Diffraction at HERA

On behalf of H1 and ZEUS collaborations

Laurent Schoeffel CEA Saclay, Irfu/SPP

Paris 2011

1

1st part: Inclusive diffraction at HERA and the dynamical structure of the proton at low $x_{...}$

2nd part:

The spatial structure of the nucleon from exclusive processes

Perspectives and Summary

Diffraction on nuclear waves

ELASTIC AND INELASTIC SCATTERING OF 1.37 GeV *α*-PARTICLES FROM ^{40,42,44,48}Ca

G. D. ALKHAZOV[†], T. BAUER^{††}, R. BERTINI^{†††}, L. BIMBOT[‡], O. BING^{†††}, A. BOUDARD, G. BRUGE, H. CATZ, A. CHAUMEAUX, P. COUVERT, J. M. FONTAINE^{‡‡}, F. HIBOU^{†††}, G. J. IGO^{‡‡‡}, J. C. LUGOL and M. MATOBA^{*}

> Service de Physique Nucléaire à Moyenne Energie CEN Saclay, BP 2, 91190 Gif-sur-Yvette, France

> > Received 6 October 1976 (Revised 9 December 1976)

 ϑ (or $|t|^{1/2}$) dependence presents the standard diffractive pattern (optics)

Amplitude(q,k) ~ $ik/2\pi \int db e^{ibq} D(b,k)$

Fig. 3. Differential cross sections of inelastic scattering of 1.37 GeV α -particles from the 3_1^- and 5_1^- states in ⁴⁰Ca and the 2_1^+ states in ⁴²Ca and ⁴⁴Ca.

Subnuclear waves

HERA-DESY: 1992-2007

լաթյ

32

24 16

8

Time [h]

Diffractive events are observed

Deep Inelastic Scattering (DIS) => F₂

Diffractive Deep Inelastic Scattering (DDIS) => F_2^D

This is the GAP with no particle

Experimental selection methods

Scattered proton in Leading Proton Spectrometers <u>(LPS)</u>

Limited by statistics and p-tagging systematics `Large Rapidity Gap' <u>(LRG)</u> adjacent to outgoing (untagged) proton

Limited by p-diss systematics

Diff events are produced with a quite large rate

Why DIFF rate is large @ HERA (low x)?

...certain (Fock) states of the virtual photon $|\psi_k\rangle$ do not feel the the strong interaction, while others are strongly affected...

=> Large fluctuations in the absorbption coefficients of these states...

This is (obviously) linked to the dominance of the gluon density at small x.

It finds a natural extension in the dipole approach:

 $T(b) \sim \alpha_{s} r^{2} x G(x, 1/r^{2}) / (\pi R^{2}) * exp(-b^{2}/b_{0}^{2})$

Kinematics and notations

Standard DIS variables ...

× = momentum fraction q/pQ² = $|\gamma^*$ 4-momentum squared

Additional variables for diffraction ...

- t = squared 4-momentum
 transfer at proton vertex
- **x**_{IP} = fractional momentum loss of proton (momentum fraction IP/p)
- $\beta = x / x_{IP}$ (momentum fraction q / IP)

Most generally ep→eXY ...

mass excitations)

Diffractive cross sections (definition)

Select diffractive events Correct for detector effects Derive cross sections (// F2)

$$\frac{\mathrm{d}^{3}\sigma^{\mathrm{D}}}{\mathrm{d}\mathbf{x}_{\mathbb{P}}\,\mathrm{d}\beta\,\mathrm{d}Q^{2}} = \frac{2\pi\alpha_{\mathrm{em}}^{2}}{\beta\,Q^{4}}\left[1 + (1-y)^{2}\right]\,\sigma_{r}^{\mathrm{D}(3)}(\mathbf{x}_{\mathbb{P}},\beta,Q^{2})$$
$$\sigma_{r}^{\mathrm{D}(3)} = F_{2}^{\mathrm{D}(3)} - \frac{y^{2}}{1 + (1-y)^{2}}F_{L}^{\mathrm{D}(3)} \approx F_{2}^{\mathrm{D}(3)}(\mathbf{x}_{\mathbb{P}},\beta,Q^{2})$$

Results $(x_{IP} F_2^D)[Q^2]$: LRG selection

12

F2 versus F_2^D

13

Scaling(Q²) of DIFF versus DIS

Diffraction at HERA is still a very active field: Below the bastracts for new results submitted to ICHEP 2010

F_2^{D}

Sideway pb: time scale for these difficult analysis VS time scale of the the appreciation of a research work...

