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GROSS-NEVEU MODEL - LARGE N

SGN

[

Ψ, Ψ̄
]

=

∫

ddx

[

Ψ̄ (x) (/∂ + mB)Ψ (x) −
GB

2

(

Ψ̄ · Ψ
)2

]

(1)

Gap Equation ( Large N, only Hartree terms )

m = mB + GB

∫

d4p
(2π)4

tr
(

1
i/p+m

)

⇒ m − mB = m GBΛ2

4π2

(

1 − m2

Λ2 ln Λ2

m2

)

For mB = 0 :

4π2

GBΛ2 = 1 − m2

Λ2 ln Λ2

m2 ⇒ GB ≥ Gc = 4π2

Λ2 ⇒ m 6= 0

Four point function ( s and t channels only contribute. q2 = s or t ) :

D(q2) =
GB

1 − GBΠ (q2)

Π
(

q2
)

=

∫

d4p

(2π)
4 tr

(

1

i/p + m
·

1

i
(

/p + /q
)

+ m

)

2



'

&

$

%

HUBBARD-STRATONOVICH TRANSFORMATION

Generating Functional Z[J ] for the Green’s functions composite operator Ψ̄Ψ :

Z[J ] =

∫

DΨ̄DΨ e[−
R

Ψ̄/∂Ψ+
R

G
2 (Ψ̄Ψ)2+

R

JΨ̄Ψ]

= N e−J2/2

∫

DΨ̄DΨ

∫

Dσ e[−
R

Ψ̄(/∂+σ)Ψ−
R

1
2G σ2

−

R

J
G σ]

= N e−J2/2

∫

Dσ e[−
R

1
2G σ2+Tr log(/∂+σ)−

R

J
G σ]

Gap Equation (Tadpole equation) :

1
Gσ = N tr I

(2π)d σ
∫

ddp
p2+σ2

Inverse composite scalar propagator :

D−1 (q) = N tr I

2

(

q2 + 4σ2
) ∫

ddp

(2π)d
1

(p2+σ2)[(p+q)2+σ2]
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CHIRAL SYMMETRY BREAKING : PHASE TRANSITION

Order parameter :
〈

ψ̄ψ
〉

Critical exponents : (τ = 1/G − 1/Gc)

Leading Order Large N

β : scaling of
〈

ψ̄ψ
〉

around Gc:
〈

ψ̄ψ
〉

∼ τβ β = 1
d−2

δ : scaling of
〈

ψ̄ψ
〉

with mB:
〈

ψ̄ψ
〉
∣

∣

τ=0
∼ m

1
δ
B δ = d − 1

γ : scaling of χ near G = Gc: χ ∼ |τ |−γ
γ = 1

ˆ ˙

ψ̄ψ (x) ψ̄ψ (0)
¸

1PI
⇒ D (q) ⇒ χ : χ−1 = GD (0)−1 ˜

η : scaling of D (q) for large momenta : D (q)|τ=0 ∼ 1
q2−η η = 4 − d

ν : scaling of the correlation length : ξ ∼ τ−ν ν = 1
d−2

Correl. length ξ : ξ = Z1/2χ−1/2

 

Z =
d2D−1(q2)

dq2

˛

˛

˛

˛

τ=0;q2=0

= 1 − η
2

!

Remark : For d = 4 : Mean Field Values (Hyperscaling violations)

4



'

&

$

%

EQUIVALENCE GN MODEL - YUKAWA MODEL

Green’s functions for the auxiliary field σ in the GN model versus Green’s functions for the

elementary field φ in the Yukawa model (N has been absorbed in G, λ, g2).

GROSS - NEVEU MODEL YUKAWA MODEL

0 = 1
G

σ − tr I

(2π)d σ
R

ddp
p2+σ2 ; 0 = M2

g2 φ + λ
6g4 φ3 − tr I

(2π)d φ
R

ddp
p2+φ2

D−1(q2) = tr I

2(2π)d (q2 +4σ2)
R

ddp
(p2+σ2)[(p+q)2+σ2]

; ∆−1(q2) = q2

g2 + λφ2

3g4 + tr I

2(2π)d (q2 +4φ2)
R

ddp
(p2+φ2)[(p+q)2+φ2]

In the scaling region (p2/Λ2 << 1 and σ2/Λ2 << 1), the GN and Yukawa Eqs. coincide

(Zinn-Justin, 1991). In the Yukawa model, this region is nothing but the linearization region

around the non-trivial (so called) Wilson-Fisher-Yukawa Fixed Point .

