Motivation	Antenna pattern	BDMPS-Z	In-medium interference	Back up

Edmond Iancu CERN PH-TH & IPhT Saclay

in collaboration with J. Casalderrey-Solana

June 9th, 2011

11th Workshop on Non-Perturbative QCD, 2011

Motivation	Antenna pattern	BDMPS-Z	In-medium interference	Back up

• p+p collisions, or peripheral Pb+Pb collisions

11th Workshop on Non-Perturbative QCD, 2011

 Motivation
 Antenna pattern
 BDMPS-Z
 In-medium interference
 Back up

 ○●○○○○○○
 ○○○○○○
 ○○○○○○
 ○○○○○○○
 ○○○○○○○

Di-jet production at the LHC

- p+p collisions, or peripheral Pb+Pb collisions
- A pair of well collimated, back to back, jets

11th Workshop on Non-Perturbative QCD, 2011

-3 -5 -4 -3 -2 -1 0 1 2

• Central Pb+Pb: mono-jet events

• The secondary jet cannot be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV

0

-1

Interference effects in medium-induced gluon radiation

-3 -5 -4 -3 -2 -1 0 1 2 3

- Central Pb+Pb: the secondary jet is barely visible
- The jet energy has been redistributed in the transverse plane

11th Workshop on Non-Perturbative QCD, 2011

 Motivation
 Antenna pattern
 BDMPS-Z
 In-medium interference
 Back up

 00000000
 00000
 000000
 0000000
 0000000

Di-jet asymmetry (ATLAS)

• Event fraction as a function of the di-jet energy imbalance

$$A_{\rm J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T1}}$$

• ...and of the azimuthal angle $\Delta \phi$, for different centralities.

Di-jet asymmetry (ATLAS)

- Appreciable asymmetry already for p+p (e.g., 3-jet events)
- Additional energy loss of 20 to 30 GeV due to the medium
- Typical event topology: still a pair of back-to-back jets

 Motivation
 Antenna pattern
 BDMPS-Z
 In-medium interference
 Back up

 00000000
 0000000
 00000000
 000000000

Di–jet asymmetry (ATLAS)

- Appreciable asymmetry already for p+p (e.g., 3-jet events)
- Additional energy loss of 20 to 30 GeV due to the medium
- Typical event topology: still a pair of back-to-back jets
- The secondary jet loses energy without being deflected

- Medium-induced, soft, gluon emissions at large angles
- Natural in perturbative QCD: the BDMPS–Z mechanism Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov

- Medium-induced, soft, gluon emissions at large angles
- Natural in perturbative QCD: the BDMPS–Z mechanism Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov
- This could be spoilt by angular ordering of successive emissions

- Destructive interference between different sources
- The only surviving emissions are those inside the antenna

- Destructive interference between different sources
- The only surviving emissions are those inside the antenna
- What about medium-induced radiation ?

- $\theta_{q\bar{q}} \,=\, \theta_{\bar{q}} \,-\, \theta_{q}$
- The simplest device to study interferences the two sources (the quark and antiquark leg) already exist !
- Color singlet ('dipole') and color octet are quite similar

11th Workshop on Non-Perturbative QCD, 2011

 $heta_q \gtrsim heta_{qar q}$: large angle emission (out of cone)

• Large angle gluons see only the total color charge (here, zero)

Lough				
Motivation	Antenna pattern	BDMPS-Z 000000	In–medium interference	Back up 00000000

• A parton in the vacuum radiates within an interval τ_q after a hard scattering

- The longitudinal phase–space is proportional to au_q
- This is true for both direct emissions and interference terms

• A parton in the medium can radiate at any point within the medium size *L*, due to medium rescattering

- Each scattering acts as a kick allowing for radiation.
- This is the BDMPS-Z mechanism

Motivation	Antenna pattern	BDMPS–Z ○●○○○○	In-medium interference	Back up

• The longitudinal phase–space is proportional to L

Motivation	Antenna pattern	BDMPS–Z ○●○○○○	In-medium interference	Back up

• The longitudinal phase–space is proportional to L

• The longitudinal phase–space is proportional to L

• The longitudinal phase–space is proportional to L

• What about the corresponding interference terms ?

11th Workshop on Non-Perturbative QCD, 2011

- Parton mean free path ℓ ($\ell \sim 1/g^2T$ for a QGP)
- Average (momentum)² transfer per scattering μ_D^2 ($\mu_D \sim gT$)

Motivation 00000000	Antenna pattern	BDMPS–Z ○○○●○○	In-medium interference	Back up
In-med	ium formatio	on time		

• Via medium rescattering, the gluon decoheres from its source

• The smaller the energy $\omega,$ the shorter τ_f and the larger the formation angle θ_f

11th Workshop on Non-Perturbative QCD, 2011

Motivation 00000000	Antenna pattern	BDMPS–Z ○○○○●○	In-medium interference	Back up
Kinematical limits				

• The in-medium formation time cannot be larger than L :