Results ($x_{IP} F_L^D$)

Results ($x_{IP} F_2^D$): Proton Tag selection

Quadruple-differential cross sections! $\sigma_r^{D(4)}$

 $\sigma_r^{D(4)}(\beta,Q^2,x_{IP},t)$

Integrated over t in this example H1-ZEUS comparison

• All available data used by both collaborations $\rightarrow x_{\text{IP}} \sim 0.1$

• H1 HERA-II (157 pb⁻¹) yields higher Q² data

 Good H1-ZEUS agreement on kinematic dependences

 15% difference in overall normalisation compatible with uncertainties

Comparison between F2D measurement methods

- LRG selections contain typically 20% p diss
- No significant dependence on any variable
- •... well controlled, precise measurements

One major interest of F2D measurements

As already mentioned, inelastic inclusive diffraction is intimately linked to the structure of the proton @ small $x_{...}$

with an better sensitivity to the gluon density (at small x) than standard F2

And at first order (in the development of dipole states) it can be written:

One major interest of F2D measurements

This provides a direct sensitivity to possible saturation effects of the gluon density at small x in the proton

More precisely,

(a) diffractive scattering is dominated by dipoles of size ~1/Qs

which gives at the experimental level

(b) $\sigma_{diff}/\sigma_{incl} \sim constant(x)$ at fixed Q² and β (up to log[Q²/Q₀²] terms)

With no saturation effects (first approx)

What happens (at first approx)

$$\begin{aligned} \frac{d\sigma_{dif}}{dt}|_{t=0} &= \frac{1}{16\pi} \int_{r,z} |\Psi(r,z,Q)|^2 \,\hat{\sigma}_{q\bar{q}}^2(x_{I\!P},r) \\ &\sim \underbrace{1_{Q^2}}_{1/Q^2} \underbrace{\frac{1}{Q^2}}_{r^4} \left(r^2 Q_s^2(x)\right)^2 \sim \frac{Q_s^2(x)}{Q^2} \propto x^{-\lambda} \end{aligned}$$

At sufficiently high scale @ high energy, gluon saturation cuts off the large dipole sizes at the semi-hard scale 1/Qs!

(see E.Iancu and many others)

Another view: QCD factorisation for diffractive events

PHYSICAL REVIEW D VOLUME 57. NUMBER 5 1 MARCH 1998 Proof of factorization for diffractive hard scattering John C. Collins* Penn State University, 104 Davey Lab, University Park, Pennsylvania 16802 (Received 14 October 1997; published 6 February 1998) A proof is given that hard-scattering factorization is valid for deep-inelastic processes which are diffractive or which have some other condition imposed on the final state in the target fragmentation region. [\$0556-2821(98)00507-4] PACS number(s): 13.85.Ni, 12.38.Aw, 13.60.-r σ $x_{IP} = 1 - p'^{+}/p^{+}$ t=(p'-p)² p f^{D} $IP \mid p$ $f_{IP}(x_{IP}) = \int_{t}^{t_{min}} e^{B_{IP}t} / (x_{IP}^{2\alpha_{IP}(t)-1}) dt$ QCD (Collins) factorisation $\mathrm{d}\sigma_{\mathrm{parton}\,i}(ep \to eXY) = f_i^D(x, Q^2, x_{IP}, t) \otimes \mathrm{d}\widehat{\sigma}^{ei}(x, Q^2)$ at fixed $x_{TP} \& t$ Proton vertex factorisation of the x_{TP} $f_i^D(x,Q^2,x_{IP},t) = f_{IP/p}(x_{IP},t)(f_i)$ dependence (hypothesis not rooted in QCD) dPDFs

Before quants: experimental support of the Collins factorisation

α_{IP} and t-slope determinations

Why the « Regge » factorisation is reasonable?

 $a^{\mathbb{D}}(x_{\mathbb{P}}, z, \mathbb{Q}^2) = f_{\mathbb{P}}(x_{\mathbb{P}}) a^{\mathbb{P}}(z, \mathbb{Q}^2)$

This means that if we divide F_2^D by $f_{IP}(x_{IP})$ the dependence in $(z=\beta,Q^2)$ must be the same for all x_{IP} values (small $x_{IP}<10^{-2}$)...

Diffractive PDFs

1st part: Inclusive diffraction at HERA and the dynamical structure of the proton at low $x_{...}$ Few words on Tevatron

2nd part:

The spatial structure of the nucleon from exclusive processes

Summary

Processes under study

Exclusive production of Vector Mesons or real photon (DVCS) DVCS:= Deeply Virtual Compton Scattering

t is the momentum exchange (squared) at the proton vertex

Nucleon structure from the Basic principe

The Fourier transform of the square root of the cross section (VM) is directly related to the S matrix

b (:=b₁) is the impact parameter in the proton N(Q) is a flux factor (coming from the overlap of γ^* and VM wave function)

S tells us how how dense the nucleon looks like!