⇒ GN model belongs to the same universality class of the Yukawa model
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WILSONIAN APPROACH

The wilsonian action at the scale k :

Sk

ˆ

Ψ, Ψ̄
˜

=

Z

ddx
ˆ

Ψ̄ (x) /∂ Ψ(x) + Uk

`

Ψ̄ · Ψ
´˜

(2)

The field Ψ(x) contains Fourier modes up to k.

In order to define the Wilsonian action Sk−δk at an infinitesimally lower scale k − δk, we

split the modes:

Ψ(x) ≡ ψ(x) + ξ(x) =
X

|p|≤k−δk

e−ip·x

V
ψp +

X

k−δk≤|p|≤k

e−ip·x

V
ξp (3)

Sk−δk

ˆ

ψ, ψ̄
˜

is defined from :

e−Sk−δk[ψ,ψ̄] = Nd

Z

Dξ̄Dξe−Sk[ψ+ξ,ψ̄+ξ̄] (4)

Local Potential Approximation : keeping for Sk the ansatz (2) at all scales k.

The integration in Dξ (gaussian and exact!) is easily performed. For Uk−δk we get:
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WILSONIAN APPROACH cont’d

Uk−δk = Uk −
1

2

Z ′ ddp

(2π)d
tr ln

„

∆

k

«

(5)

where the integral is performed within the shell [k − δk, k] and ∆ is :

∆ =

0

@

δ2Uk
δψ̄δψ̄

−i/p + δ2Uk
δψδψ̄

−i/p
T + δ2Uk

δψ̄δψ

δ2Uk
δψδψ

1

A (6)

The above equation is immediately written as an RG differential equation:

k
dU

dk
= kdCd

„

Ntr I ln

„

k2 + U2
ρ

k2

«

− ln

„

1 +
2ρ UρUρρ

k2 + U2
ρ

««

(7)

[ ρ = ψ̄ψ, Uρ = dUk(ρ)/dρ, tr I is the trace of the identity matrix in Dirac space (tr I = 2d/2 for

even values of d and tr I = 2(d−1)/2 for odd values), Cd = 1

(4π)d/2Γ(d/2)
]

Defining: t = ln (k0/k) (k0 arbitrary scale), σ = k1−dρ and V (σ, t) = kd Uk(ρ), the dimensionless

version of the above equation is :

∂

∂t
V = d V − (d − 1) σVσ − CdNtr I ln

`

1 + V 2
σ

´

+ Cd ln

„

1 +
2σVσσ

1 + V 2
σ

«

(8)
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WILSONIAN APPROACH cont’d

k
dU

dk
= kdCd

„

Ntr I ln

„

k2 + U2
ρ

k2

«

− ln

„

1 +
2ρ UρUρρ

k2 + U2
ρ

««

(9)

In the r.h.s. of this equation we recognize an Hartree and a Fock term (first and second

term). In the large N limit, we neglect the Fock term :

k
dU

dk
= kdCdNtr I ln

„

k2 + U2
ρ

k2

«

(10)

This is the ladder approximation for our RG equation.

Dimless version :

∂

∂t
V = d V − (d − 1) σVσ − CdNtr I ln

`

1 + V 2
σ

´

(11)

We are now ready to study the GN model, or extended versions of the GN model, within the

framework of the wilsonian RG approach.
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GN MODEL à la WILSON

( Remember σ = 1

k(d−1) ψ̄ψ , V (σ, t) = 1
kd Uk(ψ̄ψ) )

V (σ, t) = −
G(t)

2
σ2

„

dimful : Uk(ψ̄ψ) = −
Gk

2
ψ̄ψψ̄ψ

«

(12)

The RG Eq. for Uk(ψ̄ψ) is just the RG Eq. for the Fermi constant:

dG

dt
= (2 − d) G + 2Ntr ICdG2 . (13)

For d = 2, this is the equation found by Gross and Neveu. The β function vanishes at G = 0

and the theory is asymptotically free: G = 0 is an UV stable fixed point.

