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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j
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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j

• The homogeneous equation can be solved exactly by

φ = µ
(

2

λ

)

1
4

sn(p · x+ θ, i)

being sn an elliptic Jacobi function and µ and θ two constants. This solution
holds provided the following dispersion relation holds

p2 = µ2
√

λ

2

so this solution represents a free massive solution notwithstanding we started
from a massless theory.
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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j

• The homogeneous equation can be solved exactly by

φ = µ
(

2

λ

)

1
4

sn(p · x+ θ, i)

being sn an elliptic Jacobi function and µ and θ two constants. This solution
holds provided the following dispersion relation holds

p2 = µ2
√

λ

2

so this solution represents a free massive solution notwithstanding we started
from a massless theory.

• Mass arises from the nonlinearities when λ is taken to be finite rather than
going to zero.
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ→ ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′∆(x− x′)j(x′) + δφ

being δφ all higher order corrections.
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ→ ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′∆(x− x′)j(x′) + δφ

being δφ all higher order corrections.

• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′∆(x− x′)[∆(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2∆(x− x′) + λ[∆(x− x′)]3 = µ−1δ4(x− x′).
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ→ ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′∆(x− x′)j(x′) + δφ

being δφ all higher order corrections.

• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′∆(x− x′)[∆(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2∆(x− x′) + λ[∆(x− x′)]3 = µ−1δ4(x− x′).

• This implies that the corresponding quantum field theory, in a very strong
coupling limit, takes a Gaussian form and is trivial (triviality of the scalar field
theory in the infrared limit).
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ→ ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′∆(x− x′)j(x′) + δφ

being δφ all higher order corrections.

• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′∆(x− x′)[∆(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2∆(x− x′) + λ[∆(x− x′)]3 = µ−1δ4(x− x′).

• This implies that the corresponding quantum field theory, in a very strong
coupling limit, takes a Gaussian form and is trivial (triviality of the scalar field
theory in the infrared limit).

• All we need now is to find the exact form of the propagator ∆(x− x′) and we
have completely solved the classical theory for the scalar field in a strong
coupling limit.
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Classical field theory: Scalar field
• In order to solve the equation

2∆(x− x′) + λ[∆(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2t∆0(t− t′) + λ[∆0(t− t′)]3 = µ2δ(t− t′).
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Classical field theory: Scalar field
• In order to solve the equation

2∆(x− x′) + λ[∆(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2t∆0(t− t′) + λ[∆0(t− t′)]3 = µ2δ(t− t′).

• It is straightforwardly obtained the Fourier transformed solution

∆0(ω) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

ω2 −m2
n + iǫ

being mn = (2n+ 1) π
2K(i)

(

λ
2

)

1
4 µ and K(i) ≈ 1.3111028777 an elliptic integral.
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Classical field theory: Scalar field
• In order to solve the equation

2∆(x− x′) + λ[∆(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2t∆0(t− t′) + λ[∆0(t− t′)]3 = µ2δ(t− t′).

• It is straightforwardly obtained the Fourier transformed solution

∆0(ω) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

ω2 −m2
n + iǫ

being mn = (2n+ 1) π
2K(i)

(

λ
2

)

1
4 µ and K(i) ≈ 1.3111028777 an elliptic integral.

• We are able to recover the full covariant propagator by boosting from the rest
reference frame obtaining finally

∆(p) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

p2 −m2
n + iǫ

.

This shows that our solution given above indeed represents a strong coupling
expansion being meaningful for λ→ ∞.
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Classical field theory: Yang-Mills field
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−(1−

1
α )∂ν(∂

µAa
µ)+gfabcAbµ(∂µA

c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .
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Classical field theory: Yang-Mills field
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−(1−

1
α )∂ν(∂

µAa
µ)+gfabcAbµ(∂µA

c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).
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Classical field theory: Yang-Mills field
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−(1−

1
α )∂ν(∂

µAa
µ)+gfabcAbµ(∂µA

c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).

• Differently from the scalar field, we cannot just boost away these solutions to
get a general solution to Yang-Mills equations due to gauge symmetry.
Anyhow, one can prove that the mapping persists but is just approximate in the
limit of a very large coupling.
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Classical field theory: Yang-Mills field
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−(1−

1
α )∂ν(∂

µAa
µ)+gfabcAbµ(∂µA

c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).

