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Real-time finite temperature AdS/CFT

AdS/CFT at T = 0: Strong-weak duality between a conformal field theory and string theory
in a curved (Anti-de Sitter) background.
Trademark example: N = 4 super Yang-Mills (sYM) and IIB string theory on AdS5 × S5.

Identification of partition functions: ZsY M = ZIIBstring

In a simplified set-up, consider the supergravity (sugra) modes on AdS5 × S5.

Witten:
ZsY M [J = source for a BPS opt. O] = Zsugra[�sugra(x�, z) −→ J(x�) at the AdS bdy]

=⇒ Correlators of BPS sYM operators can be computed at strong coupling by doing a
weakly coupled gravity computation.

Witten diagram:

Witten’s prescription was for Euclidean AdS.

The correlators are then computed in imaginary time. What about real-time correlators?
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The problem:

AdS5 can be described using different coordinates: global coordinates, which cover the
whole space (two time-like boundaries!), or coordinates which make manifest the Poincare
symmetry of the field theory (plus a radial coordinate)

ds2AdS =
1

z2
(dx�dx� + dz2)

and which cover only half of the space.

Which region of AdS must one integrate to get real-time correlators?

What about the different types of real-time correlators? How are they computed from sugra?
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To find the answer, we used reverse engineering:

-start from the known expressions of the real-time 3-point correlators

GF (x1, x2, x3) = (−i)2⟨0∣T O(x1)O(x2)O(x3)∣0⟩

= (−i)2
(

1

−t212 + x⃗2
12 + i�

1

−t223 + x⃗2
23 + i�

1

−t231 + x⃗2
31 + i�

)Δ/2

G123(x1, x2, x3) = (−i)2⟨0∣O(x1)O(x2)O(x3)∣0⟩

= (−i)2
(

1

−t212 + x⃗2
12 + i�t12

1

−t223 + x⃗2
23 + i�t23

1

−t231 + x⃗2
31 − i�t31

)Δ/2

GR(x1, x2, x3) = �(t31)�(t12)

(

G312 −G132 +G213 −G231

)

+ �(t32)�(t21)

(

G321 −G231 +G123 −G132

)

and manipulate until the structure of a Witten diagram with 3 bulk-to-bdy propagators
emerges: the integration needs to be done only over the Poincare patch.
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What about the different types of real-time correlators? How are they computed from sugra?

Our answer: for Feynman (time-ordered) correlators use Feynman sugra propagators; for
retarded/ (causal) correlators use causal sugra propagators. Tantamount to using Veltman’s
circling rules to build real-time diagrams at T = 0 in supergravity [1004.1179].
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This is the jump-off point for real-time T ∕= 0 computations from AdS/CFT.
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Finite temperature AdS/CFT: the finite temperature CFT is holographically dual to AdS with a
black hole in it: AdS-Schwarzschild (AdS-S)

ds210 =
r2

R2
(−f(r)dt2 + dx⃗2) +

R2

r2f(r)
dr2 +R2dΩ5

= R2

(−f(z)dt2 + dx⃗2 + dz2

z2f(z)

z2
+ dΩ2

5

)

, z =
R2

r

f(r) = 1− r40
r4

The Hawking temperature is TH = r0
�R2 .

P = t
K K−

x
K

= tK

RL

F

x

AdS-S Penrose diagram

How to integrate over the black hole bulk (given the presence of singularities, horizons)?
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Tools of the trade: supergravity bulk-to-boundary propagators, and supergravity vertices.

Consider a massless scalar field �(p�, u) = F (!, p⃗, u)�0(p�) in the AdS-S background
obeys □F = 0:

F ′′ − 1 + u2

u(1− u2)
F ′ +

(

!2

u(1− u2)2
− p⃗2

u(1− u2)

)

F = 0

where !, p⃗ and u are dimensionless quantities

! =
E

2�TH
, p⃗ =

P⃗

2�TH
, u =

r20
R2

z2.

Furthermore, impose the condition that F is an incoming wave at the horizon.

Retarded propagator: GR ≡ F (!, k⃗, u).