For d > 2, the beta function vanishes at

G = 0 and G = Gc =
d − 2

2 Ntr ICd
(14)

and the solution to the RG equation for G(t) is:

G (t) =
Gc

1 − Be(d−2)t
, (15)

B is the arbitrary integration constant.
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GN MODEL à la WILSON cont’d

-4 -2 0 2 4
0

1

2

3

4

5

t

G
Ht
L

G (t) =
Gc

1 − Be(d−2)t
(16)

The B < 0 case (dashed line). For t → −∞ (k → ∞)G (t) flows towards Gc. In the IR, (t → ∞ or

k → 0), G (t) vanishes. ⇒ Gc UV fixed point ; G = 0 IR fixed point.

The B > 0 case (solid line). In the UV, G (t) again flows towards Gc . In its flow towards the

IR, however, G(t) diverges at a finite value of k, k = kc (t = tc).
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GN MODEL à la WILSON cont’d

-4 -2 0 2 4
0

1

2

3

4

5

t

G
Ht
L

As noted by Gross and Neveu, this is also what happens for the IR flow of G(t) in the d = 2

case. By computing the effective potential in d = 2, they were able to relate this divergence of

G(t) with the existence of χSB and the consequent generation of a fermion mass.

Such a divergence in the RG flow is the precursor of the transition to the broken phase which

occurs when the boundary of G(t) at the UV scale Λ is such that: G(t = 0) > Gc ⇒ Gc has to

be identified with the critical point of the transition.

As we include fluctuations of longer and longer wavelength (i.e. we run the RG equation

towards the IR), the system starts to develop an instability which eventually manifests itself

in the divergence of the coupling constants.
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CRITICAL EXPONENTS FROM WILSON RG EQUATIONS

Complete description of χSB transition : we need to add a mass term.

Analogy between χSB and ferromagnetic phase transition :

τ = T − Tc ∼ 1/GB − 1/Gc h ∼ mB

Therefore :

V (σ, t) = m(t) σ −
G(t)

2
σ2

„

dimful : Uk(ψ̄ψ) = mk ψ̄ψ −
Gk

2
ψ̄ψψ̄ψ

«

(17)

RG equation for V (σ, t) ⇒ RG equation for m(t) and G(t) :

dm

dt
= m + 2N tr I Cd

Gm

1 + m2
(18)

dG

dt
= (2 − d) G + 2N tr I CdG2 1 − m2

(1 + m2)2
(19)

Gaussian fixed point Non-Gaussian fixed point

m = 0 m = 0 (20)

G = 0 G =
d − 2

2Ntr ICd
. (21)
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CRITICAL EXP’S FROM WILSON RG EQUATIONS cont’d

Linearizing around the Gaussian FP :

dm

dt
= m ⇒ m(t) ∼ et ⇒ λm = 1 (22)

dG

dt
= (2 − d) G ⇒ G(t) ∼ e(2−d)t ⇒ λG = 2 − d (23)

Linearizing around the Non-Gaussian FP :

dm

dt
= (d − 1)m ⇒ m(t) ∼ e(d−1)t ⇒ λm = d − 1 (24)

dG

dt
= (d − 2) G ⇒ G(t) ∼ e(d−2)t ⇒ λG = d − 2 (25)

Around the Non-Gaussian FP, for d > 2, both m and G are relevant couplings.

Technically : the (G, m) plane is an “UV critical surface” for the NGFP: m and G always

reach this point in the UV. The theory is said : “asymptotically safe”.

Canonical and Anomalous dimensions : λm and λG around the GFP are the canonical

dimensions of m and G. By comparing with λm and λG around the NGFP, we find the anomalous

dimensions γm and γG of m and G are:

γm = d − 2 γG = 2(d − 2) (26)

13



'

&

$

%

CRITICAL EXP’S FROM WILSON RG EQUATIONS cont’d

Hyperscaling relations : obtained under very general conditions : the scale invariance of 1PI

vertex functions, existence of a fixed point, linearization of RG equations around the fixed

point. Under these conditions : critical exponents given in terms of the eigenvalues related to

the relevant parameters (m and G in our case, the magnetic field and the temperature in the

ferromagnetic case).