• Differently from the scalar field, we cannot just boost away these solutions to
get a general solution to Yang-Mills equations due to gauge symmetry.
Anyhow, one can prove that the mapping persists but is just approximate in the
limit of a very large coupling.

• This mapping would imply that we will have at our disposal a starting solution
to build a quantum field theory for a strongly coupled Yang-Mills field. This
solution has a mass gap already at a classical level!
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Classical field theory: Yang-Mills field
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

Low-energy limit of QCD at finite temperature – p. 7/25



Classical field theory: Yang-Mills field
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].
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∫
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µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].

• This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.
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Classical field theory: Yang-Mills field
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].

• This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.

• The crucial point, as already pointed out in the eighties [T. Goldman and R. W.
Haymaker (1981), T. Cahill and C. D. Roberts (1985)], is the exact
determination of the gluon propagator in the low-energy limit. Then, a lot of
physics will be at our hands!
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Classical field theory: Yang-Mills field
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].

• This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.

• The crucial point, as already pointed out in the eighties [T. Goldman and R. W.
Haymaker (1981), T. Cahill and C. D. Roberts (1985)], is the exact
determination of the gluon propagator in the low-energy limit. Then, a lot of
physics will be at our hands!

• The mapping theorem helps to solve this problem definitely.
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Mapping theorem: Formulation
• Exact determination of the gluon propagator can be largely simplified if we are

able to map Yang-Mills theory on a theory with known results. With this aim in
mind the following theorem has been proved:
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Mapping theorem: Formulation
• Exact determination of the gluon propagator can be largely simplified if we are

able to map Yang-Mills theory on a theory with known results. With this aim in
mind the following theorem has been proved:

• MAPPING THEOREM: An extremum of the action

S =

∫

d4x

[

1

2
(∂φ)2 − λ

4
φ4

]

is also an extremum of the SU(N) Yang-Mills Lagrangian when one properly chooses Aa
µ with

some components being zero and all others being equal, and λ = Ng2, being g the coupling

constant of the Yang-Mills field, when only time dependence is retained. In the most general

case the following mapping holds

Aa
µ(x) = ηaµφ(x) +O(1/

√
Ng),

being ηaµ some constants properly chosen, that becomes exact for the Lorenz gauge.
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Mapping theorem: Formulation
• Exact determination of the gluon propagator can be largely simplified if we are

able to map Yang-Mills theory on a theory with known results. With this aim in
mind the following theorem has been proved:

• MAPPING THEOREM: An extremum of the action

S =

∫

d4x

[

1

2
(∂φ)2 − λ

4
φ4

]

is also an extremum of the SU(N) Yang-Mills Lagrangian when one properly chooses Aa
µ with

some components being zero and all others being equal, and λ = Ng2, being g the coupling

constant of the Yang-Mills field, when only time dependence is retained. In the most general

case the following mapping holds

Aa
µ(x) = ηaµφ(x) +O(1/

√
Ng),

being ηaµ some constants properly chosen, that becomes exact for the Lorenz gauge.

• This theorem was proved in the following papers: M. Frasca, Phys. Lett. B670,
73-77 (2008) [0709.2042]; Mod. Phys. Lett. A 24, 2425-2432 (2009)
[0903.2357] after considering a criticism by Terry Tao. Tao agreed with the
latest proof.
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Mapping theorem: Yang-Mills-Green function
• The mapping theorem permits us to write down immediately the propagator for

the Yang-Mills equations in the Landau gauge for SU(N):

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

being
Bn=(2n+1) π2

K2(i)

(−1)n+1e
−(n+1

2
)π

1+e−(2n+1)π

and

mn=(2n+1) π
2K(i)

(

Ng2

2

) 1
4
Λ
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Mapping theorem: Yang-Mills-Green function
• The mapping theorem permits us to write down immediately the propagator for

the Yang-Mills equations in the Landau gauge for SU(N):

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0
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(
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and
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(

Ng2

2

) 1
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Λ

• The constant Λ must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].
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Mapping theorem: Yang-Mills-Green function
• The mapping theorem permits us to write down immediately the propagator for

the Yang-Mills equations in the Landau gauge for SU(N):

Dab
µν(p)=δab

(
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pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

being
Bn=(2n+1) π2

K2(i)

(−1)n+1e
−(n+1

2
)π

1+e−(2n+1)π

and

mn=(2n+1) π
2K(i)

(
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4
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• The constant Λ must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].

