First Measurements of Proton-Proton Elastic Scattering and Total

Cross-Section at the LHC

EDS 2011 Qui Nhon, Vietnam

Mario Deile on behalf of the TOTEM Collaboration

Experimental Setup @ IP5

TOTEM Detectors

Outline

Presented here: data at $\sqrt{s} = 7$ TeV from 2010 and 2011

- Elastic scattering for $|t| \in [0.36; 2.5] \text{ GeV}^2$ [EPL 95 2011, 41001]
- Total pp cross-section measurement based on elastic scattering at $|t| \in [0.02; 0.4]$ GeV² [EPL 96 (2011) 21002]

Optical Theorem:

$$\sigma_{TOT}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

Use ρ from COMPETE fit: $\rho = 0.14^{+0.01}_{-0.08}$ Normalisation with luminosity from CMS (uncertainty $\pm 4\%$)

 $\frac{d\sigma_{EL}}{dt} = \frac{1}{L} \cdot \frac{dN_{EL}}{dt}$

- Outlook:
 - ongoing analyses of existing data
 - plans for data taking in 2012 and beyond

Beam Optics and Proton Transport

(x^{*}, y^{*}): vertex position (θ_x^*, θ_y^*): emission angle: $t \approx -p^2 (\theta_x^{*2} + \theta_y^{*2})$ $\xi = \Delta p/p$: momentum loss (diffraction)

 $y_{det} = L_y \theta_y^* + v_y y^*$ $\beta^* = 90 \text{ m: } L_y = 263 \text{ m, } v_y \approx 0$ $\beta^* = 3.5 \text{ m: } L_y \sim 20 \text{ m, } v_y = 4.3$

 \rightarrow Reconstruct via track positions

$$\frac{dx_{\text{det}}}{ds} = \frac{dL_x}{ds}\theta_x^* + \frac{dv_x}{ds}x^*$$

		Beam width ⓐ vertex $\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n \beta^*}{\gamma}}$	Angular beam divergence $\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n}{\beta^* \gamma}}$	Min. reachable t $ t_{\min} = \frac{n_{\sigma}^2 p \varepsilon_n m_p}{\beta^*}$
Standard optics	$\beta^* \sim 1-3.5 \text{ m}$	$\sigma_{x,y}^{*}$ small	$\sigma(\theta_{x,y}^{*})$ large	$ t_{min} \sim 0.3 1 \ GeV^2$
Special optics	$\beta^* = 90 \text{ m}$	$\sigma_{x,y}^{*}$ large	$\sigma(\theta_{x,y}^{*})$ small	$ t_{min} \sim 10^{-2} \ GeV^2$

Track distribution for an inclusive trigger (global "OR")

Elastic Tagging

Data outside the 3σ cuts used for background estimation

Optics Matching

• Optics defined by the magnetic lattice elements T_i between IP5 and RP:

$$\begin{pmatrix} x \\ \Theta_{x} \\ y \\ \Theta_{y} \end{pmatrix}_{RP} = \mathbf{T} \begin{pmatrix} x^{*} \\ \Theta_{x}^{*} \\ y^{*} \\ \Theta_{y}^{*} \end{pmatrix}_{IP5} \qquad \mathbf{T} = \prod_{i=M}^{1} \left[\mathbf{T}_{i}(k_{i}) + \Delta \mathbf{T}_{i} \right] = \begin{pmatrix} v_{x} & L_{x} & re_{13} & re_{14} \\ \frac{dv_{x}}{ds} & \frac{dL_{x}}{ds} & re_{23} & re_{24} \\ \frac{dv_{x}}{ds} & \frac{dL_{x}}{ds} & re_{32} & v_{y} & L_{y} \\ re_{41} & re_{42} & \frac{dv_{y}}{ds} & \frac{dL_{y}}{ds} \\ re_{41} & re_{42} & \frac{dv_{y}}{ds} & \frac{dL_{y}}{ds} \\ \end{pmatrix} - \text{values needed for proton reconstruction}$$