For the χSB transition we get :

β =
d − λm

λG
δ =

λm

d − λm

γ =
2λm − d

λG
ν =

1

λG
(27)

η = 2 + d − 2λm

Replacing in these Eqs. λm and λG :

β =
1

d − 2
(28)

δ = d − 1 (29)

γ = 1 (30)

ν =
1

d − 2
(31)

η = 4 − d . (32)

These values coincide with those obtained at the leading order of the 1/N expansion.
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CRITICAL EXP’S FROM WILSON RG EQUATIONS cont’d

Warning :

d = 4 is the upper critical dimension: for d > 4, the theory becomes free and the mean field

results are exact. At d = 4, the correlation functions get weak logarithmic corrections to

power law behavior. The LPA does not allow us to detect the corresponding hyperscaling

violations, which are due to non local contributions (absent in the LPA). This point has to be

further investigated. The occurrence of the transition, however, is observed already at this

stage of the approximation.

We have seen how the RG equations for m(t) and G(t) allow to compute the critical exponents

which give the behavior of the correlators for values of G close to the critical point. To this

end, it was sufficient to study the linearized equations in the neighborhood of the non trivial

fixed point (G = Gc, m = 0).

But we can do more - We can do better

We can extend the previous analysis to the study of the G and m flows in the whole (G, m)

plane, rather than limiting ourselves to the linearization region around the non-trivial fixed

point. These flows have something to tell us in connection with the
problem of the generation of fermion masses.

15
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Crossover mechanism for generating fermion masses
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THE RG EQUATIONS FOR m(t) and G(t)

dm

dt
= m + 2N tr I Cd

Gm

1 + m2
(33)

dG

dt
= (2 − d) G + 2N tr I CdG

2 1 − m2

(1 + m2)2 (34)

From now on, let us specify to the d = 4 case ... so that we can draw pictures..
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FLOW IN THE (G,m) PLANE

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

G

m

Four different types of trajectories. Two of them lie on the G axis (m = 0, already studied) :

(a) UV boundaries m = 0 and G < Gc : the trajectory flows along the G axis (right → left)

towards the gaussian fixed point (Symmetric phase).

(b) UV boundaries m = 0 and G > Gc, the trajectory flows along the G axis (left → right) and

reaches G = ∞ at a finite value of t (finite value of k) (Broken phase).

UV boundary m 6= 0 : two types of trajectories :

(c) UV boundary G < Gc : the trajectory flows from right to left asymptotically converging to

the m axis.

(d) UV boundary G > Gc : the trajectory initially flows from left to right, moving away from

the G = Gc axis. Then, after creating a more or less pronounced horizontal bell, it turns back,

crosses the G = Gc axis and eventually converges asymptotically to the m axis as in the

previous case.
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FLOW OF THE DIMENSIONFUL MASS m(k)

0.000 0.005 0.010 0.015 0.020
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

k

m
Hk
L

(a)

0.000 0.002 0.004 0.006 0.008 0.010
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

k
m
Hk
L

(b)

Figura 1: (a): The running dimensionful mass obtained by setting, at k = Λ = 1, GB =

Gc − 10−5 and mB = 10−8, 4 ∗ 10−9, 10−9 (dotted, dashed and solid lines, respectively). (b):

The running dimensionful mass obtained by setting, at k = Λ = 1, GB = Gc + 10−5 and

mB = 10−8, 4 ∗ 10−9, 10−9 (dotted, dashed and solid lines, respectively). All quantities are

expressed in cut-off units.
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FLOW OF THE DIMENSIONFUL FERMI CONSTANT G(k)

0.000 0.002 0.004 0.006 0.008 0.010
0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

k

G
Hk
L

(a)

0.000 0.002 0.004 0.006 0.008 0.010
0

500 000

1.0´106

1.5´106

2.0´106

k
G
Hk
L

(b)

Figura 2: (a): The running of the dimensionful coupling G(k) obtained by setting, at

k = Λ = 1, GB = Gc − 10−5 and mB = 10−8, 4 ∗ 10−9, 10−9 (dotted, dashed and solid lines,

respectively). (b): The running of the dimensionful coupling G(k) obtained by setting,

at k = Λ = 1, GB = Gc + 10−5 and mB = 10−8, 4 ∗ 10−9, 10−9 (dotted, dashed and solid lines,

respectively). All quantities are expressed in cut-off units.
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IR and UV ASYMPTOTICS OF m(k) and G(k)

From the GR equations for m(k) and G(k) it is easy to get their asymptotic IR (k → 0) and