• This is the propagator of a massive field theory but the mass poles arise
dynamically from the non-linearities in the equations of motion. At this stage
we are working classically yet.
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Mapping theorem: Yang-Mills-Green function
• The mapping theorem permits us to write down immediately the propagator for

the Yang-Mills equations in the Landau gauge for SU(N):

Dab
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) 1
4
Λ

• The constant Λ must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].

• This is the propagator of a massive field theory but the mass poles arise
dynamically from the non-linearities in the equations of motion. At this stage
we are working classically yet.

• All this classical analysis could be easier to work out on the lattice than the
corresponding quantum field theory and would already be an important step
beyond.
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Mapping theorem: Next-to-leading order
• Next-to-leading order correction to the mapping can be easily computed in a

1/
√
Ng expansion [M. Frasca (2009)].
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Mapping theorem: Next-to-leading order
• Next-to-leading order correction to the mapping can be easily computed in a

1/
√
Ng expansion [M. Frasca (2009)].

• The equation to solve to compute this correction has a form like

∂2tA
(1) + 3N [φ(x)]2A(1) = . . .

with spatial contributions on lhs.
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Mapping theorem: Next-to-leading order
• Next-to-leading order correction to the mapping can be easily computed in a

1/
√
Ng expansion [M. Frasca (2009)].

• The equation to solve to compute this correction has a form like

∂2tA
(1) + 3N [φ(x)]2A(1) = . . .

with spatial contributions on lhs.

• This equation can be solved exactly notwithstanding its appearance. Indeed,
one can generally solve the equation for the Green function

2D1(x) + 3χ2[φ(x)]2D1(x) = δ4(x)

being χ a constant when we consider the exact solution φ(x) given above for
the scalar field [M. Frasca (2010)].
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Mapping theorem: Next-to-leading order
• Next-to-leading order correction to the mapping can be easily computed in a

1/
√
Ng expansion [M. Frasca (2009)].

• The equation to solve to compute this correction has a form like

∂2tA
(1) + 3N [φ(x)]2A(1) = . . .

with spatial contributions on lhs.

• This equation can be solved exactly notwithstanding its appearance. Indeed,
one can generally solve the equation for the Green function

2D1(x) + 3χ2[φ(x)]2D1(x) = δ4(x)

being χ a constant when we consider the exact solution φ(x) given above for
the scalar field [M. Frasca (2010)].

• This Green function maintains identical poles as the one at the leading order.
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Quantum field theory: Scalar field (1)
• We can formulate a quantum field theory for the scalar field starting from the

generating functional

Z[j] =

∫

[dφ] exp

[

i

∫

d4x

(

1

2
(∂φ)2 − λ

4
φ4 + jφ

)]

.

Low-energy limit of QCD at finite temperature – p. 11/25



Quantum field theory: Scalar field (1)
• We can formulate a quantum field theory for the scalar field starting from the

generating functional

Z[j] =

∫

[dφ] exp

[

i

∫

d4x

(

1

2
(∂φ)2 − λ

4
φ4 + jφ

)]

.

• We can rescale the space-time variable as x→
√
λx and rewrite the functional

as

Z[j] =

∫

[dφ] exp

[

i
1

λ

∫

d4x
(

1

2
(∂φ)2 − 1

4
φ4 +

1

λ
jφ

)

]

.

Then we can seek for a solution series as φ =
∑∞

n=0 λ
−nφn and rescale the

current j → j/λ being this arbitrary.
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Quantum field theory: Scalar field (1)
• We can formulate a quantum field theory for the scalar field starting from the
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Z[j] =
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(
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.

• We can rescale the space-time variable as x→
√
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as

Z[j] =

∫

[dφ] exp

[

i
1

λ

∫

d4x
(

1

2
(∂φ)2 − 1

4
φ4 +

1

λ
jφ

)

]

.

Then we can seek for a solution series as φ =
∑∞

n=0 λ
−nφn and rescale the

current j → j/λ being this arbitrary.