- **T**_i determined by magnet currents
- Magnet currents continuously measured, but tolerances and imperfections leading to ΔT_i :
 - Beam momentum offset ($\Delta p/p = 10^{-3}$)
 - Magnet transfer function error, $I \rightarrow B$, ($\Delta B/B = 10^{-3}$)
 - Magnet rotations and displacements ($\Delta \psi < 1$ mrad, Δx , $\Delta y < 0.5$ mm, WISE database)
 - Power converter errors, $k \rightarrow I$, ($\Delta I/I < 10^{-4}$)
 - Magnet harmonics ($\Delta B/B = O(10^{-4})$ @ R_{ref} = 17mm, WISE database)
 - The elements of **T** are correlated and cannot take arbitrary values
- The TOTEM RP measurements provide additional constraints:
 - single beam constraints (position angle correlations, x-y coupling)
 - $\circ~$ two-beam constraints via elastic scattering (Θ_{left}^{*} vs. Θ_{right}^{*})

→Matching by a fit with 26 parameters (magnet strengths, rotations, beam energy) and 36 constraints.

 \rightarrow Error propagation to relevant optical functions L_y (1%) and dL_x/ds (0.7%)

Systematics

Correction	Effect on	Functional form	Total values or integral	Details
Recorded		const(t)	Efficiency-corrected int. Luminosity	Int. Luminosity (6.1 ± 0.2) nb ⁻¹
Luminosity	dσ/dt	mult_factor	$(6.03\pm0.36)\mathrm{nb^{-1}}$	Trigger eff. $(99 \pm 1)\%$
		mun. ractor		DAQ eff. $(99 \pm 1)\%$
Inefficiency	dσ/dt	Ineff. = $const(t)$	Tot ineff = $(30 \pm 10)\%$	Detector 1%
		mult. corr. factor = $(1 + ineff.)$	101 men. = (50±10)%	Event reconstruction $(29 \pm 10)\%$
Acceptance	dσ/dt	Uuparbala function:	$f_{\rm t} = \begin{cases} 4.96 \pm 0.05 _{ t =0.4 \text{GeV}^2} \\ 2.02 \pm 0.02 _{\rm t} \end{cases}$	$y: 2.2 _{ t =0.36 \mathrm{GeV}^2} \phi: 4.5 _{ t =0.36 \mathrm{GeV}^2}$
		Hyperbola function. $f_{\rm e} \sim 1.3 \pm 0.3$		$1.5 _{ t =0.4 \text{GeV}^2}$ $3.5 _{ t =0.4 \text{GeV}^2}$
		$f_A \approx 1.5 + \frac{1}{(r -0.3)}$	$J_A = 2.92 \pm 0.03 \mu = 0.5 \text{GeV}^2$	$1.1 _{ t =0.5 \text{GeV}^2}$ $2.6 _{ t =0.5 \text{GeV}^2}$
		mun. con. factor	$(1.55 \pm 0.02)_{ \mu =1.5 \text{GeV}^2}$	$1.0 _{ t =1.5 \text{GeV}^2}$ $1.5 _{ t =1.5 \text{GeV}^2}$
Background d σ /		Parameterisation		$(11\pm2)\% _{ t =0.4 \text{GeV}^2}$
	dσ/dt	$bkg. = 1.16e^{-6.0 t }$	$\frac{\int bkg. dr}{total} = (8 \pm 1)\%$	$\frac{bkg.}{total} = \left\{ (19 \pm 3)\% _{ t =0.5 \text{GeV}^2} \right.$
		mult. corr. factor = $(1 - \frac{bkg.}{total})$		$(0.8 \pm 0.3)\% _{ r =1.5 { m GeV}^2}$
Resolution unfolding	$t \rightarrow d\sigma/dt$	$f_u(\Theta^*) = rac{ ext{unsmeared}}{ ext{measured}}$	$\left(0.55 \begin{array}{c} +0.02 \\ -0.09 \end{array} \right)_{ t =0.36 \text{GeV}^2,\Theta=170\mu \text{ rad}}$	Dominant contribution
			$f_{\mu} = \begin{cases} 0.51 + 0.02 \\ -0.10 _{\mu =0.4 \text{GeV}^2, \Theta = 181 \mu \text{ rad}} \end{cases}$	
		mult. corr. factor	$0.54 + 0.04 \\ -0.15 _{ t =0.5 \text{GeV}^2,\Theta=202 \mu \text{rad}}$	$\delta \Theta^* = \frac{\text{Beam divergence}}{\sqrt{2}} = 12 - 13 \mu\text{rad}$
			$(0.91 + 0.10 _{ t =1.50 \text{GeV}^2,\Theta=350 \mu \text{ rad}})$	
Alignment	ť		$\delta t/t = 0.6\% _{ t =0.4 { m GeV}^2}$	Track based alignment for 2
		$\delta t_x = 2p/(\Delta s \mathrm{d}L_x/\mathrm{d}s)\sqrt{ t_x }\delta x$		mechanically constrained diagonals:
		$\delta t_y = 2p/L_y\sqrt{ t_y }\delta y$	$\delta t/t = 0.3\% _{ t =1.5 { m GeV}^2}$	$\delta x < 10 \mu \mathrm{m}; \ \delta y = 10 \mu \mathrm{m}$
Optics	t	$t_x = f(k, \psi, p); t_y = f(k, \psi, p)$	$rac{\delta (\mathrm{d}L_x/\mathrm{d}s)}{\mathrm{d}L_x/\mathrm{d}s} = 1\%$	$rac{\delta k}{k}=0.1\%$
		k: magnet strength	$rac{\delta L_y}{L_y} = 1.5\%$	$\delta \psi = 1$ mrad
		ψ : magnet rotation	$\frac{\delta t}{t} = 2\%$	$\frac{\delta p}{p} = 10^{-3}$
		p: LHC beam momentum		Mario Deile –

