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Gauge invariant Green'’s functions

Gauge invariant Green’s functions are expected to provide more
reliable informations about the physical properties of observables than
the gauge variant ones.

For quarks, the gauge invariant two-point Green'’s function is defined

as
1
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where U is a path-ordered gluon field phase factor along a line C,,
joining a point x to a point x’:
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Green’s functions with paths along skew-polygonal lines are of
particular interest. Straight line segments have Lorentz invariant forms.

For skew-polygonal lines with n sides and n — 1 junction points
Y1, Y2, - - -,Yn_1 Detween the segments, we define:

1
Ne

S(n)(wa :B,; Yn—1s+++s Y1) = — <E(w,)U(w,9 Yn—1) - - - U(y1, T)P(x)),

where each U is along a straight line segment.

For one straight line, one has:

Sy (@,2) = S(w,a') = —~— (B(@) Ula!, 2) ().



Pictorially:
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Quark propagator in the external gluon field

A two-step guantization. One first integrates with respect to the quark
fields. This produces in various terms the quark propagator in the
presence of the gluon field. Then one integrates with respect to the
gluon field through Wilson loops.

We use for the quark propagator in extenal field a representation
which involves phase factors along straight lines together with the full
guark Green’s function. Generalization of a representation introduced
by Eichten and Feinberg, 1981, for heavy quarks.



The quark propagator in the external gluon field is expanded around
the following gauge covariant quantity:

S(x,x") [U(az, a:')} -
[S(x, x") is the gauge invariant Green’s function along one straight line
segment.]

S(z,a; A) = S(z, 2" )U (2, ")+ (S(CB, y)(s%];fc,—y) 5§;i,+y)

U (x, y)) 'Yas(yv 513,; A).



Pictorially:

This yields an expansion of S(A) in terms of the gauge invariant
Green’s function .S and explicit phase factors along straight lines.

Its systematic use leads to the derivation of functional relations
between the Green’s functions S, (polygonal line with n segments)
and S (one segment).



Using then the quark equations of motion and the functional relations
between Green’s functions, one establishes the following integrodiffe-
rential equation for the Green’s function S(x, x’):

(¢7-0(z)—m)S(z, ') = i54(w—w’)+iv“{Kzu(w’, T, Y1) S(2)(y1, z'5 )

+ Z K’nu(m,a Ly Ylyeeey yn—l) S(n) (yn—b w,; Ly Yisyeeey y’n—2)}’

n=3

where the kernel K,, contains globally n derivatives of Wilson loops
with a (n + 1)-sided skew-polygonal contour and also the Green’s
function .S and its derivative.

The Green’s functions S(,,) themselves are related to the simplest
Green’s function S with functional relations.



Interest of the quark gauge invariant Green’s function

Interest related to its particular status.
If the theory is confining, it is not possible to cut the Green’s function
and to saturate it with a complete set of physical states (hadrons).
Intermediate states are necessarily colored states.

(b() U(x', z) P(x)).

This would suggest that the Green’s function does not have
singularities.
However, the equation that it satisfies, derived from the QCD

Lagrangian, contains singularities generated by the free quark
propagator.



This paradoxical situation is overcome with the acceptance that the
guarks and gluons continue forming a complete set of states with
positive energies and could be used for any saturation scheme of
Intermediate states. It is up to the theory to indicate to us at the end
how the related singularities combine to form the complete solutions.

Therefore, the knowledge of the gauge invariant quark Green’s
function provides us a direct information about the effect of
confinement in the colored sector of quarks.
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Spectral functions

Green’s functions with paths along straight lines are dependent only
on the end points of the paths. The transition is then simple to
momentum space by Fourier transformation.

Using then the spectral analysis with intermediate states and
causality, one arrives at a generalized form of the Kallen—Lehmann
representation for the Green'’s function .S in momentum space, in which
the cut starts on the real axis from the quark mass squared m? and
extends to infinity.

11



d*p
(2m)*

S(x,z') = S(x —x') = e—ip-(x — ') S(p).

S(p) has the following representation in terms of real spectral

functions p{™ and p{™ (n =1, ..., c0):

e > [v.ppi™M(s) + pSM(s)]
S — z/ ds’ i
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Two-dimensional QCD

Many simplifications in two-dimensional QCD at large N.. In two
dimensions, Wilson loop averages are exponential functionals of the
areas of the surfaces enclosed by the contours. At large V., crossed
diagrams and quark loop contributions disappear. ('t Hooft, 1974.)

Equation of S with the lowest-order kernel becomes an exact
equation. In two dimensions, the second-order derivative of the
logarithm of the Wilson loop average is a delta-function.

(7.0 — m)S(x) = i6*(x) — 07" (guaduvs — Gupgva)x”z”

X [/0 dANS((1 — N)xz)y*S(\x) + /100 déS((1 — &x)v*S(&x)|.
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S(p) = v.pFi(p*) + Fo(p?).

S(x) = 2;(i'1'wﬁ1(r) + Fo(r)), r=v—a2.

One obtains two coupled equations. Their resolution proceeds
through several steps, based mainly on the spectral representation and
the related analyticity properties.

The equations can be solved explicitly.
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The covariant functions F (p?) and Fy(p?) are:

1
F1(p ) = —z—z "(M2 _ p2)3/2’

Fo(p) = 7’% Z(_ )"“bn (M%]_\/I";Z)gm.

The threshold singularities or branch pomts M1 , Mzz, cee be, . .. are labelled
with increasing values with respect to the index n; in particular M; > m.

For large n.:

2
o

2 2
M, ~ ornn, b, ~ —, for omn > m”.

In x—space (r = /—x2):

~ T~ —Mar % ™ n — M,
Fi(r) = o= > bae” M7, Fy(r) = — 37 (=1)"bue TV
n=1

n=1
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Asymptotic behaviors:

Fl(pz) =

FO(pz) — TR
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Conclusion

1) The spectral functions are infrared finite and lie on the positive real
axis of p%. No singularities in the complex plane or on the negative real
axis have been found. — Quarks contribute with positive energies.

2) The singularities are represented by an infinite number of
threshold type singularities, characterized by positive masses M,
(n =1,2,...). The corresponding singularities are stronger than
simple poles and this feature might prevent observability of quarks as
free particles.

3) The threshold masses M,, represent dynamically generated
masses and maintain the scalar part of the Green’s function at a
nonzero value.
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