

Recent measurements of ultra-high energy cosmic rays and their impact on hadronic interaction modeling

Hans Dembinski KIT Karlsruhe

www.kit.edu

Outline

Outline

Introduction and experiments

Energy spectrum

\mathbf{X}_{\max} and other mass-sensitive observables

Limits on photons/neutrinos

p-air cross-section

Muon number

Hadronic interaction properties \leftrightarrow air shower observables

Bottom line: Air shower experiments **can** be used to **indirectly** measure p-air cross-section, elasticity, multiplicity at E > 50 TeV but in a highly model dependent way.

Air showers

SD observes only slice of shower development

SD samples lateral density profile of e, μ , and possibly γ , depending on detector type

Very inclined showers can be observed if detectors have "depth": measure muon component SD cross-calibrated to FD

S_{ref} μ Ε (θ < 60°)

Auger: θ > 60° Ν₁₉ μ Ν_μ μ Ε

Experiments

Experiments above 10¹⁸ eV

Northern Hemisphere

HiRes (aka Fly's Eye) 1981 - 1992 Telescope Array 2008 - ... (Successor of HiRes and AGASA)

Southern Hemisphere

Pierre Auger Observatory 2004 - ...

Other experiments: Volcano Ranch, SUGAR, Haverah Park, Yakutsk, AGASA

HiRes (High Resolution Fly's Eye)

Telescope with PMT camera

Western desert of Utah, U.S.A. 1500 m asl "Fly's Eye" formed by overlapping field of views of fluorescence telescopes

Monocular operation (HiRes-I)

Energy resolution ~27 %

Stereo operation (HiRes-II)

- Energy resolution ~20 %
- ~1/7 exposure of monocular

Pierre Auger Observatory

Malargüe, Argentina 1400 m asl

Fluorescence detector (FD)

10 m² Water-Cherenkov detector

SD station

FD building

- 27 fluorescence telescopes
- Energy resolution ~10 %

Surface detector (SD)

- 1660 stations
- Energy resolution \sim (15 20) %

Telescope array

Western desert of Utah, U.S.A. 1500 m asl

SD+palabolic antenna Connunication Tower

Fluorescence detector (FD)

Middle Drum

- 14 refurbished HiRes telescopes
- Energy resolution ~16 %

Long Ridge and Black Rock

- 24 fluorescence telescopes
- Energy resolution ~8 %

Surface detector (SD)

- 507 stations
- Energy resolution ?

S. Ogio [TA Collab.]; T. Nonaka [TA Collab.]; D. Ikeda [TA Collab.], ICRC Beijing, 2011

Exposure

D.C. Rodriguez [TA Collab.]; F. Salamida [Auger Collab.], ICRC Beijing, 2011

Energy spectrum

Hans Dembinski - Cosmic Ray Results

Energy spectrum

Agreement, but not so surprising...

Middle drum = refurbished HiRes telescopes Data analyis largely the same Same fluorescence yield Fluorescence yields and absolute FD calibration differ

Agreement between Auger and TA if energy is rescaled by 16 %

*yield: Nagano, spectrum: AIRFLY **yield: Kakimoto, spectrum: Bunner [†]QGSJet mixed ^{††}QGSJet proton

Observables related to mass composition

Depth of shower maximum X_{max}

Shower maximum X_{max} of proton showers compared to iron showers ... develops deeper on average ... fluctuates more

Heck et al., FZKA6019, 1998

Photons behave like super-light hadrons: very deep showers, muon poor

R. Ulrich [Auger Collab.], ICRC Beijing, 2011

Field of view bias

Field of view of FD telescopes does not cover full X_{max} range for all shower geometries

Field of view bias

Not all shower geometries allow to observe the full X_{max} range

HiRes and TA approach

- Do not correct bias
- Apply detector simulation to generator-level prediction to be consistent

Results are detector dependent

Field of view bias

Auger approach

- Select only shower geometries that cover full $X_{\mbox{\tiny max}}$ range
- Compare measurement directly with generator-level prediction

Results are detector independent

P. Facal San Luis [Auger Collab.]; Y. Tameda [TA Collab.], ICRC Beijing, 2011 Mean X R.U. Abbasi et al., Astrophys. J., 2005 max <X_{max}> [g/cm²] 00 58 EPOSv1.99 QGSJET01 Auger p SIBYLL2.1 OGS IETII 750 1251 1407 700 Fe 650 10¹⁸ 10¹⁹ E [eV] 850 900 HiRes Data QGSJET01 **HiRes** TΑ р 850 Preliminary 800 QGSJET-II <X_{mm}> (g/cm²) SIBYLL 2.1 р 800 750 68 29 <Xmx> 67 66 107 750 146 700 226 211 Fe 700 650 Fe QGSJET-II QGSJET-01 650 GSJET-II 600 Fe QGSJET-01 19.25 19.5 19.75 18 18.25 18.5 18.75 20 19 600 L 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 log[E(eV)] log(E/eV)

fluctuations max

P. Facal San Luis [Auger Collab.], ICRC Beijing, 2011 R.U. Abbasi et al., Astrophys. J., 2005

 $\begin{array}{c} \text{Detector resolution subtracted from data} \\ \sigma_{\text{res}} \, 27 \, \text{g cm}^{\text{-2}} & \sigma_{\text{res}} \, 18 \, \text{g cm}^{\text{-2}} \end{array}$

Variance of distribution in each bin

Detector resolution folded into prediction

Fit of truncated Gaussian to suppress long tails

P. Facal San Luis [Auger Collab.], ICRC Beijing, 2011 R.U. Abbasi et al., Astrophys. J., 2005

QGSJet-II

 $\begin{array}{c} \text{Detector resolution subtracted from data} \\ \sigma_{\text{res}} \, 27 \, \text{g cm}^{\text{-2}} & \sigma_{\text{res}} \, 18 \, \text{g cm}^{\text{-2}} \end{array}$