• It is not difficult to see that the leading order correction can be computed
solving the classical equation

2φ0 + φ30 = j

that we already know how to manage. This is completely consistent with our
preceding formulation [M. Frasca (2006)] but now all is fully covariant. We are
just using our ability to solve the classical theory.
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Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4x∆(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = exp

[

i

2

∫

d4x′d4x′′j(x′)∆(x′ − x′′)j(x′′)

]

.
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Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4x∆(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = exp

[

i

2

∫

d4x′d4x′′j(x′)∆(x′ − x′′)j(x′′)

]

.

• This conclusion is really important: It says that the scalar field theory in d=3+1
is trivial in the infrared limit!
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Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4x∆(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = exp

[

i

2

∫

d4x′d4x′′j(x′)∆(x′ − x′′)j(x′′)

]

.

• This conclusion is really important: It says that the scalar field theory in d=3+1
is trivial in the infrared limit!

• This functional describes a set of free particles with a mass spectrum

mn = (2n+ 1)
π

2K(i)

(

λ

2

)
1
4

µ

that are the poles of the propagator, the one of the classical theory.
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Quantum field theory: Yang-Mills field (1)
• Just to fix conventions, the generating functional can be written down with the

following terms in the action

SYM = −1

4

∫

d4xTrF 2 − 1

2α

∫

d4x(∂ ·A)2,
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• Just to fix conventions, the generating functional can be written down with the

following terms in the action

SYM = −1

4

∫

d4xTrF 2 − 1

2α

∫

d4x(∂ ·A)2,

• the ghost field

Sg = −
∫

d4x(c̄a∂µ∂
µca + gc̄afabc∂µA

bµcc)
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Quantum field theory: Yang-Mills field (1)
• Just to fix conventions, the generating functional can be written down with the

following terms in the action

SYM = −1

4

∫

d4xTrF 2 − 1

2α

∫

d4x(∂ ·A)2,

• the ghost field

Sg = −
∫

d4x(c̄a∂µ∂
µca + gc̄afabc∂µA

bµcc)

• and the corresponding current terms

Sc =

∫

d4xjaµ(x)A
aµ(x) +

∫

d4x
[

c̄a(x)εa(x) + ε̄a(x)ca(x)
]

.
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Quantum field theory: Yang-Mills field (2)
• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.

Low-energy limit of QCD at finite temperature – p. 14/25



Quantum field theory: Yang-Mills field (2)
• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.

• The next step is to use the approximation that holds in a strong coupling limit

Aa
µ=Λ

∫

d4x′Dab
µν(x−x′)jbν(x′)+O

(

1√
Ng

)

+O(j3)
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Quantum field theory: Yang-Mills field (2)
• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.

• The next step is to use the approximation that holds in a strong coupling limit

Aa
µ=Λ

∫

d4x′Dab
µν(x−x′)jbν(x′)+O

(

1√
Ng

)

+O(j3)

• and we note that, in this approximation, the ghost field just decouples and
becomes free and one finally has at the leading order

Z0[j]=N exp[ i2
∫

d4x′d4x′′jaµ(x′)Dab
µν(x

′
−x′′)jbν(x′′)].

This functional describes free massive glueballs that are the proper states in
the infrared limit. Yang-Mills theory is trivial in the limit of the coupling going to
infinity and we expect the running coupling to go to zero lowering energies.
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Quantum field theory: Yang-Mills field (3)
• Now, we can take a look at the ghost part of the action. We just note that, for

this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.
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• Now, we can take a look at the ghost part of the action. We just note that, for

this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

• Indeed, we will have

Sg = −
∫

d4x

[

c̄a∂µ∂
µca +O

(

1√
Ng

)

+O
(

j3
)

]
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Quantum field theory: Yang-Mills field (3)
• Now, we can take a look at the ghost part of the action. We just note that, for

this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

• Indeed, we will have

Sg = −
∫

d4x

[

c̄a∂µ∂
µca +O

(

1√
Ng

)

+O
(

j3
)

]

• A ghost propagator can be written down as

Gab(p) = − δab
p2 + iǫ

+O

(

1√
Ng

)

.