UV (k → ∞) analytical behavior for m(k) and G(k):

k → 0 : m(k) ∼ m −
G

8π2 m
k4 ; G(k) ∼ G +

G
2

8π2m2
k4 (35)

k → ∞ : m(k) ∼
M3

k2
; G(k) ∼

4π2

k2
(36)

This behavior is easily checked against the numerical solutions of the previous slides.
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CROSSOVER and χSB

-0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Τ

m

(a)

-0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Τ
<
Ψ
Ψ
>

(b)

Figura 3: Different phase diagrams showing (a) the mass and (b)
〈

ψ̄ψ
〉

as functions of

τ = 1/GB − 1/Gc. The different lines correspond (from top to bottom) to the choices:

mB = 10−1, 5 ∗ 10−2, 10−4. All quantities are expressed in cut-off units.
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Analytical approximations
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NJL approximation

Specifying to the d = 4 case (NG is redefined as G):

dm

dk
= −

k3

2π2

Gm

k2 + m2
(37)

Approx. (defining the dimensionless Fermi constant G̃Λ = G Λ2) :

dm(k)

dk
= −

k3

2π2
m

G̃Λ

Λ2

1

k2 + m2 (38)

Integrating this equation between k = 0 and k = Λ :

m (Λ) − m (0) = −
mG̃Λ

4π2

»

Λ2 − m2 ln

„

1 +
Λ2

m2

«–

(39)

For vanishing bare mass m(Λ) = mB = 0,

4π2

G̃Λ

= 1 −
m2

Λ2
ln

Λ2

m2 , (40)

which is the NJL result. For values of G̃Λ greater than Gc = 4π2 ; non vanishing solution for

the fermion mass m, while for values of G̃Λ smaller than Gc = 4π2, the only solution for m is

m = 0.
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Analytical approximation beyond NJL

0.000 0.002 0.004 0.006 0.008
0.000
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0.002

0.003

0.004

0.005

k

m
Hk
L
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0.0008

0.0010

0.0012

k

m
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m (k) = m exp

„

− 1

a4+2a2(m2+M2
3 )+(m2−M2

3 )2
(m2

`

−a2 + m2 − M2
3

´

ln
“

k2

m2 + 1
”

+
`

a4 + a2
`

3m2 + 2M2
3

´

− m2M2
3 + M4

3

´

ln
“

k2−2ak
a2+M2

3
+ 1
”

+
2a(a4+a2(m2+2M2

3 )−3m2M2
3+M4

3 )
M3

“

tan−1
“

k−a
M3

”

+ tan−1
“

a
M3

””

+4am3 tan−1
`

k
m

´

)
´

(41)
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Adding Higher Powers of ψ̄ψ
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Adding Higher Powers of ψ̄ψ

Let us see what happens in the presence of higher powers of ψ̄ψ :

V (σ, t) = m(t)σ − G(t)
2 σ2 + g3(t)

3! σ3 + g4(t)
4! σ4

dm

dt
= m +

2CdGmNtr I

m2 + 1

dG

dt
= (2 − d)G +

2Cdg3mNtr I

m2 + 1
−

2CdG2
`

m2 − 1
´

Ntr I

(m2 + 1)2

dg3

dt
= (3 − 2d)g3 +

6Cdg3G
`

1 − m2
´

Ntr I

(m2 + 1)2
−

2Cdg4mNtr I

m2 + 1
+

4CdG3m
`

m2 − 3
´

Ntr I

(m2 + 1)3

dg4

dt
= (4 − 3d)g4 +

12CdG4
`

m4 − 6m2 + 1
´

Ntr I

(m2 + 1)4
−

8Cdg4G
`

m2 − 1
´

Ntr I

(m2 + 1)2

−
24Cdg3G

2m
`

m2 − 3
´

Ntr I

(m2 + 1)3
+

6Cdg2
3

`

m2 − 1
´

Ntr I

(m2 + 1)2
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FIXED POINTS

Gaussian fixed point Non-Gaussian fixed point

m = 0 m = 0 (42)

G = 0 G =
d − 2

2Ntr ICd
. (43)

g3 = 0 g3 = 0 (if d 6= 3) (44)

g4 = 0 g4 =
3(d − 2)4

4(4 − d)N3tr I3C3
d

(45)
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LINEARIZATION AROUND THE FIXED POINTS

