
Thermalization
in QCD and AdS/CFT

Berndt Müller
11th Workshop on Non-Perturbative QCD 

Paris, 6−10 June 2011

Thursday, June 9, 2011



2

The Thermalization
Problem
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Thermalization
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How long does it take?

How thermal is it?

Characteristic participant parton momentum scale: Qs

Characteristic parton momentum scale: T << Qs 
(at weak coupling)

How does the thermalization process work ?

“Bottom up”, or  “Top down” ?
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Entropy evolution
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Decoherence

Equilibration Isentropic expansion

Freeze-out

dS/dy =      0   1500      4500                                                   5100       5600

Central Au+Au collision at √sNN = 200 GeV
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The problem
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SvN = −Tr ρ lnρ[ ]The von Neumann entropy

is conserved for any closed quantum system described by a Hamiltonian.

SX = −TrX ρX lnρX[ ] ρX = TrY ρ[ ]with

Approach 1: For system X interacting with its environment Y, the reduced entropy

increases as a result of growing entanglement between X and Y. Consider, e.g., 
a rapidity interval [y,y+Δy] as “system” and the remainder as “environment”, which 
cannot effectively communicate due to causality. 

Problem: How to split reaction volume unambiguously into X and Y ?

Approach 2: Consider the effective growth of the entropy due to the increasing 
intrinsic complexity of the quantum state after “coarse graining”.

Problem: How to coarse grain without assuming the answer ?

Thursday, June 9, 2011



6

The Husimi Function
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m(t)2 =ω 2θ(−t) − λ2θ(t)

The “pencil on its tip”
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The decay of an unstable vacuum state is a common problem, e.g., in cosmology 
and in condensed matter physics. Paradigm case:  inverted oscillator.

t = 0 t = 1 t = 2

t < 0 |Ψ(x)|²

|Ψ(x)|² |Ψ(x)|² |Ψ(x)|²

V(x)

V(x)V(x)V(x)
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du e−ipu�q +
1
2
u| ρ̂(t) |q − 1

2
u�Wigner function:
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Wigner function
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Husimi transform

 Problem: Wigner function cannot be interpreted as a probability 
distribution, because W(p,x) is not positive definite. 

 Idea (Husimi - 1940): Smear the Wigner function with a Gaussian 
minimum uncertainty wave packet:

 H(p,x) can be shown to be the expectation value of the density matrix 
in a coherent oscillator state |x+ip〉and thus H(p,x) ≥ 0 holds always.

 H(p,x) can be considered as a probability density, enabling the 
definition of a minimally coarse grained entropy (Wehrl - 1978):
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Wigner vs. Husimi 
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t = 0

t = 0 t = 2

t = 2

Wigner
function

Husimi
function
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dSH
dt

=
λσρ sinh2λt

σρ cosh 2λt +1+ ′δ δ
t→∞⎯ →⎯⎯ λ with ρ,σ ,δ , ′δ  constants dep. on ω ,λ

dSH
dt

t→∞⎯ →⎯⎯ λk
k
∑ θ λk( )

SH entropy growth
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Many modes:

Kolmogorov-Sinai (KS) entropy growth rate 
hKS  of classical dynamical system theory.

KS-entropy growth rate describes the 
growth rate of the  entropy for a coarse 
grained phase space density.
[Latora & Baranger, PRL 82 (1999) 520]

but independent of Δ and ħ  !!!

Kunihiro, BM, Ohnishi & Schäfer, 
Prog. Theor. Phys. 121 (2009) 555
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W [Π,Φ; t] = C e
−

R dp
2π

„
|Πp|2
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with Ep =
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Φ0
p = Φp(t) cosh λpt−

Πp(t)
λp

sinhλpt

Π0
p = Πp(t) cosh λpt− λp Φp(t) sinhλpt

Φ0
p = Φp(t) cos ωpt−

Πp(t)
ωp
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Π0
p = Πp(t) cos ωpt + ωp Φp(t) sinωpt
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µ2 − p2 ωp =
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Quantum quench
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Ĥ(t) =
� ∞

0

dp

2π

�
Π̂†(p)Π̂(p) + (m2(t) + p

2) Φ̂†(p)Φ̂(p)
�

m2(t) = m2 θ(−t)− µ2 θ(t)with

Split problem into stable ( p² > μ² ) and unstable ( p² < μ² ) modes.