S=0 means blackness (unitarity limit) and 1-S² is the interaction probability of the γ^* (or dipole) that hits the nucleon at impact parameter b

Program: Measure $d\sigma/dt$, extract S and then conclude on the proton structure

Result from ρ meson from HERA[Q²]

Analysis done for x<10⁻² with HERA data on ρ exclusive production

Large error at small b due to the lack of data for |t|>0.6 GeV²

Interaction probability>50%(75%) in the center of the proton b<0.3 fm (« black disk »)

And then, proton is more transparent when b is increasing ('grey area') (more transparent also at larger Q² -smaller dipole (probe) sizesimilar to optics)

Similar results for J/ψ

Imaging the quark/gluon structure of the proton

Historical measurement:

In 1955, R. Hosftadter measures the elastic cross section ep->ep $d\sigma/dt \sim |F.F.[-\Delta^2]|^2$ (F.F.:=Form Factor) $\Delta = p'-p$

Then $\rho(\mathbf{r}) = \int d^3 \Delta / (2\pi)^3 \exp(i\Delta \mathbf{r}) F.F.(-\Delta^2)$

=> Charge Radius of the proton~0.8 fm

Imaging the quark/gluon structure of the proton

Historical measurement:

In 1955, R. Hosftadter measures the elastic cross section ep->ep $d\sigma/dt \sim |F.F.[-\Delta^2]|^2$ (F.F.:=Form Factor) $\Delta = p'-p$

Then $\rho(\mathbf{r}) = \int d^3 \Delta / (2\pi)^3 \exp(i\Delta \mathbf{r}) F.F.(-\Delta^2)$

=> Charge Radius of the proton~0.8 fm

DVCS (Deeply Virtual Compton Scattering): $\gamma^* p \rightarrow \gamma p$ is extending this seminal work: $d\sigma/dt \sim |H(x, -\Delta_T^2)|^2$ with $x \sim x_{Bjorken}$ where H(x, t) generalises the concept of FF for given x

Imaging the quark/gluon structure of the proton

Historical measurement:

In 1955, R. Hosftadter measures the elastic cross section ep->ep $d\sigma/dt \sim |F.F.[-\Delta^2]|^2$ (F.F.:=Form Factor) $\Delta = p'-p$

Then
$$\rho(\mathbf{r}) = \int d^3 \Delta / (2\pi)^3 \exp(i\Delta \mathbf{r}) F.F.(-\Delta^2)$$

=> Charge Radius of the proton~0.8 fm

DVCS (Deeply Virtual Compton Scattering): $\gamma^* p \rightarrow \gamma p$ is extending this seminal work: $d\sigma/dt \sim |H(x, -\Delta_T^2)|^2$ with $x \sim x_{Bjorken}$ where H(x, t) generalises the concept of FF for given x

$$q(x,\mathbf{r}_{T}) = \int d^{2}\Delta_{T} / (2\pi)^{2} \exp(i\Delta_{T}\mathbf{r}_{T}) H(x,-\Delta_{T}^{2}) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}$$

H is called a GPD Generalised PDF

With DVCS, we probe the spatial extend (Tansverse) of parton[x] in the nucleon

GPD as a generalisation of PDFs and F.F.

form factors location of partons in nucleon

parton distributions

longitudinal momentum fraction **x**

generalised parton distributions (GPDs)

longitudinal momentum fraction x at transverse location b

only known framework to gain information on 3D picture of hadrons

DVCS and the Bjorken limit (at low $\times \sim 10^{-3}$)

First, we need to prove experimentally that DVCS measured (at HERA) is a hard process: **e p** \rightarrow **e** γ **p**

Experimental results

Very efficient parameterisation of the t dependence at low $x \sim 10^{-3}$ $d\sigma_{\text{DVCS}}/dt \sim \exp(bt)$

In average $Q^2 > 5 GeV^2$ b=5.41 ±0.14 ±0.31 GeV⁻² which gives => $[\langle r_{T}^{2} \rangle]^{1/2} = 0.64 \pm 0.02 \text{ fm}$ 10 b [GeV⁻²] Dipole model H1 GPD model H1 HERA II HERA 2 ZEUS HERA I (a) W = 82 GeV 0 15 20 25 30 10 $Q^2 [GeV^2]$ b [GeV⁻²] H1 H1 HERA II Dipole model GPD model (b) $Q^2 = 10 \text{ GeV}^2$ 3 ₀ 20 40 60 80 100 120 W [GeV]

