Wilson loops and amplitudes in $\mathrm{N}=4$ Super Yang-Mills

Vittorio Del Duca

INFN

XIWorkshop on Non-Perturbative QCD Paris 7 June 201I

N=4 Super Yang-Mills

Q maximal supersymmetric theory (without gravity) conformally invariant, β fn. $=0$

Q spin I gluon
4 spin I/2 gluinos
6 spin 0 real scalars

$\mathrm{N}=4$ Super Yang-Mills

Q maximal supersymmetric theory (without gravity) conformally invariant, β fn. $=0$

- spin I gluon

4 spin I/2 gluinos
6 spin 0 real scalars
9 ' t Hooft limit: $N_{c} \rightarrow \infty$ with $\lambda=g^{2} N_{c}$ fixed
Q only planar diagrams

$\mathrm{N}=4$ Super Yang-Mills

Q maximal supersymmetric theory (without gravity) conformally invariant, β fn. $=0$

Q spin I gluon
4 spin I/2 gluinos
6 spin 0 real scalars
Q 't Hooft limit: $N_{c} \rightarrow \infty$ with $\lambda=g^{2} N_{c}$ fixed
Q only planar diagrams
9 AdS/CFT duality
Maldacena 97
Q large- λ limit of $4 \operatorname{dim}$ CFT \leftrightarrow weakly-coupled string theory (aka weak-strong duality)

AdS/CFT duality, amplitudes \& Wilson loops

9 planar scattering amplitude at strong coupling

$$
\mathcal{M} \sim \exp \left[i \frac{\sqrt{\lambda}}{2 \pi}(\text { Area })_{c l}\right]
$$

area of string world-sheet $\quad\binom{$ classical solution }{ neglect $O(I / \sqrt{ } \lambda)$ corrections }

AdS/CFT duality, amplitudes \& Wilson loops

9 planar scattering amplitude at strong coupling

Alday Maldacena 07

$$
\mathcal{M} \sim \exp \left[i \frac{\sqrt{\lambda}}{2 \pi}(\text { Area })_{c l}\right]
$$

area of string world-sheet $\left.\quad \begin{array}{l}\text { classical solution } \\ \text { neglect } O(1 / \sqrt{\lambda}) \text { corrections }\end{array}\right)$

Q amplitude has same form as ansatz for MHV amplitudes at weak coupling

$$
M_{n}=M_{n}^{(0)} \exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]
$$

AdS/CFT duality, amplitudes \& Wilson loops

9 planar scattering amplitude at strong coupling

$$
\mathcal{M} \sim \exp \left[i \frac{\sqrt{\lambda}}{2 \pi}(\text { Area })_{c l}\right]
$$

area of string world-sheet $\quad\binom{$ classical solution }{ neglect $O(I / \sqrt{ } \lambda)$ corrections }

Q amplitude has same form as ansatz for MHV amplitudes at weak coupling

$$
M_{n}=M_{n}^{(0)} \exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]
$$

Q computation "formally the same as ... the expectation value of a Wilson loop given by a sequence of light-like segments"

MHV amplitudes \Leftrightarrow Wilson loops

Q agreement between n-edged Wilson loop and n-point MHV amplitude at weak coupling (aka weak-weak duality)

MHV amplitudes \Leftrightarrow Wilson loops

Q agreement between n-edged Wilson loop and n-point MHV amplitude at weak coupling (aka weak-weak duality)

Q verified for n-edged I-loop Wilson loop

MHV amplitudes \Leftrightarrow Wilson loops

Q agreement between n-edged Wilson loop and n-point MHV amplitude at weak coupling (aka weak-weak duality)

Q verified for n-edged I-loop Wilson loop
9. n-edged 2-loop Wilson loops also computed (numerically)

Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

MHV amplitudes \Leftrightarrow Wilson loops

Q agreement between n-edged Wilson loop and n-point MHV amplitude at weak coupling (aka weak-weak duality)

Q verified for n-edged I-loop Wilson loop

Q n-edged 2-loop Wilson loops also computed (numerically)
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
Q no amplitudes are known beyond the 6-point 2-loop amplitude

MHV amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$

Q at any order in the coupling, colour-ordered MHV amplitude in N=4 SYM can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

MHV amplitudes in planar $N=4$ SYM

Q at any order in the coupling, colour-ordered MHV amplitude in $\mathrm{N}=4 \mathrm{SYM}$ can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

Q at I loop

$$
m_{n}^{(1)}=\sum_{p q} F^{2 \mathrm{me}}(p, q, P, Q) \quad n \geq 6
$$

MHV amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$

Q at any order in the coupling, colour-ordered MHV amplitude in $\mathrm{N}=4 \mathrm{SYM}$ can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

9 at I loop

$$
m_{n}^{(1)}=\sum_{p q} F^{2 \mathrm{me}}(p, q, P, Q) \quad n \geq 6
$$

9 at 2 loops, iteration formula for the $n-p t$ amplitude

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

MHV amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$

Q at any order in the coupling, colour-ordered MHV amplitude in $\mathrm{N}=4 \mathrm{SYM}$ can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

9 at I loop
$m_{n}^{(1)}=\sum_{p q} F^{2 \mathrm{me}}(p, q, P, Q) \quad n \geq 6$

9 at 2 loops, iteration formula for the n-pt amplitude

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

Anastasiou Bern Dixon Kosower 03
Q at all loops, ansatz for a resummed exponent

$$
\left.\begin{array}{r}
m_{n}^{(L)}=\exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]
\end{array}\right]+R \quad \text { Bern Dixon Smirnov } 05
$$