Wigner
functional:

Each mode of  W evolves along a classical trajectory:

|p| < μ |p| > μ

“Quantum quench”
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Instability begets entropy
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Only SH of unstable modes grows !

unstab
le mode 

stable mode 
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Yang-Mills theory
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YM model system
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HM Tsai & BM, arXiv: 1011.3508
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Yang-Mills theory
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continuum lattice

classical EOM’s:

infinitesimal fluctuations (Hessian):
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Infinitesimal fluctuations grow at
exponential rate increasing with 
energy density

Intermediate time 
Lyapunov spectrum
on 43 lattice
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energy dependence of 
maximal Lyapunov exponent 
and KS entropy growth rate

∑i λi  ~  ε1/4 L3 

⇒  τeq ~ 5/T  ~  2−3 fm/c

Kunihiro, BM, Ohnishi, Schäfer, 
Takahashi & Yamamoto 
Phys. Rev. D82 (2010) 114015
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Holographic
Thermalization
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AdS/CFT dictionary
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HI collision                                 Energy injection
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Holographic thermalization
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 What is the measure of thermalization on the boundary?

 Local operators are not sufficient

 Nonlocal operators are more sensitive

 What is the thermalization time?

 When observables reach their thermal values

〈Tμν〉etc.

〈O(x)O(x′)〉etc.

Vijay Balasubramanian (U Penn)
Alice Bernamonti, Ben Craps, Neil Copland, Wieland Staessens (VU Brussels)
Jan de Boer (Amsterdam)
Esko Keski-Vakkuri (Helsinki/Uppsala)
Masaki Shigemori (KMI Nagoya)
Andreas Schäfer (Regensburg)
Phys. Rev. Lett. 106 (2011) 191601; arXiv: 1010.4753
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Thermality probes

 Local operators like 〈Tµν〉 measure moments of the 
momentum distribution of field excitations
 e.g. 〈kx2〉vs. 〈kz2〉

 Nonlocal operators, like the equal-time Green function, 
are sensitive to the momentum distribution and to the 
spectral density of excitations:
  
  

 Entropy is the “gold standard” of thermalization:
 S = - Tr[ρ ln(ρ)]  probes all degrees of freedom.
 Coarse graining mechanism: Entanglement entropy.
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Probes we consider
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For details: V. Balasubramanian, et al., PRL 106, 191601 (2011); arXiv:1103.2683

See also:  S. Caron-Huot, P.M. Chesler & D. Teaney, arXiv:1102.1073

(same dimension as boundary space)

Use semiclassical approximation
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Entanglement entropy
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Modes with momentum k “leak” into surrounding 
by Δx ~ 1/k  ➠ entanglement with environment

Entanglement entropy of localized vacuum domain 
is proportional to surface area (Srednicki 1994).

γ(V)

V

V

Minimal
surface

T ≠ 0:   S proportional to volume
⇔ area of horizon of dual BH

(Ryu & Takayanagi 2006)

γ(V) ~ |∂V|

γ(V) ~ |V|
BH

IR

UV
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Vaidya-AdS geometry
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 Light-like (null) infalling energy shell 
in AdS (shock wave in bulk)
 Vaidya-AdS space-time (analytical)

 z = 0: UV      z = ∞: IR 
 Homogeneous, sudden injection of 

entropy-free energy in the UV
 Thin-shell limit can be studied semi-

analytically
 We studied AdSd+1 for d = 2,3,4
 ⇔ Field theory in d dimensions

v = 0

Injection moment
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Probing thermalization
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Equal-time geodesics for 
fixed t0 = 2 and
l = 3.0, 4.6, 68.2

Geodesics staying outside the falling shell
only probe “thermal” part of bulk space

➠ 2-point function is thermalized

with
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2-point functions
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Higher dim. observables
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Wilson 
“sphere”
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Entropy thermalizes slowest
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Entanglement entropy 
of spherical volume 

in   d = 2, 3, 4

τcrit = l/2

Thermalization time for entanglement entropy 
= time for light to escape from the center of the volume to the surface

All other observables thermalize even faster.
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Conclusions
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 Long-distance observables sensitive to IR modes take 
longer to thermalize
 Top-down rather than bottom-up thermalization

 Entropy is the last observable to reach thermal value
 Thermalization proceeds as fast as constrained by causality 

i.e. at the speed of light
 True for homogeneous energy injection; speed of sound will 

govern equilibration of spatial inhomogeneities

(Very crude) phenomenology:  
 

τcrit ~ 0.5 ħ/T ≈ 0.3 fm/c  for  T = 300 − 400 MeV
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The End !
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