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The strong interaction is one of the fundamental interactions between
particles.

I In the 1960’s, people studied the strong interaction by looking at
analytical properties of the S matrix and amplitude.

I In the 1970’s another theory, QCD, became more popular.

I It was found that the coupling constant runs in the opposite way to
QED

α(µ1) =
4π

b0 ln(µ2
1/Λ

2
QCD)

b0 =
11

3
N − 2

3
nf (= 7)

I We see that at high energies, corresponding to small distances, the
coupling is weak - asymptotic freedom.
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I In this regime, we can study the theory perturbatively.

I However, at lower energies, once it is of order ΛQCD the coupling is
very strong and we cannot use pQCD.

I Our goal is to study the strong interaction at strong coupling.

I To do this we will use string theory.

I More specifically, a recent conjecture by Maldacena relating string
theory on AdS5 × S5 to N = 4SYM allows us to study QCD at
strong coupling.
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The Pomeron

I The Pomeron is the leading order exchange in all total cross sections
in the Regge limit

s� t

I It is the sum of an infinite number of states with the quantum
numbers of the vacuum.

I It leads to a cross section that as s→∞ goes as

σ ∼ sα(0)−1

I At weak coupling, the propagation of the Pomeron is given by the
BFKL equation.

I To O(λ)

α(0) ' 1 +
log 2

π2
λ
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The AdS/CFT Correspondence

I Conjectured exact duality between type IIB string theory on
AdS5 × S5, and N = 4 SYM, on the boundary.

I The duality relates states in string theory to operators in the field
theory through the relation〈

e
∫
d4xφi(x)Oi(x)

〉
CFT

= Zstring [φi(x, z)|z∼0]

I The metric we will use

ds2 = e2A(z) [−dx+dx− + dx⊥dx⊥ + dzdz] +R2d2Ω5.

I In the hard-wall model up to a sharp cutoff z0 ' 1/ΛQCD

e2A(z) = R2/z2

I Correspondence works in the limit

NC →∞, λ = g2NC = R4/α′2 � 1, fixed
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Pomeron in AdS string theory

I What is the Pomeron in AdS String theory? (Brower, Polchinski,
Strassler, Tan 2006)

I It is the Regge trajectory of the graviton.

I In flat space, the Pomeron vertex operator

VP
def
==

(
2

α′
∂X+ ¯∂X

+
)1+α′t

4

e−ik·X

I The Pomeron exchange propagator in AdS is given by

K =
2(zz′)2s

g2
0R

4
χ(s, b, z, z′)

where

Im χ(s, b, z, z′) =
g2

0

16π

√
ρ

π
e(1−ρ)τ ξ

sinh ξ

exp(−ξ
2

ρτ )

τ 3/2
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I χ is a function of only two variables

ξ = log(1 + v +
√
v(2 + v) )

τ = log(
ρ

2
zz′s)

where

v =
(x⊥ − x′⊥)2 + (z − z′)2

2zz′

ρ =
2√
λ

I In the limit τ � 1, λ� 1 and λ/τ → 0

<χ ≈ cot(
πρ

2
)=χ
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Djurić — DIS in AdS Pomeron in AdS 10/37



I The weak and strong coupling Pomeron exchange kernels have a
remarkably similar form.

I At t = 0

Weak coupling:

K(k⊥, k
′
⊥, s) =

sj0√
4πD log s

e−(log k⊥−log k′⊥)2/4D log s

j0 = 1 +
log 2

π2
λ, D =

14ζ(3)

π
λ/4π2

Strong coupling:

K(z, z′, s) =
sj0√

4πD log s
e−(log z−log z′)2/4D log s

j0 = 2− 2√
λ
, D =

1

2
√
λ
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Pomeron and the Eikonal Approximation

I According to the Froissart bound

σtot ≤ πc log2(
s

s0
)

I Hence the Pomeron exchange violates this bound.

I Eventually effects beyond one Pomeron exchange become important.

I The eikonal approximation

A(s,−q⊥2) = −2is

∫
d2b e−ib⊥·q⊥ (eiχ(s,b) − 1)

I Satisfies the unitarity bound, as long as =χ > 0

I We can expand the exponential to get

A(s,−q⊥2) = −2is

∫
d2be−ib⊥·q⊥(iχ+

(iχ)2

2
+ · · · ) .
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∫
d2be−ib⊥·q⊥(iχ+

(iχ)2

2
+ · · · ) .
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Djurić — DIS in AdS Pomeron in AdS 12/37



This would correspond to summing Pomeron exchange to all orders, but
ignoring all non-linear interactions between the Pomerons.

I The diagrams we sum are

I Eikonal approximation in AdS space (Brower, Strassler, Tan;
Cornalba,Costa,Penedones)

A(s,−q⊥2) = 2is

∫
d2be−ib⊥·q⊥

∫
dzdz′ P13(z)P24(z′)(1−eiχ(s,b,z,z′))
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What is DIS?

Deep Inelastic Scattering is the scattering between an electron and a
proton.