MHV amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$

Q at any order in the coupling, colour-ordered MHV amplitude in $\mathrm{N}=4 \mathrm{SYM}$ can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

Q at I loop

$$
m_{n}^{(1)}=\sum_{p q} F^{2 \mathrm{me}}(p, q, P, Q) \quad n \geq 6
$$

Q at 2 loops, iteration formula for the n-pt amplitude

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

Anastasiou Bern Dixfn Kosower 03
Q at all loops, ansatz for a resummed exponent

$$
m_{n}^{(L)}=\exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]+R
$$

ansatz for MHV amplitudes in planar $N=4$ SYM

$$
\begin{array}{ll}
\begin{aligned}
M_{n} & =M_{n}^{(0)}\left[1+\sum_{L=1}^{\infty} a^{L} m_{n}^{(L)}(\epsilon)\right] \\
& =M_{n}^{(0)} \exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right] \\
\text { coupling } a=\frac{\lambda}{8 \pi^{2}}\left(4 \pi e^{-\gamma}\right)^{\epsilon} & \lambda=g^{2} N
\end{aligned} \\
\\
f^{(l)}(\epsilon)=\frac{\hat{\gamma}_{K}^{(l)}}{4}+\epsilon \frac{l}{2} \hat{G}^{(l)}+\epsilon^{2} f_{2}^{(l)} & E_{n}^{(l)}(\epsilon)=O(\epsilon)
\end{array}
$$

$\hat{\gamma}_{K}^{(l)}$ cusp anomalous dimension, known to all orders of a
$\hat{G}^{(l)}$ collinear anomalous dimension, known through $\mathrm{O}\left(a^{4}\right)$

Korchemsky Radyuskin 86
Beisert Eden Staudacher 06
Bern Dixon Smirnov 05
Cachazo Spradlin Volovich 07
ansatz generalises the iteration formula for the 2-loop n-pt amplitude $m_{n}{ }^{(2)}$

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+\mathcal{O}(\epsilon)
$$

Factorisation of a multi-leg amplitude in QCD

Mueller I981

Sen 1983
Botts Sterman I 987
Kidonakis Oderda Sterman 1998 Catani 1998
Tejeda-Yeomans Sterman 2002
Kosower 2003
Aybat Dixon Sterman 2006
Becher Neubert 2009
Gardi Magnea 2009

$$
\begin{gathered}
\mathcal{M}_{N}\left(p_{i} / \mu, \epsilon\right)=\sum_{L} \mathcal{S}_{N L}\left(\beta_{i} \cdot \beta_{j}, \epsilon\right) H_{L}\left(\frac{2 p_{i} \cdot p_{j}}{\mu^{2}}, \frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}\right) \prod_{i} \frac{J_{i}\left(\frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \epsilon\right)}{\mathcal{J}_{i}\left(\frac{2\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \epsilon\right)} \\
p_{i}=\beta_{i} Q_{0} / \sqrt{2} \quad \text { value of } Q_{0} \text { is immaterial in } S, J
\end{gathered}
$$

to avoid double counting of soft-collinear region (IR double poles), J_{i} removes eikonal part from J_{i}, which is already in S $\mathrm{J}_{\mathrm{i}} / \mathrm{J}_{\mathrm{i}}$ contains only single collinear poles

$N=4 S Y M$ in the planar limit

Q colour-wise, the planar limit is trivial: can absorb S into J_{i}

Q each slice is square root of Sudakov form factor

$\mathcal{M}_{n}=\prod_{i=1}^{n}\left[\mathcal{M}^{[g g \rightarrow 1]}\left(\frac{s_{i, i+1}}{\mu^{2}}, \alpha_{s}, \epsilon\right)\right]^{1 / 2} h_{n}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha_{s}, \epsilon\right)$

Q $\beta \mathrm{fn}=0 \Rightarrow$ coupling runs only through dimension $\quad \bar{\alpha}_{s}\left(\mu^{2}\right) \mu^{2 \epsilon}=\bar{\alpha}_{s}\left(\lambda^{2}\right) \lambda^{2 \epsilon}$
Sudakov form factor has simple solution

$$
\begin{aligned}
& \ln \left[\Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]=-\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n}\left(\frac{-Q^{2}}{\mu^{2}}\right)^{-n \epsilon}\left[\frac{\gamma_{K}^{(n)}}{2 n^{2} \epsilon^{2}}+\frac{G^{(n)}(\epsilon)}{n \epsilon}\right] \\
& \Rightarrow \text { IR structure of } \mathrm{N}=4 \text { SUSY amplitudes }
\end{aligned}
$$

Brief history of the ansatz

the ansatz checked for the 3-loop 4-pt amplitude
Bern Dixon Smirnov 05
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

Brief history of the ansatz

the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude
Bern Dixon Smirnov 05
Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06
the ansatz fails on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Brief history of the ansatz

the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude
Bern Dixon Smirnov 05
Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06
the ansatz fails on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08
at 2 loops, the remainder function characterises the deviation from the ansatz

$$
R_{n}^{(2)}=m_{n}^{(2)}(\epsilon)-\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}-f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)-\text { Const }^{(2)}
$$

$R_{6}^{(2)} \quad$ known numerically
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Drummond Henn Korchemsky Sokatchev 08
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
analitically Duhr Smirnov VDD 09

Wilson loops \& Ward identities

Drummond Henn Korchemsky Sokatchev 07
Q $N=4$ SYM is invariant under $S O(2,4)$ conformal transformations