Low-energy limit of QCD at finite temperature – p. 15/25



Quantum field theory: Yang-Mills field (3)
• Now, we can take a look at the ghost part of the action. We just note that, for

this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

• Indeed, we will have

Sg = −
∫

d4x

[

c̄a∂µ∂
µca +O

(

1√
Ng

)

+O
(

j3
)

]

• A ghost propagator can be written down as

Gab(p) = − δab
p2 + iǫ

+O

(

1√
Ng

)

.

• Our conclusion is that, in a strong coupling expansion 1/
√
Ng, we get the so

called decoupling solution.
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QCD at the infrared limit (1)
• When use is made of the infrared fixed point result, QCD action can be written

down quite easily as
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QCD at the infrared limit (1)
• When use is made of the infrared fixed point result, QCD action can be written

down quite easily as

• Indeed, we will have for the gluon field

Sgf =
1

2

∫

d4x′d4x′′
[

jµa(x′)Dab
µν(x

′ − x′′)jνb(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]
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QCD at the infrared limit (1)
• When use is made of the infrared fixed point result, QCD action can be written

down quite easily as

• Indeed, we will have for the gluon field

Sgf =
1

2

∫

d4x′d4x′′
[

jµa(x′)Dab
µν(x

′ − x′′)jνb(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]

• and for the quark fields

Sq =
∑

q

∫

d4xq̄(x)

[

i/∂ −mq − gγµ
λa

2

∫

d4x′Dab
µν(x− x′)jνb(x′)

−g2γµ λ
a

2

∫

d4x′Dab
µν(x− x′)

∑

q′

q̄′(x′)
λb

2
γνq′(x′) +O

(

1√
Ng

)

+O
(

j3
)



 q(x)

Low-energy limit of QCD at finite temperature – p. 16/25



QCD at the infrared limit (1)
• When use is made of the infrared fixed point result, QCD action can be written

down quite easily as

• Indeed, we will have for the gluon field

Sgf =
1
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∫
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jµa(x′)Dab
µν(x

′ − x′′)jνb(x′′) +O
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• and for the quark fields

Sq =
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q

∫

d4xq̄(x)

[

i/∂ −mq − gγµ
λa

2

∫

d4x′Dab
µν(x− x′)jνb(x′)

−g2γµ λ
a

2

∫

d4x′Dab
µν(x− x′)

∑

q′

q̄′(x′)
λb

2
γνq′(x′) +O

(

1√
Ng

)

+O
(

j3
)



 q(x)

• We recognize here an explicit Yukawa interaction and a Nambu-Jona-Lasinio
non-local term. Already at this stage we are able to recognize that NJL is the
proper low-energy limit for QCD at zero temperature.
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QCD at the infrared limit (2)

• Now we operate the Smilga’s choice ηaµηbν = δab(ηµν − pµpν/p
2) for the Landau

gauge.
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• Now we operate the Smilga’s choice ηaµηbν = δab(ηµν − pµpν/p
2) for the Landau

gauge.

• We are left with the infrared limit QCD using conservation of currents

Sgf =
1

2

∫

d4x′d4x′′
[

jaµ(x
′)∆(x′ − x′′)jµa(x′′) +O
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Ng

)

+O
(

j3
)

]
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∫
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λa
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(
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(
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)
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• Now we operate the Smilga’s choice ηaµηbν = δab(ηµν − pµpν/p
2) for the Landau

gauge.

• We are left with the infrared limit QCD using conservation of currents

Sgf =
1

2

∫

d4x′d4x′′
[

jaµ(x
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)
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]

• and for the quark fields
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∫

d4xq̄(x)

[

i/∂ −mq − gγµ
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2

∫
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2

∫
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q̄′(x′)
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2
γµq

′(x′) +O
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)
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)



 q(x)

• This action can be the starting point for our analysis at finite temperature. But
before doing this, we want to give explicitly the contributions from gluon
resonances. In order to do this, we introduce the bosonic currents
jaµ(x) = ηaµj(x) with the current j(x) that of the gluonic excitations after
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QCD at the infrared limit (3)

• Using the relation ηaµηµa = 3(N2
c − 1) we get in the end

Sgf =
3

2
(N2

c − 1)

∫

d4x′d4x′′
[

j(x′)∆(x′ − x′′)j(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]
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2

∫
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q̄′(x′)
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)
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QCD at the infrared limit (3)

• Using the relation ηaµηµa = 3(N2
c − 1) we get in the end

Sgf =
3

2
(N2

c − 1)