Gibbons & Perry The “Kruskal” vacuum Feynman propagator is the one which exhibits
periodicity in imaginary “Schwarzschild” time. Hallmark characteristic of thermal
propagators.

Feynman propagator: GF = ReGR + i coth(!�)ImGR.

GR = GF −G− etc. ⇒ get the other (Wightman) Green’s functions.
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What was known since 2002 or how to compute 2-point functions:

Son & Starinets conjectured that the retarded 2-point CFT correlator at finite temperature is
given by

⟨O(!, k⃗)O(0)⟩� ∝
√
gguu∂uF (!, k⃗, u)

∣

∣

∣

∣

u=0

based on the zero-temperature limit.

Son & Herzog gave a geometric interpretation of the finite temperature Schwinger-Keldysh
matrix 2-point correlator by adding sources for the physical and ghost/doubler fields on the
two boundaries of the AdS-S Penrose diagram.

Comments: Peculiar feature of 2-point functions which arise from
∫ √

g∂� ⋅ ∂�: when
evaluating the quadratic action on-shell, a 2-point function reduces to a boundary term. A
genuine integration over the black hole bulk is not needed. Son and Herzog’s prescription
was not precise in how the integration over the black hole needs to be carried out.
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Our answer: R− L prescription
If one follows Son and Herzog, then

S ∼
(∫

R
−

∫

L

)√
g∂�∂�,

use EOM and keep the R and L boundary terms, with a relative sign contribution
[1004.1179].

This gives the 2-point finite temperature Schwinger-Keldysh Green’s function.
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Simpler interpretation: the R− L prescription is merely enforcing Veltman’s circling rules at
finite temperature [1004.1179].

Kobes, Kobes& Semenoff: Trade off the matrix Schwinger-Keldysh propagator for circling
rules diagrams.

Any finite temperature “Feynman” diagram is given by the sum of all diagrams with vertices
either circled or uncircled, with the exception of vertices connected to external lines which
remain uncircled.

Veltman’s Largest Time Equation (identity): The sum of all diagrams with all vertices either
circled or uncircled is 0.

A retarded n-point function, with one external vertex having the largest time is given by the
sum of all diagrams, with all other vertices being either circled or uncircled.

It is this Green’s function computed in real-time formalism that coincides with the analytic
continuation of the imaginary time formalism.

The same rules apply to gravity, with the integration over the bulk region only up to horizon.
(We need not be concerned with the global black hole space-time.)

The Poincare coordinates are singled out since they are the preferred coordinates in the dual
field theory.
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Upshot: we give the first concrete formulas for real-time finite-temperature 3-point correlators
computed from AdS/CFT [1004.1179]

At finite temperature,

Retarded 3-point definition

G

(

(
(

(
111

e
−(ω

e−ω  π

121 e−ω  π2

11+ ω2) π
221 211

G G

G

We define the retarded 3-point correlator to be given by the sum of all diagrams above. After
substituting the various Gabc, the final expression is

GR(r; p, q) ∝
∫ 1

0
du
√
gF ∗(q)F ∗(p)F (r)

which is consistent with the zero temperature limit result, it is consistent with analytic
continuation of the imaginary time Green’s function, and it is manifestly causal.
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Applications
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Jet quenching revisited

How far does a localized high-energy excitation travel through the quark-gluon plasma before
stopping and thermalizing?

Weakly-coupled plasma: E1/2

Strongly-coupledN = 4 super Yang-Mills: E1/3

(Maximal distance traveled ∼ (E/
√
�)1/3 for excitations dual to semi-classical strings. No√

�-dependence for excitations dual to sugra modes.)

In [1008.4023] we re-opened the problem by posing the question on the field theory side:
namely we specify the excitation created on the gauge theory side, and the response (in
terms of conserved charge densities) is later measured in the field theory as well. We work
at strong coupling and use AdS/CFT duality.

ℒ → ℒ+ ja�A
a�
cl ,

Aa �
cl (x) = "̄�NA

[ �+

2
eik̄⋅x + h.c.