Wilson loops \& Ward identities

Drummond Henn Korchemsky Sokatchev 07
Q $\mathrm{N}=4 \mathrm{SYM}$ is invariant under $\mathrm{SO}(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities

Wilson loops \& Ward identities

Drummond Henn Korchemsky Sokatchev 07
Q $\mathrm{N}=4 \mathrm{SYM}$ is invariant under $\mathrm{SO}(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identitiesthe solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

Wilson loops \& Ward identities

Drummond Henn Korchemsky Sokatchev 07
Q $N=4$ SYM is invariant under $S O(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities
Q the solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

Q for $n=4,5, R$ is a constant
for $n \geq 6, \quad R$ is an unknown function of conformally invariant cross ratios

Wilson loops \& Ward identities

Drummond Henn Korchemsky Sokatchev 07
Q $N=4$ SYM is invariant under $S O(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities
Q the solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

Q for $n=4,5, R$ is a constant
for $n \geq 6, R$ is an unknown function of conformally invariant cross ratios
Q for $n=6$, the conformally invariant cross ratios are
$u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}} \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}} \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}$
x_{i} are variables in a dual space s.t. $\quad p_{i}=x_{i}-x_{i+1}$
thus $x_{k, k+r}^{2}=\left(p_{k}+\ldots+p_{k+r-1}\right)^{2}$

Wilson loops

- $W\left[\mathcal{C}_{n}\right]=\operatorname{Tr} \mathcal{P} \exp \left[i g \oint \mathrm{~d} \tau \dot{x}^{\mu}(\tau) A_{\mu}(x(\tau))\right]$
closed contour \mathcal{C}_{n} made by light-like external momenta $p_{i}=x_{i}-x_{i+1}$ Alday Maldacena 07

Wilson loops

- $W\left[\mathcal{C}_{n}\right]=\operatorname{Tr} \mathcal{P} \exp \left[i g \oint \mathrm{~d} \tau \dot{x}^{\mu}(\tau) A_{\mu}(x(\tau))\right]$
closed contour \mathcal{C}_{n} made by light-like external momenta
$p_{i}=x_{i}-x_{i+1}$
Alday Maldacena 07
Q non-Abelian exponentiation theorem: vev of Wilson loop as an exponential, allows us to compute the \log of W

Gatheral 83
Frenkel Taylor 84

$$
\left\langle W\left[\mathcal{C}_{n}\right]\right\rangle=1+\sum_{L=1}^{\infty} a^{L} W_{n}^{(L)}=\exp \sum_{L=1}^{\infty} a^{L} w_{n}^{(L)}
$$

through 2 loops $\quad w_{n}^{(1)}=W_{n}^{(1)} \quad w_{n}^{(2)}=W_{n}^{(2)}-\frac{1}{2}\left(W_{n}^{(1)}\right)^{2}$

Wilson loops

- $W\left[\mathcal{C}_{n}\right]=\operatorname{Tr} \mathcal{P} \exp \left[i g \oint \mathrm{~d} \tau \dot{x}^{\mu}(\tau) A_{\mu}(x(\tau))\right]$
closed contour \mathcal{C}_{n} made by light-like external momenta
$p_{i}=x_{i}-x_{i+1}$
Alday Maldacena 07
Q non-Abelian exponentiation theorem: vev of Wilson loop as an exponential, allows us to compute the \log of W

Gatheral 83
Frenkel Taylor 84

$$
\left\langle W\left[\mathcal{C}_{n}\right]\right\rangle=1+\sum_{L=1}^{\infty} a^{L} W_{n}^{(L)}=\exp \sum_{L=1}^{\infty} a^{L} w_{n}^{(L)}
$$

through 2 loops $\quad w_{n}^{(1)}=W_{n}^{(1)} \quad w_{n}^{(2)}=W_{n}^{(2)}-\frac{1}{2}\left(W_{n}^{(1)}\right)^{2}$
Q relation between I loop amplitudes \& Wilson loops

$$
w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}=m_{n}^{(1)}-n \frac{\zeta_{2}}{2}+\mathcal{O}(\epsilon)
$$

Wilson loops

Wilson loops fulfill a Ward identity for special conformal boosts the solution is the BDS ansatz $+R$

Wilson loops

Wilson loops fulfill a Ward identity for special conformal boosts the solution is the BDS ansatz $+R$

Q at 2 loops

$$
\begin{aligned}
& w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{n, W L}^{(2)}+\mathcal{O}(\epsilon) \\
& \text { with } \quad f_{W L}^{(2)}(\epsilon)=-\zeta_{2}+7 \zeta_{3} \epsilon-5 \zeta_{4} \epsilon^{2}
\end{aligned}
$$

(to be compared with $f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2} \quad$ for the amplitudes)

$$
R_{4, W L}=R_{5, W L}=0
$$

Wilson loops

9. Wilson loops fulfill a Ward identity for special conformal boosts the solution is the BDS ansatz $+R$

- at 2 loops

$$
\begin{aligned}
& w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{n, W L}^{(2)}+\mathcal{O}(\epsilon) \\
& \text { with } \quad f_{W L}^{(2)}(\epsilon)=-\zeta_{2}+7 \zeta_{3} \epsilon-5 \zeta_{4} \epsilon^{2}
\end{aligned}
$$