∫

d4x′d4x′′
[

j(x′)∆(x′ − x′′)j(x′′) +O
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)
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• and for the quark fields

Sq =
∑

q

∫

d4xq̄(x)

[

i/∂ −mq − gηaµγ
µ λ

a

2

∫
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−g2γµ λ
a

2

∫
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q̄′(x′)
λa

2
γµq

′(x′) +O

(
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)

+O
(

j3
)



 q(x)

• Now, we recognize that the propagator is just a sum of Yukawa propagators
weighted by an exponential damping terms. So, we introduce the σ field and
truncate at the first excitation. This is a somewhat rough approximation but will
be helpful in the following analysis.
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• Using the relation ηaµηµa = 3(N2
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Sq =
∑

q

∫
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2
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(
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)
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)



 q(x)

• Now, we recognize that the propagator is just a sum of Yukawa propagators
weighted by an exponential damping terms. So, we introduce the σ field and
truncate at the first excitation. This is a somewhat rough approximation but will
be helpful in the following analysis.

• This means the we can write the bosonic currents contribution as coming from

a boson field and written down as σ(x) =
√

3(N2
c − 1)/B0

∫

d4x′∆(x− x′)j(x′).
Low-energy limit of QCD at finite temperature – p. 18/25



QCD at the infrared limit (4)
• So, the model we consider for our finite temperature analysis, directly derived

from QCD, is [Weise et al., Phys. Rev. D79, 014022 (2009), arXiv:0810.1099v2 [hep-ph]]

Sσ =

∫

d4x
[

1

2
(∂σ)2 − 1

2
m2

0σ
2
]
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 q(x)

• Now, we recover the non-local model of Weise et al. directly from QCD (2G(0) = G is the standard NJL
coupling)

G(p) = −
1

2
g
2

∞
∑

n=0

Bn

p2 − (2n + 1)2(π/2K(i))2σ + iǫ
=

G

2
C(p)

with C(0) = 1 fixing in this way the value of G using the gluon propagator.
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Bosonization (1)
• We move to an Euclidean action and define the following fields

φa(x) = (σ(x),π(x))
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Bosonization (1)
• We move to an Euclidean action and define the following fields

φa(x) = (σ(x),π(x))

• So, the bosonic action will be, after taking the expansion around the v.e.v.
φa = (v, 0),

SB =

∫

d4x
[

1

2
(∂δσ)2 +

1

2
m2

0(δσ)
2
]

+ SMF + S(2) + . . .
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Bosonization (1)
• We move to an Euclidean action and define the following fields

φa(x) = (σ(x),π(x))

• So, the bosonic action will be, after taking the expansion around the v.e.v.
φa = (v, 0),

SB =

∫

d4x
[

1

2
(∂δσ)2 +

1

2
m2

0(δσ)
2
]

+ SMF + S(2) + . . .

• being

SMF /V4 = −2NNf

∫

d4p

(2π4
ln
[

p2 +M2(p)
]

+
1

2

(

1

G
+m2

0

)

v2.
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Bosonization (1)
• We move to an Euclidean action and define the following fields

φa(x) = (σ(x),π(x))

• So, the bosonic action will be, after taking the expansion around the v.e.v.
φa = (v, 0),

SB =

∫

d4x
[

1

2
(∂δσ)2 +

1

2
m2

0(δσ)
2
]

+ SMF + S(2) + . . .

• being

SMF /V4 = −2NNf

∫

d4p

(2π4
ln
[

p2 +M2(p)
]

+
1

2

(

1

G
+m2

0

)

v2.

• This holds together with the gap equations

M(p) = mq + C(p)v

v =
4NNf

m2
0 + 1/G

∫

d4p

(2π)4
C(p)

M(p)

p2 +M2(p)
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Bosonization (2)
• The next-to-leading order term is given by (a correction to mass m0 for the σ

field)

S(2) =
1

2

∫

d4p

(2π)4

[

F+(p2)δσ(p)δσ(−p) + F−(p2)δπ(p)δπ(−p)
]
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Bosonization (2)
• The next-to-leading order term is given by (a correction to mass m0 for the σ

field)

S(2) =
1

2

∫

d4p

(2π)4

[

F+(p2)δσ(p)δσ(−p) + F−(p2)δπ(p)δπ(−p)
]

