loops
collinear limit  a||b

R6 → 0 R7 → R6 Rn → Rn-1

triple collinear limit  a||b||c

R6 → R6 R7 → R6 R8 → R6 + R6 Rn → Rn-2 + R6

quadruple collinear limit  a||b||c||d

R7 → R7 R8 → R7 R9 → R6 + R7 Rn → Rn-3 + R7

Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

Rn → Rn-1

(k+1)-ple collinear limit  i1||i2|| · · · ||ik+1

Rn → Rn-k + Rk+4

(n-4)-ple collinear limit  

i1||i2|| · · · ||in−3(n-3)-ple collinear limit  

i1||i2|| · · · ||in−4

Rn-1 → Rn-1

Rn → Rn

thus Rn is fixed by the (n-3)-ple collinear limit  
Tuesday, June 7, 2011



Quasi-multi-Regge limit of hexagon Wilson loop

the conformally invariant cross ratios are

p1

p2

p6

q2

p3

q1

p4

p5

y3 ! y4 " y5 ! y6; |p3⊥| " |p4⊥| "| p5⊥| "| p6⊥|

6-pt amplitude in the qmR limit of a pair along the ladder

u36 =
x2

13x
2
46

x2
14x

2
36

=
s12s45

s123s345

u14 =
x2

24x
2
15

x2
25x

2
14

=
s23s56

s234s123

u25 =
x2

35x
2
26

x2
36x

2
25

=
s34s61

s234s345
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Quasi-multi-Regge limit of hexagon Wilson loop

the conformally invariant cross ratios are

p1

p2

p6

q2

p3

q1

p4

p5

y3 ! y4 " y5 ! y6; |p3⊥| " |p4⊥| "| p5⊥| "| p6⊥|

6-pt amplitude in the qmR limit of a pair along the ladder

the cross ratios are all O(1) 
→ R6 does not change its functional dependence on the u’s

u36 =
x2

13x
2
46

x2
14x

2
36

=
s12s45

s123s345

u14 =
x2

24x
2
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x2
25x

2
14

=
s23s56

s234s123

u25 =
x2

35x
2
26

x2
36x

2
25

=
s34s61

s234s345

 R6 is invariant under the qmR limit of a pair along the ladder
Duhr Glover Smirnov VDD 08
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p1

p2

p7

q2

p3

q1

p4

p5

p6

Quasi-multi-Regge limit of n-sided Wilson loop

7-pt amplitude in the qmR limit of a triple along the ladder

y3 ! y4 " y5 " y6 ! y7; |p3⊥| "| p4⊥| " |p5⊥| "| p6⊥| "| p7⊥|

7 cross ratios, which are all O(1) 
R7 is invariant under the qmR limit
of a triple along the ladder
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p1

p2

p7

q2

p3

q1

p4

p5

p6

Quasi-multi-Regge limit of n-sided Wilson loop

7-pt amplitude in the qmR limit of a triple along the ladder

y3 ! y4 " y5 " y6 ! y7; |p3⊥| "| p4⊥| " |p5⊥| "| p6⊥| "| p7⊥|

7 cross ratios, which are all O(1) 
R7 is invariant under the qmR limit
of a triple along the ladder

can be generalised to the n-pt amplitude
in the qmR limit of a (n-4)-ple along the ladder

y3 ! y4 " . . . " yn−1 ! yn; |p3⊥| " . . . " |pn⊥|

Duhr Smirnov VDD 09
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Quasi-multi-Regge limit of  Wilson loops
L-loop Wilson loops are Regge exact

w(L)
n (ε) = f (L)

WL(ε) w(1)
n (Lε) + C(L)

WL + R(L)
n,WL(uij) +O(ε)

Drummond Korchemsky Sokatchev 07
Duhr Smirnov VDD 09
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L-loop Wilson loops are Regge exact
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n (ε) = f (L)
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n (Lε) + C(L)

WL + R(L)
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w(1)
n =

Γ(1− 2ε)
Γ2(1− ε)

m(1)
n
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w(1)
n =

Γ(1− 2ε)
Γ2(1− ε)

m(1)
n

ln(sij) + Li2(1− uij)

u‘s are invariant in the qmRk

log’s are not power suppressed

we may compute the Wilson loop in qmRk
the result will be correct in general kinematics !!!
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Analytic 2-loop 6-edged Wilson loop

compute 2-loop 6-edged  Wilson loop

in MB representation of the integrals in general kinematics,
get up to 8-fold integrals

after procedure in qmR limit, at most 3-fold integrals
in fact, only one 3-fold integral, which comes from fH(p1, p3, p5; p4, p6, p2)

∫ +i∞

−i∞

∫ +i∞

−i∞

∫ +i∞

−i∞

dz1

2πi

dz2

2πi

dz3

2πi
(z1 z2 + z2 z3 + z3 z1)uz1

1 uz2
2 uz3

3

×Γ (−z1)
2 Γ (−z2)