]

e−
1
2
(x0/L)2e−

1
2
(x3/L)2 ,

"̄� = (0, 1, 0, 0), k̄� = (E, 0, 0, E), E ≫ T,EL≫ 1.
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Analogy: A very high energy W+ boson decaying inside a standard-model quark-gluon
plasma and producing high-energy partons moving to the right with net 3rd component of
isospin, �3/2:

W
d

u
E

+

The problem:

The source Aa�
cl creates an excitation that carries energy, momentum, and R charge. We

track the R charge density, specifically the large-time behavior (t≫ both T−1 and L) of
〈

j(3)0(x)
〉

Acl

if the system starts in thermal equilibrium at t = −∞.
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This reduces to a retarded 3-point function!

〈

j(3)�(x)
〉

Acl

= 1
2

∫

d4x1 d4x2 G
(ab3)���
R (x1, x2;x)A

a
�,cl(x1)A

b
�,cl(x2)

where

G
(ab3)���
R (x1, x2;x) = �(t− t1)�(t1 − t2)⟨[[j(3)(x), ja(x1)], j

b(x2)]⟩
+ �(t− t2)�(t2 − t1)⟨[[j(3)(x), jb(x2)], j

a(x1)]⟩

The physical problem of tracking the jet evolution reduces to a technical problem: how to
actually compute the 3-point correlators.
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Witten diagram for (a) 3-point boundary correlator in imaginary-time AdS5-Schwarzschild
and (b) retarded 3-point boundary correlator GR(x1, x2;x) in real-time AdS5-Schwarzschild.

2x

1x

3x

=1u

=0uboundary

=1u
=1

u 2x

1x

=
0

u
x

(a) (b)

RL

Technical comments (helpful approximations):

-the jet has large energy (WKB approximation useful).

-the R-charge density is measured at scales which are large comparative to 1/E or even
1/T (one measures a “smeared response”)

Then, the Fourier-transform 3-point correlator factorizes (almost).
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Final result:

(∂t −
1

2�T
∇2)

〈

j(3)0(x)
〉

Acl

≃ Q̄(3) Θ(x),

where the charge deposition function is

Θ(x) ≃ 2 �L(x
−) �(x+)

⎧



⎨



⎩

(4c4EL)2

(2�T )8(x+)9
Ψ
(

− c4EL
(2�Tx+)4

)

, x+ ≪ E1/3/(2�T )4/3;

(2�T )42(c2L)2

E
Ψ(0) exp

(

− c1(2�T )4/3x+

E1/3

)

, x+ ≫ E1/3/(2�T )4/3.

with Ψ(y) = e−2y2

, c ≡ Γ2(
1
4
)

(2�)1/2
, c1 ≃ 0.927, c2 ≃ 3.2..

E1/3T −4/3(EL)1/4T −1 E1/3T −4/3(EL)1/4T −1

ch
ar

ge
 d

ep
os

ite
d

exponential
fall−off

∝ (x+)−9

x+ x

t

3

(b)(a)
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Jet quenching revisited, simplified

Consider a source

source(x) ∼ eik̄⋅xΛL(x)

which creates a localized perturbation at the boundary, which then propagates in the 5th
dimension, eventually falling into the horizon.

Previously, k̄ was light-like:

(a) k̄� = (E, 0, 0, E)

Now, let us choose k̄ off the light-cone

(b) k̄� = (E + �, 0, 0, E − �)

Qualitative picture of momenta used to generate jets.

L−1 L−1

L−1

q3

q0 q0

q3

q0

q3

(b) (c)(a)

ε~E E E

E E E
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(a,b) A snapshot in time of waves in the fifth dimension u for times after the boundary source
has turned off but relatively early (before the wave gets very close to the horizon).

(a) shows the type of wave generated by a localized source that superposes a range of q2

values.

(b) shows the wave packet generated by a source with approximately well-defined q2

(c) shows a single 4-momentum component, corresponding to a single, definite value of
4-momentum q�.

u

field

λ ∼ 1/q5

(a)

u

field
∆u

λ ∼ 1/q5

(b)

u

field

λ ∼ 1/q5

(c)
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(a) A classical particle in the AdS5-Schwarzschild space-time, moving in the x3 direction as
it falls from the boundary to the black brane in the fifth dimension u.