• being

F±(p2) =
1

G
− 4NNf

∫

d4q

(2π)4
C(q)C(q + p)

q · (q + p)∓M(q)M(q + p)

[q2 +M2(q)][(q + p)2 +M2(q + p)]
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Bosonization (2)
• The next-to-leading order term is given by (a correction to mass m0 for the σ

field)

S(2) =
1

2

∫

d4p

(2π)4

[

F+(p2)δσ(p)δσ(−p) + F−(p2)δπ(p)δπ(−p)
]

• being

F±(p2) =
1

G
− 4NNf

∫

d4q

(2π)4
C(q)C(q + p)

q · (q + p)∓M(q)M(q + p)

[q2 +M2(q)][(q + p)2 +M2(q + p)]

• For the chiral condensate one has

〈ψ̄ψ〉 = −4NNf

∫

d4p

(2π)4

[

M(p)

p2 +M2(p)
− mq

p2 +m2
q

]

.
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Bosonization (2)
• The next-to-leading order term is given by (a correction to mass m0 for the σ

field)

S(2) =
1

2

∫

d4p

(2π)4

[

F+(p2)δσ(p)δσ(−p) + F−(p2)δπ(p)δπ(−p)
]

• being

F±(p2) =
1

G
− 4NNf

∫

d4q

(2π)4
C(q)C(q + p)

q · (q + p)∓M(q)M(q + p)

[q2 +M2(q)][(q + p)2 +M2(q + p)]

• For the chiral condensate one has

〈ψ̄ψ〉 = −4NNf

∫

d4p

(2π)4

[

M(p)

p2 +M2(p)
− mq

p2 +m2
q

]

.

• Till now there are two novelties really implied with respect to the work of Weise
et al.: The model is exactly obtained from QCD and the expression of the form
factor C(p) is properly fixed through the exact gluon propagator at infrared.
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Thermalization (1)
• The next step is to consider the case of finite temperature. This can be easily

accomplished with the exchange

∫

d4p

(2π)4
→ β−1

∞
∑

k=−∞

∫

d3p

(2π)3

being the sum over k that on Matsubara frequencies ωk = 2kπ/β for bosons
and ωk = (2k + 1)π/β for fermions.
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• The next step is to consider the case of finite temperature. This can be easily

accomplished with the exchange
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∞
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k=−∞

∫

d3p

(2π)3

being the sum over k that on Matsubara frequencies ωk = 2kπ/β for bosons
and ωk = (2k + 1)π/β for fermions.

• So, we can write down the gap equations at finite temperature as
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accomplished with the exchange

∫

d4p

(2π)4
→ β−1

∞
∑

k=−∞

∫

d3p

(2π)3

being the sum over k that on Matsubara frequencies ωk = 2kπ/β for bosons
and ωk = (2k + 1)π/β for fermions.

• So, we can write down the gap equations at finite temperature as

M(ωk,p) = mq + C(ωk,p)v

v =
4NNf

m2
0 + 1/G

β−1
∞
∑

k=−∞

∫

d3p

(2π)3
C(ωk,p)

M(ωk,p)

ω2
k + p2 +M2(ωk,p)

• while for the chiral condensate one has

〈ψ̄ψ〉 = −4NNfβ
−1

∞
∑

k=−∞

∫

d3p

(2π)3

[

M(ωk,p)

ω2
k + p2 +M2(ωk,p)

− mq

ω2
k + p2 +m2

q

]

.
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Thermalization (2)
• Assuming the integral regularized by a cut-off Λ and noting that C(p) is

practically 1 in the low-energy range, we can prove the existence of a critical
temperature where the chiral symmetry is restored.
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• Assuming the integral regularized by a cut-off Λ and noting that C(p) is

practically 1 in the low-energy range, we can prove the existence of a critical
temperature where the chiral symmetry is restored.

• Setting v = 0 and mq = 0 into the gap equation we have to solve

4NNf

m2
0 + 1/G

β−1
∞
∑

k=−∞

∫

d3p

(2π)3
C
2(ωk,p)

1

ω2
k + p2

= 1.
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• Assuming the integral regularized by a cut-off Λ and noting that C(p) is

practically 1 in the low-energy range, we can prove the existence of a critical
temperature where the chiral symmetry is restored.