(to be compared with $f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2} \quad$ for the amplitudes)
$R_{4, W L}=R_{5, W L}=0$
Q $R_{n, W L}^{(2)}$ arbitrary function of conformally invariant cross ratios

$$
u_{i j}=\frac{x_{i j+1}^{2} x_{i+1 j}^{2}}{x_{i j}^{2} x_{i+1 j+1}^{2}} \quad \text { with } \quad x_{k, k+r}^{2}=\left(p_{k}+\ldots+p_{k+r-1}\right)^{2}
$$

Wilson loops

9 Wilson loops fulfill a Ward identity for special conformal boosts the solution is the BDS ansatz $+R$

Q at 2 loops

$$
\begin{aligned}
& w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{n, W L}^{(2)}+\mathcal{O}(\epsilon) \\
& \text { with } \quad f_{W L}^{(2)}(\epsilon)=-\zeta_{2}+7 \zeta_{3} \epsilon-5 \zeta_{4} \epsilon^{2}
\end{aligned}
$$

(to be compared with $f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2} \quad$ for the amplitudes)
$R_{4, W L}=R_{5, W L}=0$
Q $R_{n, W L}^{(2)}$ arbitrary function of conformally invariant cross ratios

$$
u_{i j}=\frac{x_{i j+1}^{2} x_{i+1 j}^{2}}{x_{i j}^{2} x_{i+1 j+1}^{2}} \quad \text { with } \quad x_{k, k+r}^{2}=\left(p_{k}+\ldots+p_{k+r-1}\right)^{2}
$$

Q duality Wilson loop \Leftrightarrow MHV amplitude is expressed by

$$
R_{n, W L}^{(2)}=R_{n}^{(2)}
$$

Collinear limits of Wilson loops

collinear limit $a|\mid b$

$$
R_{6} \rightarrow 0 \quad R_{7} \rightarrow R_{6} \quad R_{n} \rightarrow R_{n-1}
$$

Collinear limits of Wilson loops

collinear limit $a|\mid b$

$$
R_{6} \rightarrow 0 \quad R_{7} \rightarrow R_{6} \quad R_{n} \rightarrow R_{n-1}
$$

triple collinear limit $a \||b| \mid c$

$$
R_{6} \rightarrow R_{6} \quad R_{7} \rightarrow R_{6} \quad R_{8} \rightarrow R_{6}+R_{6} \quad R_{n} \rightarrow R_{n-2}+R_{6}
$$

Collinear limits of Wilson loops

collinear limit $a|\mid b$
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

$$
R_{6} \rightarrow 0 \quad R_{7} \rightarrow R_{6} \quad R_{n} \rightarrow R_{n-1}
$$

triple collinear limit $a \| b| | c$

$$
R_{6} \rightarrow R_{6} \quad R_{7} \rightarrow R_{6} \quad R_{8} \rightarrow R_{6}+R_{6} \quad R_{n} \rightarrow R_{n-2}+R_{6}
$$

quadruple collinear limit $a||b|| c|\mid d$

$$
R_{7} \rightarrow R_{7} \quad R_{8} \rightarrow R_{7} \quad R_{9} \rightarrow R_{6}+R_{7} \quad R_{n} \rightarrow R_{n-3}+R_{7}
$$

Collinear limits of Wilson loops

collinear limit $a|\mid b$

$$
R_{6} \rightarrow 0 \quad R_{7} \rightarrow R_{6} \quad R_{n} \rightarrow R_{n-1}
$$

triple collinear limit $a||b|| c$

$$
R_{6} \rightarrow R_{6} \quad R_{7} \rightarrow R_{6} \quad R_{8} \rightarrow R_{6}+R_{6} \quad R_{n} \rightarrow R_{n-2}+R_{6}
$$

quadruple collinear limit $a||b|| c|\mid d$

$$
R_{7} \rightarrow R_{7} \quad R_{8} \rightarrow R_{7} \quad R_{9} \rightarrow R_{6}+R_{7} \quad R_{n} \rightarrow R_{n-3}+R_{7}
$$

$(\mathbf{k}+\mathrm{I})$-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{k+1}$

$$
R_{n} \rightarrow R_{n-k}+R_{k+4}
$$

(n-4)-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{n-4}$

$$
R_{n-1} \rightarrow R_{n-1} \quad R_{n} \rightarrow R_{n-1}
$$

(n-3)-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{n-3}$

$$
R_{n} \rightarrow R_{n}
$$

Collinear limits of Wilson loops

collinear limit $a \| b$

$$
R_{6} \rightarrow 0 \quad R_{7} \rightarrow R_{6} \quad R_{n} \rightarrow R_{n-1}
$$

triple collinear limit $a \| b| | c$

$$
R_{6} \rightarrow R_{6} \quad R_{7} \rightarrow R_{6} \quad R_{8} \rightarrow R_{6}+R_{6} \quad R_{n} \rightarrow R_{n-2}+R_{6}
$$

quadruple collinear limit $a||b|| c|\mid d$

$$
R_{7} \rightarrow R_{7} \quad R_{8} \rightarrow R_{7} \quad R_{9} \rightarrow R_{6}+R_{7} \quad R_{n} \rightarrow R_{n-3}+R_{7}
$$

$(\mathbf{k}+\mathrm{I})$-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{k+1}$

$$
R_{n} \rightarrow R_{n-k}+R_{k+4}
$$

(n-4)-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{n-4}$

$$
R_{n-1} \rightarrow R_{n-1} \quad R_{n} \rightarrow R_{n-1}
$$

(n-3)-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{n-3}$

$$
R_{n} \rightarrow R_{n}
$$

Q thus R_{n} is fixed by the ($n-3$)-ple collinear limit

Quasi-multi-Regge limit of hexagon Wilson loop

Q 6-pt amplitude in the qmR limit of a pair along the ladder

$$
y_{3} \gg y_{4} \simeq y_{5} \gg y_{6} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right|
$$

the conformally invariant cross ratios are

$$
\begin{aligned}
u_{36} & =\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \\
u_{14} & =\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}=\frac{s_{23} s_{56}}{s_{234} s_{123}} \\
u_{25} & =\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{aligned}
$$