Comparison to Some Models

Total Cross-Section Measurement

Optical Theorem:

$$\sigma_{TOT}^{2} = \frac{16\pi(\hbar c)^{2}}{1+\rho^{2}} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

Use ρ from COMPETE fit:

$$\rho = 0.14^{+0.01}_{-0.08}$$

Normalisation with luminosity from CMS Uncertainty $\pm 4\%$

$$\frac{d\sigma_{EL}}{dt} = \frac{1}{L} \cdot \frac{dN_{EL}}{dt}$$

[Not yet done with luminosity-independent method; coming soon.]

\rightarrow Measure d σ_{el} / dt at lowest possible |t|

First run with the β^* = 90 m optics and RP insertion

Evolution with time : intensity, energy, β^*

scheduled : 28/06/2011, beam for 90m from 20:00 - 04:00 Fill 1902

Un-squeeze from injection optics $\beta^* = 11m$ to 90m

Very robust optics with high precision

Fill 1902 Beam process SQUEEZE_HIGHBETA-90M_3.5TeV_IP1_IP5_LONG

- Two bunches with 1 and 2 x 10^{10} protons / bunch
- Instantaneous luminosity: $8 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrated luminosity: 1.7 µb⁻¹
- Estimated pile-up: $\sim 0.5 \%$
- Vertical Roman Pots at 10σ from beam center
- Trigger rate : $\sim 50 \text{ Hz}$
- Recorded events in vertical Roman Pots: 66950 in $\frac{1}{2}$ hour.

Angular Correlations between outgoing protons

- Background negligible < 1%
- Width of correlation band in agreement with beam divergence (~ 2.4 μ rad)

Optics, t-Scale and Acceptance

- Perturbations: optics very robust $(L_y \sim s_{RP})$:
 - $\delta \Theta_x^* / \Theta_x^* = 1.3\%^{syst}$
 - $\delta \Theta_{y}^{*} / \Theta_{y}^{*} = 0.4\%^{\text{syst}}$
- t systematics: $\delta t / t = 0.8\%$ (low t) up to 2.6% (large |t|)
- Acceptance correction factor < 3 at low |t|, based on ϕ symmetry

Raw t-Distributions

Final Differential Cross-Section for t > 2 x 10⁻² GeV² (Data taking: June 2011 for 30 min.)