(b) The presence of the particle perturbs the boundary theory in a manner that spreads out
diffusively as the particle approaches the horizon for x0 →∞.

1

0

u

x3
stopstopping distance x3

stopstopping distance

horizon

x3boundary

(b)

horizon

x3boundary

(a)

1

0

u

jµ

The x3 distance traveled is estimated from the geodesic equation:

x3

stop ≃
c√
2

(

q⃗2

−q2

)1/4

≃ c

2

(

E

�

)1/4

L enters x3

stop through the virtuality q2 ∼ E� ∼ E/L [1101.2689].
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Massive particles

For supergravity modes on AdS5 × S5 mass is related to the conformal dimension of the
CFT BPS operator

(Rm)2 = Δ(Δ− d)

The probability distribution of jet stopping distances for scalar or transverse BPS sources
with conformal dimension Δ [1101.2689]. (R-charge current case corresponds to Δ=3.)
Here we assume that Δ is held fixed when taking the limit of large energy E (as well as large
coupling g2Nc and large Nc).

−1/8∆ (EL)1/4T −1 T −4/3−1/3∆ E1/3

st
op

pi
ng

 p
ro

ba
bi

lit
y

exponential
fall−off

∝ (x

x3

)3 3 −4∆

The typical scale, with the same (EL)1/4 dependence, is again where most of the charge is
being deposited; however, the heavier a KK mode, the sooner it stops; this is similar to
weakly coupled field theory where the more partons are available to carry the total
momentum, the shorter the stopping distance.
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Adding a finite chemical potential

Start with N=4 d=5 SU(2)× U(1) gauged supergravity: metric gmn, dilaton �,
SU(2)×U(1) gauge fields AI

m and am, and two antisymmetric tensor fields B�
mn which

are charged under the action of the U(1) field. It is a consistent truncation.

Finite chemical potential (�) in N=4 sYM↔ supergravity in AdS-Reissner-Nordstrom
background.

ds̄2 =
4�2R2T 2

H

(2− �)2u
(−f(u)dt2 + dx⃗2) +

R2

4u2f(u)
du2, u =

r2+

r2

f(u) = (1− u)(1 + u− �u2), Z̄0 =

√
3�r+

2R2
(u− 1)

TH =
(2− �)r+

2�R2
, � =

√
3�

2R2
r+ =

√
3�

2(2− �)
2�TH , 0 ≤ � ≤ 2.

Typical stopping distance (� ≪ E, 1/L ≪ E, T ≪ E):

x3

stop ≃
2− �

2

1

2�TH

8Γ2( 5
4
)

√
�(1 + �)1/4

(

q⃗2

−q2

)1/4

Finite chemical potential leads to a jet quenching enhancement.
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Hydrodynamic regime: second order hydro coefficients

In the hydro regime, the stress tensor of a CFT can be writen as:

T�� = T��
eq +Π�� , T��

eq = (�+ P )U�U� + Pg��

Π�� = −���� + ��Π

(

⟨U ⋅ ∇���⟩ + 1
3
∇ ⋅ U���

)

+ �

(

R⟨��⟩ − 2U�U�R
�⟨��⟩�

)

+�1�
⟨�

��
�⟩� + �2�

⟨�
�Ω

�⟩� + �3Ω
⟨�

�Ω
�⟩� + . . .

where � and Ω are the fluid’s shear and vorticity tensors:

��� = 2∇⟨�U�⟩ ≡ 1
2
Δ��Δ��(2∇�U� + 2∇�U�)− 1

3
Δ��Δ��2∇�u�

Ω�� = 1
2
Δ��Δ��(∇�U� −∇�U�)

where Δ�� are transverse (to the fluid’s velocity) projectors:

Δ�� = g�� + U�U�

Baier, Romatschke, Son, Starinets, Stephanov

How to compute the hydro coefficients: until recently �, �Π, � were obtained via Kubo
formulae from 2-point stress correlators. What about the others? Answer: use 3-point
retarded stress correlators!
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Moore and Sohrabi 2010: compute the fluid’s response to a small, slowly varying
gravitational perturbation, and derive Kubo-type formulae for 2nd order hydro
coefficients.