Quasi-multi-Regge limit of hexagon Wilson loop

Q 6-pt amplitude in the qmR limit of a pair along the ladder

$$
y_{3} \gg y_{4} \simeq y_{5} \gg y_{6} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right|
$$

the conformally invariant cross ratios are

$$
\begin{aligned}
u_{36} & =\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \\
u_{14} & =\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}=\frac{s_{23} s_{56}}{s_{234} s_{123}} \\
u_{25} & =\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{aligned}
$$

the cross ratios are all $O(1)$
$\rightarrow R_{6}$ does not change its functional dependence on the u 's

Quasi-multi-Regge limit of hexagon Wilson loop

Q 6-pt amplitude in the qmR limit of a pair along the ladder

$$
y_{3} \gg y_{4} \simeq y_{5} \gg y_{6} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right|
$$

the conformally invariant cross ratios are

$$
\begin{aligned}
u_{36} & =\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \\
u_{14} & =\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}=\frac{s_{23} s_{56}}{s_{234} s_{123}} \\
u_{25} & =\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{aligned}
$$

the cross ratios are all $O(1)$
$\rightarrow R_{6}$ does not change its functional dependence on the u 's
Q R_{6} is invariant under the qmR limit of a pair along the ladder

Quasi-multi-Regge limit of n-sided Wilson loop

Q 7-pt amplitude in the qmR limit of a triple along the ladder

$$
y_{3} \gg y_{4} \simeq y_{5} \simeq y_{6} \gg y_{7} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right| \simeq\left|p_{7 \perp}\right|
$$

7 cross ratios, which are all $O(I)$ R_{7} is invariant under the $q m R$ limit of a triple along the ladder

Quasi-multi-Regge limit of n-sided Wilson loop

Q 7-pt amplitude in the qmR limit of a triple along the ladder

$$
y_{3} \gg y_{4} \simeq y_{5} \simeq y_{6} \gg y_{7} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right| \simeq\left|p_{7 \perp}\right|
$$

7 cross ratios, which are all $O(I)$ R_{7} is invariant under the $q m R$ limit of a triple along the ladder

Q can be generalised to the n-pt amplitude in the $q m R$ limit of a ($n-4$)-ple along the ladder

$$
y_{3} \gg y_{4} \simeq \ldots \simeq y_{n-1} \gg y_{n} ; \quad\left|p_{3 \perp}\right| \simeq \ldots \simeq\left|p_{n \perp}\right|
$$

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

Quasi-multi-Regge limit of Wilson loops

Q L-loop Wilson loops are Regge exact
Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$$
w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}
$$

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$$
w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}
$$

$$
\ln \left(s_{i j}\right)+\operatorname{Li}_{2}\left(1-u_{i j}\right)
$$

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$$
w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}
$$

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}$
u's are invariant in the qmRk

$\ln \left(s_{i j}\right)+\operatorname{Li}_{2}\left(1-u_{i j}\right)$
log's are not power suppressed

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}$
u's are invariant in the qmRk

$\ln \left(s_{i j}\right)+\operatorname{Li}_{2}\left(1-u_{i j}\right)$
log's are not power suppressed
Q we may compute the Wilson loop in qmRk the result will be correct in general kinematics !!!

Analytic 2-loop 6-edged Wilson loop

Q compute 2-loop 6-edged Wilson loop
Q in MB representation of the integrals in general kinematics, get up to 8 -fold integrals

Analytic 2-loop 6-edged Wilson loop

- compute 2-loop 6-edged Wilson loop

Q in MB representation of the integrals in general kinematics, get up to 8 -fold integrals

Q after procedure in qmR limit, at most 3-fold integrals in fact, only one 3 -fold integral, which comes from $f_{H}\left(p_{1}, p_{3}, p_{5} ; p_{4}, p_{6}, p_{2}\right)$

$$
\begin{aligned}
& \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \frac{\mathrm{~d} z_{1}}{2 \pi i} \frac{\mathrm{~d} z_{2}}{2 \pi i} \frac{\mathrm{~d} z_{3}}{2 \pi i}\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right) u_{1}^{z_{1}} u_{2}^{z_{2}} u_{3}^{z_{3}} \\
& \times \Gamma\left(-z_{1}\right)^{2} \Gamma\left(-z_{2}\right)^{2} \Gamma\left(-z_{3}\right)^{2} \Gamma\left(z_{1}+z_{2}\right) \Gamma\left(z_{2}+z_{3}\right) \Gamma\left(z_{3}+z_{1}\right)
\end{aligned}
$$

the result is in terms of Goncharov polylogarithms

$$
G(a, \vec{w} ; z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a} G(\vec{w} ; t), \quad G(a ; z)=\ln \left(1-\frac{z}{a}\right)
$$

Analytic 2-loop 6-edged Wilson loop

- compute 2-loop 6-edged Wilson loop

Q in MB representation of the integrals in general kinematics, get up to 8 -fold integrals