Define the vector v ≡ (m, G, g3, g4). The fixed point equations reads:

βi ({vj}) = 0 (46)

where βi is the β function of the i-th component of v. Solutions (GFP and NGFP) :

v∗
gau = (0, 0, 0, 0) ,

v∗
ng = (0, a, 0, b) (47)

Expand the βi’s around the v∗’s and linearize ⇒ Jacobian matrix: Jij = ∂βi
∂vj

˛

˛

˛

v=v∗

Around each of the v∗’s the system is now:

dv

dt
= J (v − v∗) , (48)

Solutions of this equation have the general form :

v = v∗ + Aeλ1tv1 + Beλ2tv2 + Ceλ3tv3 + Deλ4tv4 (49)
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Gaussian Fixed Point

GFP : v∗
gau = (0, 0, 0, 0). Jacobian Matrix :

J
`

v∗
gau

´

=

0

B

B

B

B

B

@

1 0 0 0

0 2 − d 0 0

0 0 3 − 2d 0

0 0 0 4 − 3d

1

C

C

C

C

C

A

(50)

⇒ Around v∗
gau = (0, 0, 0, 0) trivial canonical scaling :

0

B

B

B

B

B

@

m (t)

G (t)

g3 (t)

g4 (t)

1

C

C

C

C

C

A

= Aet

0

B

B

B

B

B

@

1

0

0

0

1

C

C

C

C

C

A

+ Be(2−d)t

0

B

B

B

B

B

@

0

1

0

0

1

C

C

C

C

C

A

+ Ce(3−2d)t

0

B

B

B

B

B

@

0

0

1

0

1

C

C

C

C

C

A

+ De(4−3d)t

0

B

B

B

B

B

@

0

0

0

1

1

C

C

C

C

C

A

(51)
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Non Gaussian Fixed Point
NGFP : v∗

ng =
“

0, d−2
2Nd

, 0, 3(d−2)4

4(d−4)N3
d

”

(Nd = Ntr ICd)

Jacobian Matrix :

J
`

v∗
ng

´

=

0

B

B

B

B

B

B

@

d − 1 0 0 0

0 d − 2 0 0

3(d−2)3

(d−4)N2
d

0 d − 3 0

0 − 12(d−2)3

(d−4)N2
d

0 d − 4

1

C

C

C

C

C

C

A

Has to be diagonalized. The running around v∗
ng Non-Trivial :

0

B

B

B

B

B

@

m (t)

G (t)

g3 (t)

g4 (t)

1

C

C

C

C

C

A

= Ae(d−1)t

0

B

B

B

B

B

@

2(d−4)N2
d

3(d−2)3

0

1

0

1

C

C

C

C

C

A

+ Be(d−2)t

0

B

B

B

B

B

@

0

−
(d−4)N2

d
6(d−2)3

0

1

1

C

C

C

C

C

A

+ Ce(d−3)t

0

B

B

B

B

B

@

0

0

1

0

1

C

C

C

C

C

A

+ De(d−4)t

0

B

B

B

B

B

@

0

0

0

1

1

C

C

C

C

C

A

⇒ λ1 = d − 1 , λ2 = d − 2 , λ3 = d − 3 , λ4 = d − 4

Note the marginality of O3 in d = 3 and of O4 in d = 4
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Extended GN model

Only even powers : G and g4

U(ψ̄ψ) = −G
2 (ψ̄ψ)2 + g4(ψ̄ψ)4

dG

dt
= (2 − d)G + 2G2 (52)

dg4

dt
= (4 − 3d)g4 + 12G4 + 8Gg4. (53)
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Extended GN model : U(ψ̄ψ) = −G

2
(ψ̄ψ)2 + g4(ψ̄ψ)4 for d = 3

dG

dt
= −G + 2G2 (54)

dg4

dt
= −5g4 + 12G4 + 8Gg4. (55)

Extended GN : U(ψ̄ψ) = −G
2
(ψ̄ψ)2 + g4(ψ̄ψ)4 Scalar theory (N=1) : U(φ) = 1

2
M2φ2 + λ

4
φ4

OUR FIXED POINT WILSON FISHER FIXED POINT

SYMM. BROKEN BROKEN SYMM.