The basic kinematical variables we need for describing this process are

I the center of mass energy

s = −(P + k)2

I the photon virtuality

Q2 = −qµqµ = −(k − k′)2 > 0

I the scaling variable

x ≈
Q2

s
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I We are interested in calculating the structure function

F2(x,Q2) = x
∑
q

e2
q [q(x,Q

2) + q̄(x,Q2)]

I It is related to the total cross section by the relation

F2(x,Q2) =
Q2

4π2αEM
σtot(x,Q

2)

I To calculate the total cross section we can use the optical theorem

σtot =
1

s
=A(s, t = 0)
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The Data

Let us now discuss the data we will use later on in the talk.

I We will use data collected at the HERA particle accelerator, by the
H1 & ZEUS experiments (Aaron et al. JHEP 2010).

I We will consider only low x physics, which in this talk will mean
x < 0.01.

I In this region the photon and the partons do not interact directly,
rather the photon emits a Pomeron which interacts with the parton.

I We will look at 0.15GeV 2 < Q2 < 400GeV 2.

I At lower or higher Q2 there is no experimental data with x < 0.01.
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As we saw, we are going to calculate F2 by relating it to the total cross
section. This in turn we will calculate using the optical theorem, for which
we need the forward scattering amplitude at t = 0. Putting it all together,
using the eikonal approximation we get

F2(x,Q2) =
Q2

2π2

∫
d2b

∫
dz

∫
dz′P13(z,Q2)P24(z′)Re

(
1− eiχ(s,b,z,z′)

)

We need to supply the wavefunctions for the photon and the proton. For
the photon we will consider an R boson propagating through the bulk that
couples to leptons on the boundary (Polchinski, Strassler 2003)

P13(z,Q2) =
1

z
(Qz)2(K2

0 (Qz) +K2
1 (Qz)),
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We would also need a wavefunction associated to the proton φp(z). For
the current analysis, we will assume that the wave function is sharply
peaked near the IR boundary z0, with 1/Q′ ≤ z0, with Q′ of the order of
the proton mass. For simplicity, we will simply replace P24 by a sharp
delta-function

P24(z′) ≈ δ(z′ − 1/Q′).

Similarly, for P13 which is peaked around z ' 1/Q, we will replace

P13(z) ≈ δ(z − 1/Q),
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Conformal Limit

First we will look at the conformal limit, using single Pomeron exchange.
The b space integration can be performed explicitly

∫
d2b Im χ(s, b, z, z′) =

g2
0

16

√
ρ3

π
(zz′) e(1−ρ)τ

exp(−(log z−log z′)2

ρτ )

τ 1/2
.

I For single Pomeron exchange, the imaginary part is enough due to the
optical theorem.

I The structure function F2 can be expressed as

F2(x,Q2) =
g2

0ρ
3/2

32π5/2

∫
dzdz′P13(z,Q2)P24(z′)(zz′Q2)

× e(1−ρ)τ
exp(−(log z−log z′)2

ρτ )

τ 1/2
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Hard-wall

Similarly for the hard-wall model we would have

Im χhw(s, t = 0, z, z′) = Im χc(τ, 0, z, z
′)+F(z, z′, τ) Im χc(τ, 0, z, z

2
0/z
′),

leading to the expression for F2 with confinement

F2(x,Q2) =
g2

0ρ
3/2

32π5/2

∫
dzdz′P13(z,Q2)P24(z′)(zz′Q2) e(1−ρ)τ

×

(
e
− log2 z/z′

ρτ

τ1/2
+ F(z, z′, τ) e

−
log2 zz

′
/z20

ρτ

τ1/2

)

Where

F(u, u′, τ) = 1− 4
√
πτ eη

2
erfc(η) , η =

u+ u′ + 4τ√
4τ

.
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Examine

Let us make some comments about these expressions.

I Both of them have a factor

e(1−ρ)τ ∼ (
1

x
)1−ρ

I This will violate the Froissart bound.

I The difference between the conformal and confinement depends on
the size of the function F .

I F at fixed z, z′, goes to 1 as τ → 0 and to −1 as τ →∞. Hence, at
small x, F → −1 and confinement leads to a partial cancelation for
the growth rate. Since F is continuous, there will be a region over
which F ∼ 0, and, in this region, there is little difference between the
hard-wall and the conformal results.
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Let us look at the graph of F in the region where there is data

Figure: Contour plot for coefficient function F as a function of log(1/z) and
log(1/x), with z′ ' z0 fixed, z0 ∼ Λ−1QCD.
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Single Pomeron fits

Finally, let us present the results of our fits:

I For the conformal single Pomeron exchange the parameters are:

ρ = 0.774± 0.0103, g2
0 = 110.13± 1.93, Q′ = 0.5575± 0.0432 GeV

I Corresponds to

χ2
d.o.f. = 11.7

I For the hard-wall model we get a much better fit. Parameters are:

ρ = 0.7792± 0.0034, g2
0 = 103.14± 1.68,
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Plots

Figure: Global fits to the combined ZEUS-H1 small-x data. Dotted red lines are
for single conformal BPST Pomeron and dotted blue lines are for single hard-wall
BPST Pomeron.
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As we said, single Pomeron exchange violates the unitarity bound.
Therefore we will also do the fits using the eikonal approximation. The
conformal eikonal will not improve the results, and will still lead to the
violation of the unitarity bound.