 $au_{f}^{max} = L \implies \mathsf{maximal} \ \mathsf{energy} \ (\omega_{c}) \ \& \ \mathsf{minimal} \ \mathsf{angle} \ (heta_{c})$

• After formation, the gluon can still acquire momentum: final momentum Q_s^2 = $\hat{q}L$ & final angle θ_s = Q_s/ω

 Motivation
 Antenna pattern
 BDMPS-Z
 In-medium interference
 Back up

 00000000
 0000
 00000
 0000000
 00000000

The BDMPS–Z spectrum

• $\omega \ll \omega_c \implies$ prompt emission: $\tau_f \ll L$

• ... and well separated angles: $\theta_s \gg \theta_f \gg \theta_c$

11th Workshop on Non-Perturbative QCD, 2011

 Motivation
 Antenna pattern
 BDMPS-Z
 In-medium interference
 Back up

 0000000
 0000
 00000
 000000
 0000000

The BDMPS–Z spectrum

• $\omega \ll \omega_c \implies$ prompt emission: $\tau_f \ll L$

• ... and well separated angles: $\theta_s \gg \theta_f \gg \theta_c$

• The gluon must be coherent (overlap) with both sources

 No overlap between the BDMPS-Z spectrum by one parton and the other parton ⇒ no interference

11th Workshop on Non-Perturbative QCD, 2011

• The two BDMPS-Z spectra overlap with both sources but can they interfere ?

- The two BDMPS-Z spectra overlap with both sources ...
 - ... but can they interfere ?
- No, they cannot ! (no overlap during formation)

- The spectra overlap with both partons during formation.
- Naively : "The typical emission angles being much larger than $\theta_{q\bar{q}}$, there should be destructive interference."

11th Workshop on Non-Perturbative QCD, 2011

• But this is spoilt by color rotations which wash out the color coherence of the $q\bar{q}$ pair over a time

$$\tau_{coh} \simeq \left(\frac{\theta_c}{\theta_{q\bar{q}}}\right)^{2/3} L \ll L$$

- Color coherence is preserved throughout the medium.
- Quantum coherence is ensured during formation.
- Destructive interference \Rightarrow vanishing overall contribution

Motivation	Antenna pattern	BDMPS–Z 000000	In–medium interference ○○○○○●	Back up 00000000
Summary	1			

- So long as $\theta_{q\bar{q}} \gg \theta_c$, interference is parametrically suppressed
 - ullet when $\theta_{q\bar{q}}\gtrsim \,\theta_f$, it is suppressed by quantum decoherence
 - when $heta_f > heta_{qar q} \gg heta_c$, it is suppressed by color decoherence
- When $heta_{qar q} \ll heta_c$, the total medium-induced radiation vanishes
- When non-zero, the medium-induced radiation by the dipole \simeq

the incoherent sum of the 2 contributions by the q and the \bar{q}

- This paves the way to Monte-Carlo generators (J. Stachel, U. Wiedemann, C. Zapp, 2011, w.i.p.)
- Can pQCD describe the di-jet asymmetry seen at the LHC ?

• In-medium jet evolution proceeds via independent emissions

11th Workshop on Non-Perturbative QCD, 2011

 Motivation
 Antenna pattern
 BDMPS-Z
 In-medium interference
 Back up

 00000000
 0000
 0000000
 0000000
 0000000
 0000000

In-out asymmetry (CMS)

11th Workshop on Non-Perturbative QCD, 2011

Interference effects in medium-induced gluon radiation

 Motivation
 Antenna pattern
 BDMPS-Z
 In-medium interference
 Back up

 00000000
 0000
 000000
 000000
 000000
 0000000

R_{AA} at RHIC & the LHC : **ALICE**

• Nuclear modification factor

 $R_{AA}(p_{\perp}) \equiv \frac{\text{Yield}(A+A)}{\text{Yield}(p+p) \times A^2}$

- Strong suppression at moderate p_T
- Rapid increase for larger p_T
- Current models do not account for all these features

• Mostly soft ($\omega \rightarrow 0$) and collinear gluons ($\theta_q \rightarrow 0$)

• Direct emissions plus interferences in the vacuum

• The interference term $(-2\theta_q\theta_{\bar{q}}\tau_q\tau_{\bar{q}})$ cancels direct emissions when θ_q , $\theta_{\bar{q}} \gg \theta_{q\bar{q}} \implies$ angular ordering

• A vacuum-like gluon emitted at a large angle $\geq \theta_{q\bar{q}}$ by one of the partons can interfere with the other parton.

• This provides a BDMPS-Z-like contribution to the spectrum.

• A vacuum–like gluon emitted at a large angle $\geq \theta_{q\bar{q}}$ w.r.t. one parton can interfere with the second parton

• ... but this has a very small phase–space: $\tau_{int} = \frac{1}{\omega \theta_{\pi\pi}^2} \ll L$

'Vacuum-medium' interference is still possible ...
 but it is again suppressed by its small phase-space (τ_{int} ≪ L)