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Random graphs
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Ensemble of random graphs

The graph G is chosen from some ensemble G
with probability P(G).

We can calculate various (average) properties of the
distribution P(G).

〈O〉 =
∑

G∈G

O(G)P(G)

Degree distribution
Diameter



Graph probability P(G) can be given

explicitly

or implicitly by eg specifying the construction process
(growing networks)



Growth process

What kind of ensemble is generated by a growth proces?

What is the probability for a given given graph to occur?

P(final) =
∑

paths

P(path)

= Z−1 1
S(T )

ρ(T )

What are symmetry factors
S(T ) and weights ρ ?
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Labeled graphs

Usually we deal with labeled graphs ie with distinguishable
vertices.

A graph with N vertices can be labeld in N! ways
(but some of them are indistinguishable).
As in Boltzman statistics we factor this out:

P(G) =
1

N(G)!

ρ(G)

Z
, Z =

∑

G∈G

1
N(G)!

ρ(G)



Unlabeled graphs

We assume that ρ(G) does not depend on the labeling

Z =
∑

G∈Glabelled

1
N(G)!

ρ(G) =
∑

G∈Gunlabelled

1
S(T )

︷ ︸︸ ︷

L(G)

N(G)!
ρ(G)

L(G) is the number of distinct labelings of graph G.

symetry factors 1/S(T ) – kinematics, “phase space”

weights ρ(T ) – dynamics



Labelings (rooted graphs)

4!
4! = 14!

4! = 1

4
4! =

1
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Random Graphs Ensemble

To specify the random graphs ensemble explicitly we need:

Ensemble

Symmetry factors (equality)

Weights

Simplest weight is of the form (factorizes):

ρ(G) =
∏

i∈G

ρqi



Growing random networks

We start with a single vertex

At each step we attach a new vertex.

The father is choosed with probability proportional to Aq

where q is its degree ie the number of links attached to it.

Aq is called an attachment kernel.
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Growing random networks
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Attachment probability depends on labelings via normalisation



Mathew effect

The simple random model of graphs (ER) predicted Poisonian
distribution.
The appearance of the power law in degree distribution can be
explained by the preferential attachment rule.

For unto every one that hath shall be given, and he
shall have abundance: but from him that hath not shall
be taken away even that which he hath.

Mt25:29, The Bible Authorised King James Version

H.A. Simon, Biometrica 42, 425 (1995)



Preferential attachment

Aq = q + ω, ω > −1

πq = (2 + ω)
Γ(3 + 2ω)
Γ(1 + ω)

Γ(q + ω)

Γ(q + 3 + 2ω)
∼ q−(3+ω)

In this case the norm does not depend on the tree:
∑

i

Aqi = 2n + ωn



Growth process

What kind of ensemble is generated by a growth proces?

What is the probability for a given given graph to occur?

P(final) =
∑

paths

P(path)

= Z−1 1
S(T )

ρ(T )

What are symmetry factors
S(T ) and weights ρ ?



Causal trees

Can we describe the final ensemble?

Labels represent “time of birth”.
The label of the child must be greater then label of its father

Causal labelings (increasing trees)
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Causal trees – weights

For general attachment kernel weights depend on the
labeling

For affine kernels probability of constructing a vertex with
degree q is the probability of constructing the vertex of
degree q − 1 and attaching a new branch to it:

ρq = ρ1

q−1
∏

k=1

Ak , ρ(T ) =
∏

i∈T

ρqi

This gives model identical to GRN



Causal trees

Weights do not depend on the labels and factorise

ρ(T ) =
∏

i∈vertices

ρqi

ρq are arbitrary non-negative numbers. qi is a degree of
vertex i .

How do the properties of trees with causal labelings differ
form arbitraly labeled trees?



Partition function – trees

=
N + 1

N
N1 N2

N1 N2 N3

zN+1 =
1

(N + 1)!

∑

T∈TN+1

ρ(T ) =
1

(N + 1)!

∞∑

k=1

∑

T1,...,Tk

δN1+···+Nk ,N

1
k !

(N + 1)!
N1! · · ·Nk !

ρk+1

k∏

i=1

ρ(Ti)

number of ways of distributing labels between trees



Partition function – trees – causal

=++
1 1 1

N + 1

N
N1 N2 N1 N2 N3

zN+1 =
1

(N + 1)!

∑

T∈TN+1

ρ(T ) =
1

(N + 1)!

∞∑

k=1

∑

T1,...,Tk

δN1+···+Nk ,N

1
k !

N!

N1! · · ·Nk !
ρk+1

k∏

i=1

ρ(Ti)

number of ways of distributing labels between causal trees



Generating function (grand–canonical ensemble)

Z (µ) =
∞∑

N=1

e−µNzN (Laplace transform)

Z (µ) = e−µ
1

Z (µ)
F (Z (µ))

F (Z ) =
∞∑

q=1

ρqZ q

eµ = G(Z ) ≡
F (Z )

Z 2



Generating function (grand–canonical ensemble)

Z (µ) =
∞∑

N=1

e−µNzN (Laplace transform)

Z ′(µ) = −e−µ
1

Z (µ)
F (Z (µ))

F (Z ) =
∞∑

q=1

ρqZ q

e−µ = G(Z ) ≡

∫ Z

0

xdx
F (x)

, µ̄ = − log G(Z )

where Z is the radius of convergence of series F (Z ).



Correlations

Z4 Z44 Z443

G(r , µ) ≤ x̄

(
log F (Z (µ))

)r−1

(r − 1)!

〈r〉
µ
≤ const log

1
∆µ

〈r〉N ≤ const log N



Weight of causality

zN =
1

N!

∑

T∈labeled

ρ(T )

ZN =
1

N!

∑

T∈causal

ρ(T ) =
1

N!

∑

T∈labeled

w(T )ρ(T ) ?

w(T ) =
#causal labelings

#all labelings



Weight of causality

ZN+1 =
1

N + 1

∞∑

k=1

ρk+1

∑

N1,...,Nk

δN1+···+Nk ,N

k∏

i=1

ZNi

zN+1 =
∞∑

k=1

ρk+1

∑

N1,...,Nk

δN1+···+Nk ,N

k∏

i=1

zNi

w(T ) =
∏

subtrees

1
size of the subtree

=
∏

i∈T

1
# of descendants of i + 1
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Weight of causality

Causal labeling supresses elongated trees

Linear chain

w(T ) =
1

N!

Star

w(T ) =
1
N



Summary

One can embed growth information into random graphs
ensemble using causal labelings.

If we assume that the weights factorise the model can be
solved for tree graphs.

Generic causal random tree has an infinite Hausdorff
dimension.



Summary

Causal labelings on rooted trees can be reproduced by
non–local weights

w(T ) =
∏

subtrees

1
size of the subtree

=
∏

i∈T

1
# of descendants of i + 1