⟨T��(z)⟩ℎ = ⟨T��⟩ℎ=0 − 1
2

∫

d4xG
��∣��
ra (z;x)ℎ��(x)

+ 1
8

∫

d4x

∫

d4y G
��∣��∣��
raa (z;x, y)ℎ��(x)ℎ��(y) + . . .

Solve the conservation law ∇�T�� = 0, and T�
� = 0 iteratively, in the fluid’s velocity U�,

and order-by-order in the metric fluctuations; compare with the previous expansion in
terms of correlators =⇒ get Kubo-type formulae!

Our formulae [1105.4645] for 2nd order hydro coefficients (q ≡ (!, 0, 0, k), etc.):

lim
!1→0
!2→0

∂!1
∂!2

lim
k1→0
k2→0

Gxy∣xz∣yz(q; q1, q2) = −�1 + ��Π

lim
!2→0
k1→0

∂k2
∂!1

lim
!2→0
k1→0

Gxy∣yz∣tx(q; q1, q2) = − 1
4
�2 + 1

2
��Π

lim
k1→0
k2→0

∂k1
∂k2

lim
!1→0
!2→0

Gxy∣0x∣0y(q; q1, q2) = − 1
4
�3
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Retarded supergravity bulk-to-boundary propagators:

�gxy = C5(1− u)−i!/2

(

1− i
!

2
ln(1 + u) + !2(−1

2
Li(2,

1− u

2
)

+
1

8
ln2(1 + u) + (1− ln 2

2
) ln(1 + u))− k2 ln(1 + u) + . . .

)

C5 =

(

1 +
!2(�2 − 6 ln2 2)

24
+ . . .

)

ℎx
y

Supergravity quadratic action:

�(2)S =
1

8

∫

u=0

1

u
∂5

(

− �g���g
�
� + �g�� �g

�
�

)

+
1

4

∫

u=0

(

3

4
(ℎ0

0)
2 − 1

2
ℎ0
0ℎ

i
i + ℎ0

i ℎ
i
0 +

1

4
ℎi
iℎ

j
j −

1

2
ℎi
jℎ

j
i

)

, i, j, k = 1, 2, 3
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Recover Baier, Romatschke, Son, Starinets, Stephanov:

G
xy∣xy
AdS = − �2S

�2ℎxy

=
N2

c

27�2
− i

N2
c !

26�2
+

(!2(1− ln 2)− k2)N2
c

26�2
+ . . .

The result derived in the hydrodynamic limit from solving the conservation law of the stress
tensor is

G
xy∣xy
hydro = 1

3
�̄− i�! + ��Π!2 − 1

2
�(!2 + k2) + . . .

where the background energy density is �̄ = 3
8
N2

c �
2T 4.

Determine

� =
�N2

c T
3

8
, � =

N2
c T

2

8
, ��Π =

N2
c (2− ln 2)T 2

16
.

What about �1, �2 and �3?

Need 3-point stress tensor correlators!

This is an independent check of the values determined by Bhattacharyya, Hubeny, Minwalla,
Rangamani.
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Real-time Witten diagrams for the retarded 3-point correlator Gxy∣yz∣xz(x;x1,x2) with the
boundary point x having the largest time; x1 and x2 can have any time order.

=1u
=1

u 2x

1x

=
0

u

x

RL
=1u

=1
u 2x

1x

=
0

u
x

RL

=1u
=1

u 2x

1x

=
0

u

x

RL

=1u
=1

u 2x

1x

=
0

u

x

RL

xy

xz

yz

xy

yz
xz

xy

xy

xz

yz

y0

xz

x0

xy

xz

yz

yz

xy

x0

y0

xy

xy

yz

xz

(a) (b)

(c)(d)
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lim
k1→0
k2→0

G
xy∣yz∣xz
AdS =

N2
c

24�2

[

1

23
− i

!1 + !2

22
− (!1!2 + !2

1 + !2
2)(ln 2− 1)

22
+ . . .