Therefore we need to look at the hard-wall eikonal. We need the result in
s, t space

Im χhw(τ, t, z, z′) = Im χhw(τ, 0, z, z′)

+
α0t

2

∫ τ

0
dτ ′
∫ z0

0
dz̃ z̃2 ×

× Im χhw(τ ′, 0, z, z̃)Im χhw(τ − τ ′, t, z̃, z′)

Work is underway in evaluating this. We used an approximate treatment
which incorporates some of the important features.

Djurić — DIS in AdS Deep Inelastic Scattering 26/37



As we said, single Pomeron exchange violates the unitarity bound.
Therefore we will also do the fits using the eikonal approximation. The
conformal eikonal will not improve the results, and will still lead to the
violation of the unitarity bound.
Therefore we need to look at the hard-wall eikonal. We need the result in
s, t space

Im χhw(τ, t, z, z′) = Im χhw(τ, 0, z, z′)

+
α0t

2

∫ τ

0
dτ ′
∫ z0

0
dz̃ z̃2 ×

× Im χhw(τ ′, 0, z, z̃)Im χhw(τ − τ ′, t, z̃, z′)

Work is underway in evaluating this. We used an approximate treatment
which incorporates some of the important features.
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Eikonal

It can be shown that at large b the eikonal for the hard-wall model has a
cut-off

Im χhw(τ, b, z, z′) ∼ exp[−m1b− (m0 −m1)2 b2/4ρτ ]

where m1 and m0 are solutions of

∂z(z
2J0(mz)) |z=z0 = 0

and
∂z(z

2J2(mz)) |z=z0 = 0

respectively.
For b-small, we shall take Im χhw(τ, b, z, z′) to be of the form

Im χ
(0)
hw(τ, b, z, z′) ∼ Im χc(τ, b, z, z

′) + F(τ, z, z′)Im χc(τ, b, z, z
2
0/z
′)
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Eikonal continued

We therefore adopt the following simple ansatz

Im χhw(τ, b, z, z′) = C(τ, z, z′)D(τ, b)Im χ
(0)
hw(τ, b, z, z′)

Where

D(τ, b) =

{
1 , b < z0
exp[−m1b−(m0−m1)2 b2/4ρτ ]

exp[−m1z0−(m0−m1)2 z20/4ρτ ]
, b > z0

C(τ, z, z′) is an overall normalization constant which we can fix by
requiring our result to recover the t = 0 result.
Fitting this expression we get the parameters:

ρ = 0.7833± 0.0035, g2
0 = 104.81± 1.41,

z0 = 6.04± 0.15GeV −1, Q′ = 0.4439± 0.0177 GeV

χ2
d.o.f = 1.04
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Plots
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We can also fit the data to ‘effective Pomerons’, by fixing Q2, and then
fitting

F2(x,Q2) ∼ (1/x)εeff

By doing this we get the following

Figure: Q2-dependence for effective Pomeron intercept, αP = 1 + εeff .
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What is DVCS?

I Scattering between a virtual photon and the proton.

I Differences with DIS:

I We need the full amplitude, not just the imaginary part

I t 6= 0, P13 will be a function of both Q,Q′

I We cannot just use a delta function for P13
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DVCS using AdS/CFT (Costa, M.D., in preparation)

I Taking these changes into account, but using the same values for
parameters we got in DIS

I For real outgoing photon (Q′ = 0)
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We thus conclude today’s talk. We have seen some interesting methods
we can use to study the strong interaction at strong coupling. Let us now
look at some possible future directions of research.

We saw that we need
our theory to include confinement if we want it to be realistic

Is the above order of lines an artifact of our model?
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Conclusions - continued

Some more work that is under way

I The eikonal approximation did not significantly change our fit. We
expect this to change once we move to LHC energies. Work is already
in progress to numerically find the hard-wall eikonal, and compare it
to total cross section measurements.

I Work is in progress to apply the same techniques to DVCS. In this
process we have production of a real photon.

I Equally important is the application of gauge/string duality to the
production of the Higgs boson (also known as the SX boson). One of
the possible discovery channels for the Higgs could be double
diffractive proton-proton scattering. Hence a thorough theoretical
understanding would be very interesting. BPST Pomeron exchange
could be applied to this process, but the important new feature now
would be the coupling of the Higgs, described by a non-normalizable
current, to two Pomerons.
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Djurić — DIS in AdS Conclusions 36/37



Thank you!


	Introduction
	Pomeron in AdS
	Deep Inelastic Scattering
	Deeply Virtual Compton Scattering
	Conclusions