0.0 0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

3

G

g
4

-0.4 -0.2 0.0 0.2 0.4
-0.5

0.0

0.5

1.0

1.5

2.0

M2

Λ
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Crossover picture in d = 3

Adding the mass : U(ψ̄ψ)2 = mψ̄ψ − G
2 (ψ̄ψ)2 + g4(ψ̄ψ)4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G

m

0.0 0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

3

G

g 4

0.0 0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

3

G

g 4

(a)

0.0 0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

3

G
g 4

(b)

(a) “unbroken phase”. (b) “broken phase”. Compare with the strictly unbroken and broken

phases abov e (right panel).
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Extended GN model U(ψ̄ψ) = −G

2
(ψ̄ψ)2 + g4(ψ̄ψ)4 in d = 4

The solution is :

G =
1

1 − Be2t
(56)

g4 =
1

(1 − Be2t)4
[12t + C] (57)

Remember :

1. The marginality found before (λ4 = 0).

2. When we looked for the fixed point solution, we found that g∗
4 → ∞ goes to infinity as d → 4.

All this is better understood if we consider again the case of generic d and perform the

change g4 → x = g−1
4 . The RG system of equations is then:

dG

dt
= (2 − d)G + 2G2 (58)

dx

dt
= (3d − 4)x − 12G4x2 − 8Gx. (59)

Fixed point (relevant to our discussion) :

G = (d − 2)/2 (60)

x =
4

3

(4 − d)

(d − 2)4
. (61)

Note : for d = 4 : x = 0
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Extended GN model U(ψ̄ψ) = −G

2
(ψ̄ψ)2 + g4(ψ̄ψ)4 in d = 4 cont’nd

Solution of the systen for d = 4 :

G =
1

1 − Be2t
(62)

x = (1 − Be2t)4
„

x0

1 + 12x0t

«

(63)

On the critical surface, G = Gc (B=0), x scales as λ in a λφ4 theory

x =
x0

1 + 12x0t
(64)
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BEYOND large N - generic d

Up to now, we have considered the “Hartree Approximation”. Let us keep now the Fock term.

k
dU

dk
= kdCd

„

Ntr I ln

„

k2 + U2
ρ

k2

«

− ln

„

1 +
2ρ UρUρρ

k2 + U2
ρ

««

(65)

As before we have the Gussian Fixed Point and the Non-Gaussian FP :

m = 0

G =
d − 2

2Cd(Ntr1 − 2)

g3 = 0

g4 = −
3(d − 2)4(Ntr1 − 8)

4Cd3(Ntr1 − 2)3((d − 4)Ntr1 − 10d + 24)

Remark : the N → ∞ limit does not commute with the d → 4 limit.

Performing first the N → ∞ limit, we get the result of the previous transparency : g4 → ∞.

However, if we first take d = 4 ......
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BEYOND large N - d = 4

The Non-Gaussian Fixed Point :

m = 0

G =
8π2

2N − 1
g3 = 0

g4 =
1536π6(N − 2)

(2N − 1)3

For d = 4 , g4 does not diverge !!!
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BEYOND large N - d = 4

Eigenvalues of the Eigenoperators for the Non-Gaussian Fixed Point :

λ1 =
4N − 1

2N − 1
+ 1

λ2 = 2
4N − 2

2N − 1
− 2 = 2

λ3 = 3
4N − 3

2N − 1
− 5

λ4 = 4
4N − 4

2N − 1
− 8

λ5 = 5
4N − 5

2N − 1
− 11

λ6 = 6
4N − 6

2N − 1
− 14

In the r.h.s.: the second term gives the gaussian scaling, the first term gives the anomalous

scaling (linearization around the non trivial fixed point).

Taking the large N limit of these λi we get the same results as in the Hartree approximation.
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BEYOND large N - d = 4 : Scaling and Critical exponents

0.0 0.2 0.4 0.6 0.8 1.0

-5

0

5

1�N

Λ

Λ4

Λ3

Λ2

Λ1

Transition of λ3 from relevance to irrelevance : at N = 2.

Critical exponents :

N β γ δ η

∞ 1/2 1 3 0

3 2/5 6/5 4 −2/5

2 1/3 4/3 5 −2/3

1 0 2 ∞ −2
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Conclusions

1. We established the wilsonian RG equation for the potential of a generalized N flavors GN

model in 2 ≤ d ≤ 4.

