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The Thermalization
Problem

Thursday, June 9, 2011



Thermalization
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How long does it take?

How thermal is it?

Characteristic participant parton momentum scale: Qs

Characteristic parton momentum scale: T << Qs 
(at weak coupling)

How does the thermalization process work ?

“Bottom up”, or  “Top down” ?
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Entropy evolution
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Decoherence

Equilibration Isentropic expansion

Freeze-out

dS/dy =      0   1500      4500                                                   5100       5600

Central Au+Au collision at √sNN = 200 GeV
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The problem
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SvN = −Tr ρ lnρ[ ]The von Neumann entropy

is conserved for any closed quantum system described by a Hamiltonian.

SX = −TrX ρX lnρX[ ] ρX = TrY ρ[ ]with

Approach 1: For system X interacting with its environment Y, the reduced entropy

increases as a result of growing entanglement between X and Y. Consider, e.g., 
a rapidity interval [y,y+Δy] as “system” and the remainder as “environment”, which 
cannot effectively communicate due to causality. 

Problem: How to split reaction volume unambiguously into X and Y ?

Approach 2: Consider the effective growth of the entropy due to the increasing 
intrinsic complexity of the quantum state after “coarse graining”.

Problem: How to coarse grain without assuming the answer ?
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The Husimi Function
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m(t)2 =ω 2θ(−t) − λ2θ(t)

The “pencil on its tip”
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The decay of an unstable vacuum state is a common problem, e.g., in cosmology 
and in condensed matter physics. Paradigm case:  inverted oscillator.

t = 0 t = 1 t = 2

t < 0 |Ψ(x)|²

|Ψ(x)|² |Ψ(x)|² |Ψ(x)|²

V(x)

V(x)V(x)V(x)
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du e−ipu�q +
1
2
u| ρ̂(t) |q − 1

2
u�Wigner function:
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Wigner function
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Husimi transform

 Problem: Wigner function cannot be interpreted as a probability 
distribution, because W(p,x) is not positive definite. 

 Idea (Husimi - 1940): Smear the Wigner function with a Gaussian 
minimum uncertainty wave packet:

 H(p,x) can be shown to be the expectation value of the density matrix 
in a coherent oscillator state |x+ip〉and thus H(p,x) ≥ 0 holds always.

 H(p,x) can be considered as a probability density, enabling the 
definition of a minimally coarse grained entropy (Wehrl - 1978):
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H∆(p, x; t) ≡
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π� exp
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− 1
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Wigner vs. Husimi 
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t = 0

t = 0 t = 2

t = 2

Wigner
function

Husimi
function
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dSH
dt

=
λσρ sinh2λt

σρ cosh 2λt +1+ ′δ δ
t→∞⎯ →⎯⎯ λ with ρ,σ ,δ , ′δ  constants dep. on ω ,λ

dSH
dt

t→∞⎯ →⎯⎯ λk
k
∑ θ λk( )

SH entropy growth
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Many modes:

Kolmogorov-Sinai (KS) entropy growth rate 
hKS  of classical dynamical system theory.

KS-entropy growth rate describes the 
growth rate of the  entropy for a coarse 
grained phase space density.
[Latora & Baranger, PRL 82 (1999) 520]

but independent of Δ and ħ  !!!

Kunihiro, BM, Ohnishi & Schäfer, 
Prog. Theor. Phys. 121 (2009) 555
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W [Π,Φ; t] = C e
−

R dp
2π

„
|Πp|2
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«

with Ep =
�

p2 + m2

Φ0
p = Φp(t) cosh λpt−

Πp(t)
λp

sinhλpt

Π0
p = Πp(t) cosh λpt− λp Φp(t) sinhλpt

Φ0
p = Φp(t) cos ωpt−

Πp(t)
ωp

sinωpt

Π0
p = Πp(t) cos ωpt + ωp Φp(t) sinωpt

λp =
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µ2 − p2 ωp =
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Quantum quench
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Ĥ(t) =
� ∞

0

dp

2π

�
Π̂†(p)Π̂(p) + (m2(t) + p

2) Φ̂†(p)Φ̂(p)
�

m2(t) = m2 θ(−t)− µ2 θ(t)with

Split problem into stable ( p² > μ² ) and unstable ( p² < μ² ) modes.