Q after procedure in qmR limit, at most 3-fold integrals in fact, only one 3 -fold integral, which comes from $f_{H}\left(p_{1}, p_{3}, p_{5} ; p_{4}, p_{6}, p_{2}\right)$

$$
\begin{aligned}
& \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \frac{\mathrm{~d} z_{1}}{2 \pi i} \frac{\mathrm{~d} z_{2}}{2 \pi i} \frac{\mathrm{~d} z_{3}}{2 \pi i}\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right) u_{1}^{z_{1}} u_{2}^{z_{2}} u_{3}^{z_{3}} \\
& \times \Gamma\left(-z_{1}\right)^{2} \Gamma\left(-z_{2}\right)^{2} \Gamma\left(-z_{3}\right)^{2} \Gamma\left(z_{1}+z_{2}\right) \Gamma\left(z_{2}+z_{3}\right) \Gamma\left(z_{3}+z_{1}\right)
\end{aligned}
$$

the result is in terms of Goncharov polylogarithms

$$
G(a, \vec{w} ; z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a} G(\vec{w} ; t), \quad G(a ; z)=\ln \left(1-\frac{z}{a}\right)
$$

Q the remainder function $R_{6}{ }^{(2)}$ is given in terms of $O\left(10^{3}\right)$ Goncharov polylogarithms $G\left(u_{1}, u_{2}, u_{3}\right)$

2-loop 6-edged remainder function $R_{6}{ }^{(2)}$

the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

2-loop 6-edged remainder function $R_{6}{ }^{(2)}$

the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments (in general it's symmetric under cyclic permutations and reflections)

2-loop 6-edged remainder function $R_{6}{ }^{(2)}$

the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments (in general it's symmetric under cyclic permutations and reflections)
Q it is of uniform, and irreducible, transcendental weight 4 transcendental weights: $w(\ln x)=w(\pi)=1 \quad w\left(\operatorname{Li}_{2}(x)\right)=w\left(\pi^{2}\right)=2$

2-loop 6-edged remainder function $R_{6}{ }^{(2)}$

the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments (in general it's symmetric under cyclic permutations and reflections)
Q it is of uniform, and irreducible, transcendental weight 4 transcendental weights: $w(\ln x)=w(\pi)=1 \quad w\left(\operatorname{Li}_{2}(x)\right)=w\left(\pi^{2}\right)=2$

9 it vanishes under collinear and multi-Regge limits (in Euclidean space)

2-loop 6-edged remainder function $R_{6}^{(2)}$

the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments
(in general it's symmetric under cyclic permutations and reflections)
Q it is of uniform, and irreducible, transcendental weight 4 transcendental weights: $w(\ln x)=w(\pi)=1 \quad w\left(\operatorname{Li}_{2}(x)\right)=w\left(\pi^{2}\right)=2$

- it vanishes under collinear and multi-Regge limits (in Euclidean space)

Q it is in agreement with the numeric calculation by

2-loop 6-edged remainder function $R_{6}^{(2)}$

Q the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments (in general it's symmetric under cyclic permutations and reflections)

Q it is of uniform, and irreducible, transcendental weight 4 transcendental weights: $w(\ln x)=w(\pi)=1 \quad w\left(\operatorname{Li}_{2}(x)\right)=w\left(\pi^{2}\right)=2$

Q it vanishes under collinear and multi-Regge limits (in Euclidean space)
Q it is in agreement with the numeric calculation by

\uparrow
straightforward computation qmR kinematics make it technically feasible

2-loop 6-edged remainder function $R_{6}^{(2)}$

the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments (in general it's symmetric under cyclic permutations and reflections)

Q it is of uniform, and irreducible, transcendental weight 4 transcendental weights: $w(\ln x)=w(\pi)=1 \quad w\left(\operatorname{Li}_{2}(x)\right)=w\left(\pi^{2}\right)=2$

9 it vanishes under collinear and multi-Regge limits (in Euclidean space)
Q it is in agreement with the numeric calculation by
straightforward computation qmR kinematics make it technically feasible
finite answer, but in intermediate steps many divergences output is punishingly long

our result has been simplified and given in terms of polylogarithms

Goncharov Spradlin Vergu Volovich 10

$$
\begin{aligned}
R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right) & =\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right) \\
& -\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
\end{aligned}
$$

our result has been simplified and given in terms of polylogarithms

Goncharov Spradlin Vergu Volovich 10

$$
R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)
$$

where

$$
-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
$$

$$
\begin{array}{cc}
x_{i}^{ \pm}=u_{i} x^{ \pm} & x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3} \\
L_{4}\left(x^{+}, x^{-}\right)=\sum_{m=0}^{3} \frac{(-1)^{m}}{(2 m)!!} \log \left(x^{+} x^{-}\right)^{m}\left(\ell_{4-m}\left(x^{+}\right)+\ell_{4-m}\left(x^{-}\right)\right)+\frac{1}{8!!} \log \left(x^{+} x^{-}\right)^{4} \\
\ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right) & J=\sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)
\end{array}
$$

our result has been simplified and given in terms of polylogarithms
Goncharov Spradlin Vergu Volovich 10

$$
R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)
$$

where

$$
-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
$$

$$
x_{i}^{ \pm}=u_{i} x^{ \pm} \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}
$$

$$
L_{4}\left(x^{+}, x^{-}\right)=\sum_{m=0}^{3} \frac{(-1)^{m}}{(2 m)!!} \log \left(x^{+} x^{-}\right)^{m}\left(\ell_{4-m}\left(x^{+}\right)+\ell_{4-m}\left(x^{-}\right)\right)+\frac{1}{8!!} \log \left(x^{+} x^{-}\right)^{4}
$$

$$
\ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right) \quad J=\sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)
$$