2. We found that this equation contains “Hartree” and “Fock” contributions.

3. Neglecting the latter, the leading order of the equation in the 1/N expansion was obtained.

4. By truncating the potential to the Fermi and mass terms, we derived the RG equations for

the running mass m(k) and Fermi constant G(k) and found that the theory possesses a

non-trivial fixed point.

5. By linearizing the RG equations around this fixed point, we were able to compute the

critical exponents of the system and found that our results are in agreement with those

previously obtained at the leading order of the more conventional large N expansion.

6. By studying the full RG equations for G(k) and m(k), we found that the chiral phase

transition arises as a cross-over phenomenon triggered by the presence of an infinitesimal

bare mass. When the bare value of the Fermi constant is greater than the fixed point value

Gc, the running of m(k) from the UV to the IR shows a “steepy” cross-over and a finite

fermion mass is generated. Physically, what happens is that for values of GB greater than Gc,

the system is unstable against quantum fluctuations. The presence of an even infinitesimal

bare mass provides an amplification mechanism which resolves the instability via the

generation of a finite physical mass.
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7. We have also found analytical approximations to m(k) and G(k):

7a. By considering a simple approximation for the RG equation of m(k), we got the NJL

result. However, although this approximation is able to grasp qualitatively the main features

of the RG equations (which lead to the chiral phase transition due to quantum fluctuations),

quantitatively more accurate analytical profiles for m(k) and G(k) require more sophisticated

approximations.

7b. We found analytical approximations to m(k) and G(k) which very accurately reproduce

the numerical results.

8. We have shown some interesting features related to the presence of higher powers of ψ̄ψ in

the potential.

9. Finally, we have considered the RG equations beyond the large N limit expansion by

keeping the “Fock” term in the RG equations.

To be done : Impact of higher derivative terms.
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RG equations with Higher Powers of ψ̄ψ for d=3

dm

dt
= m +

GmN

π2 (m2 + 1)

dG

dt
= −G +

g3mN

π2 (m2 + 1)
−

G2
`

m2 − 1
´

N

π2 (m2 + 1)2

dg3

dt
= −3g3 +

3g3G
`

1 − m2
´

N

π2 (m2 + 1)2
−

g4mN

π2 (m2 + 1)
+

2G3m
`

m2 − 3
´

N

π2 (m2 + 1)3

dg4

dt
= −5g4 −

12g3G
2m
`

m2 − 3
´

N

π2 (m2 + 1)3
−

4g4G
`

m2 − 1
´

N

π2 (m2 + 1)2

+
3g2

3

`

m2 − 1
´

N

π2 (m2 + 1)2
+

6G4
`

m4 − 6m2 + 1
´

N

π2 (m2 + 1)4
(66)

Non-Gaussian fixed point Eigenvalues

m = 0 λ1 = 2 (67)

G =
π2

N
λ2 = 1 (68)

g3 = any value λ3 = 0 (69)

g4 =

r

6π3

N3
−

3g2
3N

π
λ4 = −1 (70)

........ Tricritical point ...???......

43



'

&

$

%

RG equations with Higher Powers of ψ̄ψ for d=4

dm

dt
= m +

GmN

2π2 (m2 + 1)

dG

dt
= −2G +

g3mN

2π2 (m2 + 1)
−

G2
`

m2 − 1
´

N

2π2 (m2 + 1)2

dg3

dt
= −5g3 +

3g3G
`

1 − m2
´

N

2π2 (m2 + 1)2
−

g4mN

2π2 (m2 + 1)
+

G3m
`

m2 − 3
´

N

π2 (m2 + 1)3

dg4

dt
= −8g4 −

2g4G
`

m2 − 1
´

N

π2 (m2 + 1)2
+

3G4
`

m4 − 6m2 + 1
´

N

π2 (m2 + 1)4

+
3g2

3

`

m2 − 1
´

N

2π2 (m2 + 1)2
−

6g3G
2m
`

m2 − 3
´

N

π2 (m2 + 1)3
(71)

Non-Gaussian fixed point Eigenvalues

m = 0 λ1 = 3 (72)

G =
4π2

N
λ2 = 2 (73)

g3 = 0 λ3 = 1 (74)

g4 = ∞ λ4 = 0 (75)
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