τοτεм

Comparison of Total, Inelastic and Elastic Cross-Section Measurements

Systematics and Statistics

	Statistical uncertainties	Systematic uncertainties	Result
t	$\pm [3.4 \div 11.9]\%$ single measurement ^(*)	$\pm [0.6 \div 1.8]\%^{optics} \pm < 1\%^{alignment}$	
d o dt	5% / bin	$\pm 4\%^{luminosity} \pm 1\%^{analysis} \pm 0.7\%^{unfolding}$	
В	±1%	$\pm 1\%^{t-\text{scale}} \pm 0.7\%^{\text{unfolding}}$	$(20.1 \pm 0.2^{stat} \pm 0.3^{syst}) GeV^{-2}$
$\frac{\mathrm{d}\sigma}{\mathrm{d}t} _{t=0}$	±0.3%	$\pm 0.3\%^{optics} \pm 4\%^{luminosity} \pm 1\%^{analysis}$	$(503.7 \pm 1.5^{stat} \pm 26.7^{syst}) mb/GeV^2$
$\int \frac{\mathrm{d}\sigma}{\mathrm{d}t} \mathrm{d}t$	$\pm 0.8\%^{extrapolation}$	$\pm 4\%^{\text{luminosity}} \pm 1\%^{\text{analysis}}$	
$\sigma_{ m tot}$	±0.2%	$\binom{+0.8\%}{-0.2\%}^{(\rho)} \pm 2.7\%$	$(98.3 \pm 0.2^{\text{stat}} \pm 2.8^{\text{syst}}) \text{mb}$
$\sigma_{\rm el} = \int \frac{{\rm d}\sigma}{{\rm d}t} {\rm d}t$	$\pm 0.8\%$	$\pm 5\%$	$(24.8\pm0.2^{\text{stat}}\pm1.2^{\text{syst}})mb$
$\sigma_{ m inel}$	$\pm 0.8\%$	$\binom{+2.4\%}{-1.8\%}$	$(73.5 \pm 0.6^{\text{stat}} + 1.8 \text{ syst}) \text{ mb}$
σ_{inel} (CMS)			$(68.0 \pm 2.0^{\text{syst}} \pm 2.4^{\text{lumi}} \pm 4^{\text{extrap}}) \text{ mb}$
σ_{inel} (ATLAS)			$(69.4 \pm 2.4^{\text{exp}} \pm 6.9^{\text{extrap}}) \text{mb}$
σ_{inel} (ALICE)			$(72.7 \pm 1.1^{model} \pm 5.1^{lumi})$ mb

(*) corrected after unfolding

analysis(includes tagging, acceptance, efficiency, background)

Outlook: Ongoing Analyses

Data already available and being analysed:

- $\beta^* = 3.5$ m: Elastic scattering extended to larger |t|: up to 3.5 GeV^2
- $\beta^* = 90$ m:
 - Elastic scattering extended to smaller |t|: down to 6 x 10^{-3} GeV²
 - + inelastic triggers (T1, T2, zero bias)
 - \rightarrow total cross-section with the luminosity independent method
- Central Diffraction (DPE): t-spectrum, later mass spectrum
- Single Diffraction: t-spectrum
- $dN / d\eta$ from T2, later also T1

Data October 2011: Elastic Differential Cross-Section

Raw distribution

(to be corrected for acceptance, ...)

7 TeV dN/dη analysis @ LHC

dN/d η from ALICE, ATLAS, CMS, LHCb & TOTEM-T2

2012:

- Try to measure elastic scattering down into the Coulomb region ($|t| \sim 5 \ge 10^{-4} \text{ GeV}^2$) after development of an optics with $\beta^* \sim 800 - 1000 \text{ m}$. $\rightarrow \rho$
- If LHC runs at a new energy ($\sqrt{s} = 8$ TeV), measure large |t| elastic scattering
- Trigger exchange between TOTEM and CMS being commissioned
 → common data taking (diffraction, total cross-section with optimal coverage)

Later (after long shutdown):

- Repeat all measurements at $\sqrt{s} = 14 \text{ TeV}$
- Intensify cooperation with CMS on diffraction

Backup

Beam-Based Roman Pot Alignment (Scraping)

When both top and bottom pots are touching the beam edge:

- they are at the same number of sigmas from the beam centre as the collimator
- the beam centre is exactly in the middle between top and bottom pot