\downarrow not a new, independent, computation
our result has been simplified and given in terms of polylogarithms
Goncharov Spradlin Vergu Volovich 10

$$
R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)
$$

where

$$
-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
$$

$$
x_{i}^{ \pm}=u_{i} x^{ \pm} \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}
$$

$$
\begin{aligned}
& L_{4}\left(x^{+}, x^{-}\right)=\sum_{m=0}^{3} \frac{(-1)^{m}}{(2 m)!!} \log \left(x^{+} x^{-}\right)^{m}\left(\ell_{4-m}\left(x^{+}\right)+\ell_{4-m}\left(x^{-}\right)\right)+\frac{1}{8!!} \log \left(x^{+} x^{-}\right)^{4} \\
& \ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right) \quad J=\sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)
\end{aligned}
$$

not a new, independent, computation just a manipulation of our result answer is short and simple introduces the theory of motives in TH physics

Symbols

Fn. F of $\operatorname{deg}(F)=n: \quad$ fn. with \log cuts, s.t. Disc $=2 \pi i \times f$, with $w(f)=n-I$

Symbols

Fn. Fof $\operatorname{deg}(F)=n: f n$. with \log cuts, s.t. Disc $=2 \pi i \times f$, with $w(f)=n-I$
$\operatorname{deg}($ const $)=0 \rightarrow \operatorname{deg}(\pi)=0$
$\ln x$:cut along $[-\infty, 0]$ with Disc $=2 \pi i \rightarrow \operatorname{deg}(\ln x)=1$
$\operatorname{Li} i_{2}(x)$: cut along $[1, \infty]$ with Disc $=-2 \pi i \ln x \rightarrow \operatorname{deg}\left(\operatorname{Li}_{2}(x)\right)=2$

Symbols

Fn. F of $\operatorname{deg}(F)=n: \quad$ nn. with \log cuts, s.t. Disc $=2 \pi i \times f$, with $w(f)=n-I$
$\operatorname{deg}($ const $)=0 \rightarrow \operatorname{deg}(\pi)=0$
$\ln x$: cut along $[-\infty, 0]$ with Disc $=2 \pi i \rightarrow \operatorname{deg}(\ln x)=1$
$\operatorname{Li}(x)$:cut along $[1, \infty]$ with Disc $=-2 \pi i \ln x \rightarrow \operatorname{deg}\left(\operatorname{Lii}_{2}(x)\right)=2$
take a fn. defined as an iterated integral $\quad T_{k}=\int_{a}^{b} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k}$
R_{i} rational functions
the symbol is $\quad \operatorname{Sym}\left[T_{k}\right]=R_{1} \otimes \cdots \otimes R_{k}$
defined on the tensor product of the group of rational functions, modulo constants

$$
\cdots \otimes R_{1} R_{2} \otimes \cdots=\cdots \otimes R_{1} \otimes \cdots+\cdots \otimes R_{2} \otimes \cdots
$$

Symbols

Fn. F of $\operatorname{deg}(F)=n: \quad$ nn. with \log cuts, s.t. Disc $=2 \pi i \times f$, with $w(f)=n-I$
$\operatorname{deg}($ const $)=0 \rightarrow \operatorname{deg}(\pi)=0$
$\ln x$: cut along $[-\infty, 0]$ with Disc $=2 \pi i \rightarrow \operatorname{deg}(\ln x)=1$
$\operatorname{Li} i_{2}(x)$: cut along $[1, \infty]$ with Disc $=-2 \pi i \ln x \rightarrow \operatorname{deg}\left(\operatorname{Li}_{2}(x)\right)=2$
take a fn. defined as an iterated integral $\quad T_{k}=\int_{a}^{b} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k}$
R_{i} rational functions
the symbol is $\quad \operatorname{Sym}\left[T_{k}\right]=R_{1} \otimes \cdots \otimes R_{k}$
defined on the tensor product of the group of rational functions, modulo constants

$$
\cdots \otimes R_{1} R_{2} \otimes \cdots=\cdots \otimes R_{1} \otimes \cdots+\cdots \otimes R_{2} \otimes \cdots
$$

$\operatorname{Sym}[\ln x]=x \quad \operatorname{Sym}\left[\operatorname{Li}_{2}(x)\right]=-(x-1) \otimes x$

Symbols

Fn. F of $\operatorname{deg}(F)=n: f n$. with \log cuts, s.t. Disc $=2 \pi i \times f$, with $w(f)=n-I$
$\operatorname{deg}($ const $)=0 \rightarrow \operatorname{deg}(\pi)=0$
$\ln x$: cut along $[-\infty, 0]$ with Disc $=2 \pi i \rightarrow \operatorname{deg}(\ln x)=1$
$\operatorname{Li} i_{2}(x)$: cut along $[1, \infty]$ with Disc $=-2 \pi i \ln x \rightarrow \operatorname{deg}\left(\operatorname{Li}_{2}(x)\right)=2$
take a fn. defined as an iterated integral $\quad T_{k}=\int_{a}^{b} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k}$
R_{i} rational functions
the symbol is $\quad \operatorname{Sym}\left[T_{k}\right]=R_{1} \otimes \cdots \otimes R_{k}$
defined on the tensor product of the group of rational functions, modulo constants

$$
\cdots \otimes R_{1} R_{2} \otimes \cdots=\cdots \otimes R_{1} \otimes \cdots+\cdots \otimes R_{2} \otimes \cdots
$$