• Setting v = 0 and mq = 0 into the gap equation we have to solve

4NNf

m2
0 + 1/G

β−1
∞
∑

k=−∞

∫

d3p

(2π)3
C
2(ωk,p)

1

ω2
k + p2

= 1.

• At small temperatures we are able to get the critical temperature

T 2
c ≈ 3

π2

[

Λ2 − π2

NNf

(

m2
0 +

1

G

)

]
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Thermalization (2)
• Assuming the integral regularized by a cut-off Λ and noting that C(p) is

practically 1 in the low-energy range, we can prove the existence of a critical
temperature where the chiral symmetry is restored.

• Setting v = 0 and mq = 0 into the gap equation we have to solve

4NNf

m2
0 + 1/G

β−1
∞
∑

k=−∞

∫

d3p

(2π)3
C
2(ωk,p)

1

ω2
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= 1.

• At small temperatures we are able to get the critical temperature

T 2
c ≈ 3

π2

[

Λ2 − π2

NNf

(

m2
0 +

1

G

)

]

• This shows, starting directly from QCD, that a critical point does exist for this
theory. We note that for Nf = 2 and Tc = 170 MeV gives Λ = 769 MeV ,
perfectly consistent with NJL model.
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Thermalization (2)
• Assuming the integral regularized by a cut-off Λ and noting that C(p) is

practically 1 in the low-energy range, we can prove the existence of a critical
temperature where the chiral symmetry is restored.

• Setting v = 0 and mq = 0 into the gap equation we have to solve

4NNf

m2
0 + 1/G

β−1
∞
∑

k=−∞

∫

d3p

(2π)3
C
2(ωk,p)

1

ω2
k + p2

= 1.

• At small temperatures we are able to get the critical temperature

T 2
c ≈ 3

π2

[

Λ2 − π2

NNf

(

m2
0 +

1

G

)

]

• This shows, starting directly from QCD, that a critical point does exist for this
theory. We note that for Nf = 2 and Tc = 170 MeV gives Λ = 769 MeV ,
perfectly consistent with NJL model.

• This expression is very similar to the one obtained in [D. Gomez Dumm and N.
N. Scoccola, Phys. Rev. C72 (2005) 014909]

Low-energy limit of QCD at finite temperature – p. 23/25



Thermalization (3)
• For aims of completeness, we give here a comparison of our gluon propagator

(the form factor) with that used in Weise et al. based on an instanton liquid
model.
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Thermalization (3)
• For aims of completeness, we give here a comparison of our gluon propagator

(the form factor) with that used in Weise et al. based on an instanton liquid
model.

• This is the result:

• Istanton liquid approximation is a good one indeed in describing the ground
state of Yang-Mills theory!
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Conclusions
• We provided a strong coupling expansion both for classical and quantum field

theory of a massless quartic scalar field.
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Conclusions
• We provided a strong coupling expansion both for classical and quantum field

theory of a massless quartic scalar field.

• Using a mapping theorem, results obtained for the scalar field are
straightforwardly applied to the Yang-Mills field in the limit of an increasingly
large coupling.

• A low-energy limit of QCD is so obtained that reduces to a non-local
Nambu-Jona-Lasinio model with all the parameters and the form factor
properly fixed.

• Solving the corresponding gap equation at finite temperature shows a critical
temperature for the restoration of chiral symmetry.

• At zero quark masses and chemical potential a phase transition is proved to
exist for QCD.

Thanks a lot to Marco Ruggieri without whose help I would have not
obtained these results.
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Conclusions
• We provided a strong coupling expansion both for classical and quantum field

theory of a massless quartic scalar field.

• Using a mapping theorem, results obtained for the scalar field are
straightforwardly applied to the Yang-Mills field in the limit of an increasingly
large coupling.

• A low-energy limit of QCD is so obtained that reduces to a non-local
Nambu-Jona-Lasinio model with all the parameters and the form factor
properly fixed.

• Solving the corresponding gap equation at finite temperature shows a critical
temperature for the restoration of chiral symmetry.

• At zero quark masses and chemical potential a phase transition is proved to
exist for QCD.

Thanks a lot to Marco Ruggieri without whose help I would have not
obtained these results.

Thank you!
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