 \rightarrow Alignment of the RP windows relative to the beam (~ 20 μ m)

Alignment Exploiting Symmetries of Physics Processes

 \rightarrow Fine horizontal alignment: precision better than 10 μ m

Fine vertical alignment: about 20 μm precision

TOTEM **Background Subtraction, Resolution Determination** 10^{6} $\mathrm{d}N/\mathrm{d}t$ sum diagonal 45 top – 56 bottom $B/S = (8 \pm 1)\%$ signal - signal+background background σ^* =17.8 µrad 1500background (beam divergence) combined 10^{5} Data $1.169 \times 10^5 \exp(-6|t|)$ 10^{4} 1000 10^{3} Combined background (t) 500 10^{2} 10^{1} 21 3 0 -123 12-39 _9 $^{-6}$ 0 6 -t [GeV²] $\Delta \theta_{\rm v}/{\rm sqrt}(2)$

Signal to background normalisation $\sigma^* \rightarrow$ t-reconstruction resolution:

$$\frac{\sigma(t)}{t} = \frac{\sqrt{2}p\sigma^*}{\sqrt{t}}: \qquad \begin{array}{c} 0.4 \, \text{GeV}^2 : 14\% \\ 1 \, \text{GeV}^2 : 8.8\% \\ 3 \, \text{GeV}^2 : 5.1\% \end{array}$$

Signal vs. background (t)

|t| = 0.4GeV²: B/S = (11 ± 2)%
|t| = 0.5GeV²: B/S = (19 ± 3)%
|t| = 1.5GeV²: B/S = (0.8 ± 0.3)%

Resolution Unfolding

TOTEM

500

500

p. 34

 (μrad)

method 1

method 2

θ

Data transformations (after selection cuts)

Diagonal top 45 - bottom 56 alone

Acceptance corrected

^{5 –} raw data acceptance corrected - background

6 – final unfolded distribution

Elastic scattering – from ISR to Tevatron

Diffractive minimum: analogous to Fraunhofer diffraction:

|t|~ p² θ²

- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s
- \rightarrow interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 - \rightarrow shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 → different mix of processes

90 m: Angular difference between the two outgoing protons

beam divergence σ_{Θ^*}

$$\sigma_{\Theta^*} = \sqrt{\frac{\varepsilon_n}{\gamma \beta^*}} = 2.4 \mu \text{rad}$$

90 m: Efficiency Correction and Resolution Unfolding

Trigger efficiency ~ 99.9 % Reconstruction efficiency ~ 91 %

Effect on slope: $\Delta B=0.11 \text{ GeV}^{-2}$

 $\sigma(\Theta_x^*) = \sqrt{1.7^2 (\text{from beam div.}) + 4^2 (\text{det. res.})} = 4.4 \mu \text{rad}$ $\sigma(\Theta_y^*) = 1.7 \mu \text{rad (from beam div.)}$

Elastic Scattering: $\rho = \Re f(0) / \Im f(0)$

TOTEM **Example of DPE Mass Reconstruction** p (ξ₁) р t₁ 600 Δŋ Ρ Μ Ρ Δη 500 t_2 p (ξ₂) р $\xi_1 < 1.5\%; \ \xi_2 > 5.0\%$ 400

300

200

100

0<u>∟</u>

50

100

Low-β RP vertical RP horizontal T2 Mass [GeV]

TOTEM How to reach the Coulomb Region? -t₅₀ [GeV²] -t₅₀ [GeV²] $\varepsilon_n = 2 \ \mu m \ rad$ $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$ $\varepsilon_n = 1 \ \mu m \ rad$ 10 ⁻² 1 10 ⁻²) Window pos. 10 σ 9 σ 8 σ Window pos. 10 ⁻³) -3 10 7σ 10 σ 9 σ 8 σ 7 σ 6 σ Coulomb = nuclear5σ Coulomb = nuclear4σ 6σ 5σ 4σ 10 10 1600 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 1600 β^{*} [**m**] β^{*} [**m**]

At 8 TeV the pots have to move by $\sim 1\sigma$ closer to reach the same t as at 7 TeV.

 \rightarrow Challenging but possible