Comments on b and $[\langle r_{T}^{2} \rangle]^{1/2}$

For $\langle Q^2 \rangle = 10 \text{ GeV}^2$ and $\langle x \rangle = 1.2 \ 10^{-3}$ b=5.41 ±0.14 ±0.31 GeV⁻² _____ The statistical limit is reached $[\langle r_{T}^{2} \rangle]^{1/2} = 0.64 \pm 0.02 \text{ fm}$

Transverse width of the parton distribution (probed in the reaction)

The spatial structure of the proton (in slices of x):

cloud of slow (low x) gluons/sea-quarks and a core of fast (large x) quarks...

More refined theoretical analysis of $[\langle r_T^2 \rangle]^{1/2}$

From Mueller et al. ('09), global fits of low x DVCS data (H1/ZEUS)+F2 With different hypothesis on t dependences (and initial param of H)...

In pictures

Remark 1: The interplay between x and t

We can examine the dependence of B(x)Let's write $B(x) = B_0 + \alpha' \log(1/x)$ From previous slide, we know that α' is small

Essential measure for GPD parameterization!

Remark 2: Another result from t-slopes measurements

We can measure inelastic DVCS: $ep \rightarrow eY\gamma$ (for My>1.4 GeV)

Which gives => $\omega:=[d\sigma_{inel}/dt / d\sigma_{el}/dt]|_{t=0} \sim 0.25$ This ratio is quite universal among Vector Meson production and independent of Q^{2} ! Clearly realated to fluctuations of the Gluon field in the proton $\omega \sim \langle G^{2} \rangle - \langle G \rangle^{2} / \langle G \rangle^{2}$ Must be measured at different energies and compare with predictions => Important result for pp scattering

Remark 3: Dipole sizes DIS versus DVCS

W() is the profile function => $\sigma(DVCS) = \int d^2r W()$

Where r is the size of the dipoles contributing to the DVCS process (size of the $\gamma^* := q$ -qbar pair)

With increasing Q², the contribution of large size configurations decreases rapidely... (QCD)

If we compare the profile function for DVCS & DIS @ same kinematics => The contributions of large size configs is larger in DVCS! (// diffractive reactions: DIS dominated by dipoles of b~1/Q and DIFF by b~1/Qs)

Sensitivity to GPD H: Beam Charge Asymmetry (BCA) Interference between QCD & QED at HERA

Principles:

DVCS and Bethe-Heitler (QED graphs) have the same final state Both processes interfere

The BCA is sensitive to this interference

At HERA II, we have almost 150pb⁻¹ for each set e⁺p and e⁻p with ~O average polarisation per set...

We measure: $A_{c}(\phi) = [d\sigma^{+}/d\phi - d\sigma^{-}/d\phi] / [d\sigma^{+}/d\phi + d\sigma^{-}/d\phi]$

 $A_C(\phi) = p_1 \cos \phi = 2A_{BH} \frac{\text{Re}A_{DVCS}}{|A_{DVCS}|^2 + |A_{BH}|^2} \cos \phi$

Proportional to a GPD (modulo a convolution with a known function)

Beam Charge Asymmetry (BCA)

Kin bin (H1): x=1.2 10-3 $Q^2=10 \text{ GeV}^2$ => Extract one value for $A_c(\cos\varphi)$ for this bin...

which gives: $ReA_{DVCS}/ImA_{DVCS} = 0.2\pm0.05\pm0.08$ $Cos(|\phi|)$ + test of the dispersion relations

Then, ReA_{DVCS} is an essential variable to constraint GPDs Good description obtained by present GPD models

Beam Charge Asymmetry (BCA): another look

 From BCA & DVCS cross section, we can determine a key observable: η=Re(a_{DVCS})/Im(a_{DVCS})

=> η = 0.23 +/- 0.10 (1)

 We have another way to extract this ratio from dispersion relations: η=Re(a_{DVCS})/Im(a_{DVCS}) == tan(π/2 δ/4)
 @ low x with σ_{DVCS}~W^δ with δ~0.75 (similar value for H1 & ZEUS)

=> η = 0.28 +/-0.07 (2)

Both values (1) & (2) are in good agreement =>
 Good confidence in the difficult BCA measurement...

The GPD experimental perspective

All experiments are useful in determination (fits) of GPDs: with the goal of a better understanding of how the proton is built up by partons

What GPDs(x,t) look like?

Summary (on F2D)

As an experimentalist, I want to remind that it took 10Y to get all the points on this plot of F2D! ... consequences on saturation effects in QCD are

