### <u>Particle Production & Minimum Bias</u> <u>Distributions at the LHC</u>

Nick Brook

## **Motivation**



#### p-p collision reveal rich structure of QCD

- Parton densities
- Parton showers
- Hard scattering
- Multiple parton interactions
- Hadronisation

#### Not as clear cut but convenient process breakdown

### **Motivation**



# LHC opens up a brand new kinematic regime for QCD

- Soft particle production
- Improve event generators
- Multi-parton interactions
- pQCD calculations
- PDF constraints
- Multijet production

## Acceptance of LHC Expts



hadron PID
muon system
lumi counters
HCAL
ECAL
tracking

4

#### Multiplicity distributions - central region





Pre-LHC MC tune fail to describe high n<sub>ch</sub> tails

Eur Phys J C68 (2010) 89)





#### Charged particle pseudorapidity distributions



#### Charged Particle Transverse Momentum



CMS

10<sup>4</sup>

 $10^{3}$ 

#### Charged Particle Transverse Momentum



### Identified Charged Particles

- ALICE has several barrel detectors dedicated to PID
  - dE/dx, transition radiation, ToF, Cherenkov radiation



- LHCb has dedicated PID detectors
  - 2 RICH detectors



### Identified Charged Particles





MC models do not describe detail of particle spectra at low  $\ensuremath{p_{T}}$ 

ALI-PREL-10393



### Charged Particle Ratios



 $P/\pi$ ,  $K/\pi$  ratio underestimated by models at high p<sub>T</sub> LHCb tune – specifically looked at species production





 $p_T$  > 2 GeV/c - MC falls more slowly than data



 $\Lambda$  production not as well described as  $K_s^0$ 



AntiParticle/particle ratio flat (~1) in central region Ratio falls off go to forward region MC predictions remain essentially flat

## $\Lambda(\Lambda bar)/K_{s}^{0}$ production ratios



Ratio rises at  $p_T$  raises as

Rise in forward region greater than MC predictions

2.5



 $\Xi, \Omega$  production



- Agreement between ALICE & CMS
  - Slightly different samples inelastic vs NSD
- MC yields greatly underestimate data

#### versus mass 1.6 cp\_T > (GeV/c) ALICE pp 0.9 TeV 1.4 www. STAR pp 0.2 TeV ····· ISR parameterization 1.2 Ļ. 0.8 0.6 10.1140/epic/s10052-011-1594-5 0.4 0.2 ρΚ ΣΛΩ φΛ Ξ. 0 2 0.2 0.4 0.6 0.8 1.6 1.8 0 1.2 1.4 1 Particle mass (GeV/c<sup>2</sup>) 1.6 cp\_T< (GeV/c)</pre> ALICE pp 7 TeV 1.4 ALICE pp 0.9 TeV ···· ISR parameterization 1.2 uncert. = Vstat<sup>2</sup> + syst<sup>2</sup> |y| ~ 0 0.8 0.6 ALICE Preliminary ALIC 0.4 0.2

K Ks

0.6

0.4

0.2

0

0

Λ

1.2

p

0.8

Ē

1.4

 $\Omega^{-}$ 

1.6

Particle mass (GeV/c<sup>2</sup>)

1.8

2

- <p<sub>T</sub>> increases with mass as expected
- ISR parameterisation significantly below data @ 7 TeV
  - Nucl.Phys. B114 (1976) 334

### Baryon transport





Motivated by string-junction & Pomeron models  $\frac{1}{\text{ratio}} = 1 + C \times e^{(\alpha_J - \alpha_P)\Delta y}$ 

 $\alpha$  parameters fixed ( $\alpha_J = 0.5, \alpha_P = 1.2$ )

LHC data consistent with lower energy data

### Summary

- Plethora of soft QCD measurements coming from the LHC
  - Many papers from all 4 experiments
  - Consistency across the experiments + complementarity
- Overall MC generators need further tuning
  - Pre-LHC tunes struggle to describe data
  - Strangeness & baryon production problematic
- Further measurements to come