]

lim
k1→0
k2→0

G
xy∣yz∣xz
hydro =

N2
c

24�2

[

1
3
�̄−i�(!1+!2)+��Π(!2

1+!2
2+!1!2)− 1

2
�(!2

1+!2
2)−�1!1!2+. . .

]

�1: �1 =
N2

c
26�2 ,⇒ �1 =

N2
cT2

16
.

lim
!1→0
!2→0

G
xy∣ty∣tx
AdS =

N2
c

26�2

[

− 1

2
+ (k21 + k22) + . . .

]

lim
!1→0
!2→0

G
xy∣ty∣tx
hydro = − 1

3
�̄+ 1

2
�(k22 + k21)− 1

4
�3k1k2 + . . .

�3: �3 = 0.

lim
k1→0
!2→0

G
xy∣yz∣tx
AdS =

N2
c

26�2
!1k2 + . . .

lim
k1→0
!2→0

G
xy∣yz∣tx
hydro = (− 1

4
�2 + 1

2
��Π)!1k2 + . . .

�2: �2 = − N2
c

25�2 ln 2⇒ �2 = − 1
8
N2

c T
2 ln 2.
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Summary

We gave a simple prescription on how to compute higher-order correlation functions in
real-time AdS/CFT at zero and finite temperature.

We computed the stopping distance of a high energy jet by measuring the R-charge in its
wake at late times. This reduces to a real-time finite temperature 3-point retarded
⟨j†sourcejresponsejsource⟩ correlator.

While the E1/3 scale is still present, as the maximal distance the jet travels, the typical
stopping distance scale is (EL)1/4.

Other dimensions scales: For AdSd+1,

the maximal distance traveled scales as E(d−2)/(d+2)

the smaller scale, where most of the charge is deposited scales as (EL)(d−2)/(2d)

We gave a simple interpretation for the new scale, as well as for the power law fall-off x−9

which generalizes to x3−4Δ. (Δ the conformal dimension of some BPS CFT operator.)

Work in progress: Correlator of two R-charge densities at late times, in the background of the
source. Consider finite temperature and finite chemical potential.

We computed stress tensor 3-point correlators at finite temperature, and from Kubo-type
formulae we extracted the 2nd order hydro coefficients. Note: a deformation of the
AdS-Schwarzschild geometry is not necessary. BHMR’s results recovered.
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Back-up slides
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Intermediate steps

The supergravity vertex:

Maximally susy 5d gauged supergavity has gauge bosons which transform in the adjoint
rep of SU(4). We are looking at an SU(2) subgroup.

− 1

4g2SGR

∫

d5x
√−g F IJaFa

IJ−
k

96�2

∫

d5x
[

dabc"IJKLMAa
I (∂JA

b
K)(∂LA

c
M ) + ⋅ ⋅ ⋅

]

where

gSG =
4�

Nc
and k = N2

c − 1

The relevant contribution:

− fabc

2g2SGR

∫

d5x
√−g gIMgJN (∂IA

a
J − ∂JA

a
I )A

b
MAc

N
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Crucial approximation and zero-temperature response

The causal gauge boson T = 0 propagator is

G��(q, ū) =
√

4ūq2 K1

(

√

4ūq2
)

(

��� −
q�q�

q2

)

+
q�q�

q2

where ū = z2/4, q2 = ���q�q� and ! → ! ± i� for R/A propagators.

Then in the limit ūQ2 ≪ 1 the response bulk-to-boundary propagator simplifies to

GR��(Q, ū) ≃ ���

and the 1-point R-charge function becomes

⟨j�(x)⟩ ≃ −��� N
2
A

g2SG

∫ ∞

0

dū

ū
A(x, ū)∗i←→∂�A(x, ū)

where A is the convolution of the source with the retarded bulk-to-boundary propagator