Wigner
functional:

Each mode of  W evolves along a classical trajectory:

|p| < μ |p| > μ

“Quantum quench”
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Instability begets entropy
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Only SH of unstable modes grows !

unstab
le mode 

stable mode 
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Yang-Mills theory
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YM model system
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HM Tsai & BM, arXiv: 1011.3508
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Yang-Mills theory

16

continuum lattice

classical EOM’s:

infinitesimal fluctuations (Hessian):
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Infinitesimal fluctuations grow at
exponential rate increasing with 
energy density

Intermediate time 
Lyapunov spectrum
on 43 lattice
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energy dependence of 
maximal Lyapunov exponent 
and KS entropy growth rate

∑i λi  ~  ε1/4 L3 

⇒  τeq ~ 5/T  ~  2−3 fm/c

Kunihiro, BM, Ohnishi, Schäfer, 
Takahashi & Yamamoto 
Phys. Rev. D82 (2010) 114015
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Holographic
Thermalization
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AdS/CFT dictionary
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HI collision                                 Energy injection
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Holographic thermalization

21

 What is the measure of thermalization on the boundary?

 Local operators are not sufficient

 Nonlocal operators are more sensitive

 What is the thermalization time?

 When observables reach their thermal values

〈Tμν〉etc.

〈O(x)O(x′)〉etc.

Vijay Balasubramanian (U Penn)
Alice Bernamonti, Ben Craps, Neil Copland, Wieland Staessens (VU Brussels)
Jan de Boer (Amsterdam)
Esko Keski-Vakkuri (Helsinki/Uppsala)
Masaki Shigemori (KMI Nagoya)
Andreas Schäfer (Regensburg)
Phys. Rev. Lett. 106 (2011) 191601; arXiv: 1010.4753
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Thermality probes

 Local operators like 〈Tµν〉 measure moments of the 
momentum distribution of field excitations
 e.g. 〈kx2〉vs. 〈kz2〉

 Nonlocal operators, like the equal-time Green function, 
are sensitive to the momentum distribution and to the 
spectral density of excitations:
  
  

 Entropy is the “gold standard” of thermalization:
 S = - Tr[ρ ln(ρ)]  probes all degrees of freedom.
 Coarse graining mechanism: Entanglement entropy.
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Probes we consider
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For details: V. Balasubramanian, et al., PRL 106, 191601 (2011); arXiv:1103.2683

See also:  S. Caron-Huot, P.M. Chesler & D. Teaney, arXiv:1102.1073

(same dimension as boundary space)

Use semiclassical approximation
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Entanglement entropy
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Modes with momentum k “leak” into surrounding 
by Δx ~ 1/k  ➠ entanglement with environment

Entanglement entropy of localized vacuum domain 
is proportional to surface area (Srednicki 1994).

γ(V)

V

V

Minimal
surface

T ≠ 0:   S proportional to volume
⇔ area of horizon of dual BH

(Ryu & Takayanagi 2006)

γ(V) ~ |∂V|

γ(V) ~ |V|
BH

IR

UV

Thursday, June 9, 2011



Vaidya-AdS geometry
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 Light-like (null) infalling energy shell 
in AdS (shock wave in bulk)
 Vaidya-AdS space-time (analytical)

 z = 0: UV      z = ∞: IR 
 Homogeneous, sudden injection of 

entropy-free energy in the UV
 Thin-shell limit can be studied semi-

analytically
 We studied AdSd+1 for d = 2,3,4
 ⇔ Field theory in d dimensions

v = 0

Injection moment
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Probing thermalization
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Equal-time geodesics for 
fixed t0 = 2 and
l = 3.0, 4.6, 68.2

Geodesics staying outside the falling shell
only probe “thermal” part of bulk space

➠ 2-point function is thermalized

with
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2-point functions
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Higher dim. observables
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Wilson 
“sphere”
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Entropy thermalizes slowest
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Entanglement entropy 
of spherical volume 

in   d = 2, 3, 4

τcrit = l/2

Thermalization time for entanglement entropy 
= time for light to escape from the center of the volume to the surface

All other observables thermalize even faster.
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Conclusions
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 Long-distance observables sensitive to IR modes take 
longer to thermalize
 Top-down rather than bottom-up thermalization

 Entropy is the last observable to reach thermal value
 Thermalization proceeds as fast as constrained by causality 

i.e. at the speed of light
 True for homogeneous energy injection; speed of sound will 

govern equilibration of spatial inhomogeneities

(Very crude) phenomenology:  
 

τcrit ~ 0.5 ħ/T ≈ 0.3 fm/c  for  T = 300 − 400 MeV
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The End !
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