$\operatorname{Sym}[\ln x]=x \quad \operatorname{Sym}\left[\operatorname{Li}_{2}(x)\right]=-(x-1) \otimes x$
take f, g with $\operatorname{deg}(f)=\operatorname{deg}(g)=n$ and $\operatorname{Sym}[f]=\operatorname{Sym}[g]$
then $f-g=h$ with $\operatorname{deg}(h)=n-I$

Symbols

Fn. F of $\operatorname{deg}(F)=n: f n$. with \log cuts, s.t. Disc $=2 \pi i \times f$, with $w(f)=n-I$
$\operatorname{deg}($ const $)=0 \rightarrow \operatorname{deg}(\pi)=0$
$\ln x$: cut along $[-\infty, 0]$ with Disc $=2 \pi i \rightarrow \operatorname{deg}(\ln x)=1$
$\operatorname{Li} i_{2}(x)$: cut along $[1, \infty]$ with Disc $=-2 \pi i \ln x \rightarrow \operatorname{deg}\left(\operatorname{Li}_{2}(x)\right)=2$
take a fn. defined as an iterated integral $\quad T_{k}=\int_{a}^{b} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k}$
R_{i} rational functions
the symbol is $\quad \operatorname{Sym}\left[T_{k}\right]=R_{1} \otimes \cdots \otimes R_{k}$
defined on the tensor product of the group of rational functions, modulo constants

$$
\cdots \otimes R_{1} R_{2} \otimes \cdots=\cdots \otimes R_{1} \otimes \cdots+\cdots \otimes R_{2} \otimes \cdots
$$

$\operatorname{Sym}[\ln x]=x \quad \operatorname{Sym}\left[\operatorname{Li}_{2}(x)\right]=-(x-1) \otimes x$
take f, g with $\operatorname{deg}(f)=\operatorname{deg}(g)=n$ and $\operatorname{Sym}[f]=\operatorname{Sym}[g]$
then $f-g=h$ with $\operatorname{deg}(h)=n-I$
\Longrightarrow a symbol determines a polynomial of uniform degree up to a constant

One-loop amplitude squared

the 2-loop n-pt amplitude is

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

One-loop amplitude squared

the 2-loop n-pt amplitude is

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

one-loop amplitude squared must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$

One-loop amplitude squared

the 2-loop n-pt amplitude is

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

one-loop amplitude squared must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$
the dimensional regulator breaks conformal invariance and Regge exactness

One-loop amplitude squared

the 2-loop n-pt amplitude is

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

one-loop amplitude squared must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$
the dimensional regulator breaks conformal invariance and Regge exactness
Way out

One-loop amplitude squared

the 2-loop n-pt amplitude is

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

one-loop amplitude squared must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$
the dimensional regulator breaks conformal invariance and Regge exactness

Way out

Q spontaneous-symmetry break N=4 SYM: switch on a vev for one of the scalars

- use the vev masses as regulators

One-loop amplitude squared

the 2-loop n-pt amplitude is

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

one-loop amplitude squared must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$
the dimensional regulator breaks conformal invariance and Regge exactness

Way out

Q spontaneous-symmetry break N=4 SYM: switch on a vev for one of the scalars

- use the vev masses as regulators
\uparrow preserves conformal invariance

One-loop amplitude squared

the 2-loop n-pt amplitude is

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

one-loop amplitude squared must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$
the dimensional regulator breaks conformal invariance and Regge exactness

Way out

9 spontaneous-symmetry break N=4 SYM: switch on a vev for one of the scalars

- use the vev masses as regulators
preserves conformal invariance
not practical for phenomenology (where DR rules the waves)

Amplitudes in twistor space

Q twistors live in the fundamental irrep of $\operatorname{SO}(2,4)$
Q any point in dual space corresponds to a line in twistor space $x_{a} \leftrightarrow\left(Z_{a}, Z_{a+1}\right)$

Amplitudes in twistor space

Q twistors live in the fundamental irrep of $\operatorname{SO}(2,4)$
9 any point in dual space corresponds to a line in twistor space

$$
x_{a} \leftrightarrow\left(Z_{a}, Z_{a+1}\right)
$$

null separations in dual space correspond to intersections in twistor space

Amplitudes in twistor space

Q twistors live in the fundamental irrep of $\operatorname{SO}(2,4)$
Q any point in dual space corresponds to a line in twistor space

$$
x_{a} \leftrightarrow\left(Z_{a}, Z_{a+1}\right)
$$

null separations in dual space correspond to intersections in twistor space

2-loop n-pt MHV amplitudes can be written
 as sum of pentaboxes in twistor space

Arkani-Hamed Bourjaily Cachazo Trnka IO

Conclusions

Q Planar N=4 SYM is a great lab where to test comparisons between strong and weak couplings

9 features weak-strong duality and weak-weak duality
Q Wilson loops are the ideal quantities to perform those comparisons
Q first (and so far only) analytic computation of 2-loop hexagon Wilson loop
Q progress (symbols) recently to understand 2-loop n-side Wilson loops

Conclusions

Q Planar N=4 SYM is a great lab where to test comparisons between strong and weak couplings

9 features weak-strong duality and weak-weak duality
9 Wilson loops are the ideal quantities to perform those comparisons
Q first (and so far only) analytic computation of 2-loop hexagon Wilson loop
Q progress (symbols) recently to understand 2-loop n -side Wilson loops

- more is to come ... stay tuned!

In October 7-II, we shall have a
 School of Analytic Computing in Atrani, Italy

lectures on amplitudes \& Wilson loops by Fernando Alday
Simon Caron-Huot Claude Duhr
Johannes Henn
Henrik Johansson
Vladimir Smirnov