2 Γ (−z3)
2 Γ (z1 + z2) Γ (z2 + z3) Γ (z3 + z1)

the result is in terms of Goncharov polylogarithms

G(a, !w; z) =
∫ z

0

dt

t− a
G(!w; t) , G(a; z) = ln

(
1− z

a

)
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the remainder function R6
(2) is given in terms of 

O(103) Goncharov polylogarithms G(u1, u2, u3)
Duhr Smirnov VDD 09
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the remainder function R6
(2) is explicitly dependent 

on the cross ratios u1, u2, u3

it is symmetric in all its arguments
(in general it’s symmetric under cyclic permutations and reflections)

it vanishes under collinear and multi-Regge limits (in Euclidean space)

Duhr Smirnov VDD 09

it is in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

straightforward computation
qmR kinematics make it technically feasible

finite answer, but in intermediate steps many divergences
output is punishingly long

it is of uniform, and irreducible, transcendental weight 4

transcendental weights:  w(ln x) = w(π) = 1      w(Li2(x)) = w(π2) = 2
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Goncharov Spradlin Vergu Volovich 10

R(2)
6,WL(u1, u2, u3) =

3∑

i=1

(
L4(x+

i , x−i )− 1
2
Li4(1− 1/ui)

)

− 1
8

(
3∑

i=1

Li2(1− 1/ui)

)2

+
J4

24
+

π2

12
J2 +

π4

72

our result has been simplified and given in terms of polylogarithms 
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∆
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our result has been simplified and given in terms of polylogarithms 

not a new, independent, computation
just a manipulation of our result
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our result has been simplified and given in terms of polylogarithms 

not a new, independent, computation
just a manipulation of our result

answer is short and simple
introduces the theory of motives in TH physics
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Fn. F of deg(F) = n :   fn. with log cuts, s.t. Disc = 2πi × f,  with w(f) = n-1 

deg(const) = 0 ➙ deg(π) = 0
ln x : cut along [-∞, 0] with Disc = 2πi  ➙ deg(ln x) = 1
Li2(x) : cut along [1,∞] with Disc = -2πi ln x ➙ deg(Li2(x)) = 2

Sym[lnx] = x Sym[Li2(x)] = −(x− 1)⊗ x

Tk =
∫ b

a
d lnR1 ◦ · · · ◦ d lnRk

take a fn. defined as an iterated integral
Ri rational functions

Sym[Tk] = R1 ⊗ · · ·⊗Rk

defined on the tensor product of the group of rational functions, modulo constants

the symbol is

· · ·⊗R1R2 ⊗ · · · = · · ·⊗R1 ⊗ · · · + · · ·⊗R2 ⊗ · · ·

take f, g with deg(f) = deg(g) = n and Sym[f] = Sym[g]
then f-g = h with deg(h) = n -1

a symbol determines a polynomial of uniform degree up to a constant
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One-loop amplitude squared

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) + R

the 2-loop n-pt amplitude is

what about that ?
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One-loop amplitude squared

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) + R

the 2-loop n-pt amplitude is

what about that ?

the dimensional regulator breaks conformal invariance and Regge exactness

one-loop amplitude squared must be known at least through O(ε2)

Way out

spontaneous-symmetry break N=4 SYM: 
switch on a vev for one of the scalars

use the vev masses as regulators Alday Henn Plefka Schuster 09

preserves conformal invariance

not practical for phenomenology (where DR rules the waves)
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xa ↔ (Za, Za+1)
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any point in dual space corresponds to a line in twistor space
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Amplitudes in twistor space

xa ↔ (Za, Za+1)

twistors live in the fundamental irrep of SO(2,4)

any point in dual space corresponds to a line in twistor space

null separations in dual space correspond 
to intersections in twistor space

m(2)
n =

1
2

∑

i<j<k<l<i

2-loop n-pt MHV amplitudes can be written 
as sum of pentaboxes in twistor space

Arkani-Hamed Bourjaily Cachazo Trnka10
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Conclusions
Planar N=4 SYM is a great lab where to test comparisons
between strong and weak couplings

features weak-strong duality and weak-weak duality

Wilson loops are the ideal quantities to perform those comparisons

first (and so far only) analytic computation of 2-loop hexagon Wilson loop

progress (symbols) recently to understand 2-loop n-side Wilson loops
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Conclusions
Planar N=4 SYM is a great lab where to test comparisons
between strong and weak couplings

features weak-strong duality and weak-weak duality

Wilson loops are the ideal quantities to perform those comparisons

first (and so far only) analytic computation of 2-loop hexagon Wilson loop

more is to come ... stay tuned!

progress (symbols) recently to understand 2-loop n-side Wilson loops
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In October 7-11,
we shall have a 

School of Analytic Computing
in Atrani, Italy

lectures on amplitudes & Wilson loops by
Fernando Alday

Simon Caron-Huot
Claude Duhr

Johannes Henn
Henrik Johansson
Vladimir Smirnov
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