A(x, ū) ≡
∫

q
GR⊥(q, ū) Λ̃L(q − k̄) eiq⋅x

The computation is now factorized, and hinges on determining A.
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High-energy approximation

q2 ≃ 4Eq+, q+ =
1

2
q− =

q3 − q0

2
, q− =

1

2
q+ =

q3 + q0

2
≃ E

Choose the envelope to be Gaussian-type

ΛL(q+, x−) = 2
√
�Le−(q+L)2e−(x−/2L)2

then

A(x, ū) ≃ −i 4ūE

(x+)2
eiEx−

ei4ūE/x+

ΛL

(

− 4ūE

(x+)2
;x−

)

�(x+)

and the response function is

⟨j�(x)⟩ ≃ 2k̄�
N 2

A

g2SG

∫ ∞

0

dū

ū
∣A(x, ū)∣2

≃ 2�k̄�
N 2

A

g2SG
e−(x−)2/2L2

�(x+)

Note: keeping L finite is crucial in getting a sensible (non-divergent) answer.
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Schrodinger interpretation

Take the linearized gauge boson equation of motion
(

∂2
ū + i

4E

ū
∂+

)

A⊥(x+, ū) ≃ 0

redefine A⊥ =
√
z� to cast it in a Schrodinger form

2i∂+� =

(

− ∂2
z

2E
+

3

8Ez2

)

�

Conserved probability
∫

dz∣�∣2 =
1

2

∫

dū

ū
∣A∣2

A solves the linearized A⊥ equation.

Recall

A ∝ ūEL

(x+)2
ei4ūE/x+

exp

[

− (4ūEL)2

(x+)4

]

Setting L = 0 amounts to studying non-localized solutions, which have an infinite
normalization

∫

z ∣�∣2.
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Qualitative pictures of the real or imaginary parts of (a) A and (b) �

ū

Im A

∼ x+/E ∼ (x+)2/EL

∼ 1

(a)

z

Im φ

∼
√

x+/E ∼ x+/
√

EL

∼
√

x+
√

EL

(b)

.

Two scales:

z ∼
√

x+/E called “diffusion scale” by Hatta, Iancu and Mueller, and z ∼ x+/(EL) which
characterizes the bulk of the prob. density.

At finite temperature the time scale for the first oscillation of A to fall into the horizon is
x3 ∼ E1/3/T 4/3, but the bulk of the probability falls on a shorter scale as x3 ∼ (EL)1/4/T .
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Consider that the original source is a superposition of wave packets with k̄ off the light-cone
by an amount �, and the spread in momenta 1/L≪ �. Each small wave packet may be
approximated by a point-particle.

The particle falls into the horizon after having traveled a distance

x3

stop ≃
c√
2

( ∣q∣2
−q2

)1/4

≃ c

2

(

E

�

)1/4

Each wave packet will travel a different distance, depending on its energy and �. The total
charge deposited by the initial source will be the weighted average of all these individual
wave packets, with an weight equal to the probability that the source produces a jet of a
given q2, P.

Prob(x3) ≃
∫

d(q2)P(q2) �
(

x3 − xstop3(q
2)
)

For the original source, the typical value for q2 is q2 ∼ E/L.

x3 ∼ (EL)1/4 is then the typical distance traveled by the jet.
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The distribution of stopping distances

Spectral density: �(q) = 2Im(GA
⊥(q)) where GA

⊥ is the gauge boson 2-point advanced
correlator in momentum space.

For large momenta, we can approximate the 2-point function by the vacuum result

�(q) = Im

[

− 1

g2SG
lim
ū→0

∂ūGA⊥
]

= Im

[

− q2

g2SG

(

ln(ūq2) + 2
E

)]

=
�

g2SG
(−q2)�(−q2)sign(q0)

Back-of-envelope calculation:

x3

stop ∼
E1/4

q
1/4
+

, Pdq+ ∼ q2dq+ ∼ q+dq+ ∼ (x3

stop)
−9dx3

stop

so

Prob(x3) ≃ (x3)−9
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The maximal E1/3 scale from the typical (EL)1/4 scale:

The classical particle picture must break down for a stopping distance of the order L.

Back-of-envelope calculation:

x3

stop ∼ L ∼ (EL)1/4 ⇒ L ∼ E1/3 ∼ x3

stop max
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