Variance of distribution in each bin

Detector resolution folded into prediction

Fit of truncated Gaussian to suppress long tails

Auger: X^µ_{max}

Geometrical (optical) model of muon propagation Good approximation for $55^{\circ} \lesssim \theta \lesssim 65^{\circ}$

Auger: Mass observables

Searches for photons and neutrinos (very briefly)

Photon limits

Photons develop deeper \rightarrow larger X_{max} and front curvature **Photons** muon poor \rightarrow smaller signal deposited in SD, larger signal rise time

M. Settimo [Auger Collab.]; G.I. Rubtsov [TA Collab.], ICRC Beijing, 2011

M. Settimo [Auger Collab.]; G.I. Rubtsov [TA Collab.], ICRC Beijing, 2011

Photon limits

Neutrino limits

Similar techniques as for photon search, but look for **horizontal** deep showers

p-air cross section

Auger method: X_{max} tail

 $\operatorname{RMS}^{2}[X_{\max}] = \operatorname{RMS}^{2}[X_{0}] + \operatorname{RMS}^{2}[\Delta X]$ $\lambda_{\operatorname{int}}^{\prime\prime} \qquad \sigma_{\operatorname{int}} = \frac{\langle m_{\operatorname{air}} \rangle}{\lambda_{\operatorname{int}}}$

R. Ulrich [Auger Collab.], ICRC Beijing, 2011

But: Can only observe X_{max} with possibly mixed composition

Ellsworth et al. PRD 1982 Idea Baltrusaitis et al. PRL 1984 Use tail of X_{max} distribution

Auger method: X_{max} tail

Fit X_{max} tail with exponential distribution

in energy range 10¹⁸ - 10^{18.5} eV

to obtain slope Λ_n

Shift $\,\sigma_{p\text{-}air}$ in simulations up and down to get mapping

R. Ulrich [Auger Collab.],

ICRC Beijing, 2011

 $\sigma_{ ext{p-air}} o \Lambda_\eta$

Then invert this mapping to get $\sigma_{\rm p-air}$ from measured Λ_η

R. Ulrich [Auger Collab.], ICRC Beijing, 2011 K. Belov [HiRes Collab.], ICRC Mexico, 2007

p-air cross-section

Muon content

G. Rodríguez [Auger Collab.], ICRC Beijing, 2011

Muon scale N₁₉

J. Allen [Auger Collab.], ICRC Beijing, 2011

Auger: Muon excess

Auger

Multivariate muon jump method $0^{\circ} < \theta < 55^{\circ}$

Shower universality method $45^{\circ} < \theta < 65^{\circ}$

Simulation matching method $0^{\circ} < \theta < 60^{\circ}$

 $\rm N_{\tiny 19}$ method $~60^\circ < \theta < 80^\circ$

T. Abu-Zayyad [TA Collab.], ICRC Beijing, 2011

Muon excess in TA?

Air shower observables and Hadronic interactions

Hadronic interactions

R. Ulrich, R. Engel, M. Unger, Phys. Rev. D, 2011

Investigate connection

 X_{max} , N_{e} , N_{u} (Mean, Fluctuation) \leftrightarrow cross-section, multiplicity, elasticity, A

N_u can be observed with SD at θ > 60° and dedicated muon detectors (e.g. AMIGA)

$\langle X_{max} \rangle$	X-section, multiplicity, elasticity
RMS(X _{max})	X-section
$\langle N_{e} \rangle$	X-section, multiplicity, elasticity
RMS(N _e)	X-section, multiplicity
$\langle N_{\mu} \rangle$	$\pi^{+/-}$ to π^{0} ratio, multiplicity
RMS(N _µ)	elasticity

Challenge: $\langle \ln A \rangle \neq 0$ and changing with E effect needs to be modeled, too

Summary

- Energy spectrum (HiRes, Auger, TA) +++
 - Agreement within systematic uncertainty of energy scale
 - Cross-calibration desirable, need world-average of fluorescence yield
- Mass composition (HiRes, Auger, TA) ++/--
 - Consistency between Auger FD and Auger SD
 - Discrepancy between HiRes (possibly TA) and Auger! Analysis/Interpretation issue?
- Limits on photons/neutrinos (HiRes, Auger, TA) +++
- p-air cross-section (HiRes, Auger) ++
- Muon number (Auger) ++
 - Large muon excess in data for any mass assumption/model, TA also sees hints
- Hadronic interaction properties: cross-section, elasticity, multiplicity
 Only indirect measurement with significant model dependency
 Best observables (X_{max}), RMS(X_{max}), (N_µ), RMS(N_µ)
 - Hans Dembinski Cosmic Ray Results

Backup

Hadronic model influence

Hadronic model influence

Anisotropy

VCV catalogue, E> 57 EeV, z<0.018, distance < 3.1 deg.

Anisotropy

VCV catalogue, E> 57 EeV, z<0.018, distance < 3.1 deg.

TA

Auger

Pierre Auger Observatory (1017 – 1018) eV

AMIGA

- Auger stations with 750 m spacing

 Buried 30 m² scintillation detectors (muon counters)

$$E_{\rm thr}^{\mu} \approx 1 {\rm GeV}$$

Pierre Auger Observatory (10¹⁷ – 10¹⁸) eV

HEAT

- Tiltable Auger FD telescopes
- Elevated field of view from 30° to 60°
- Double time resolution

Improved calibration techiques

Electron light source at Telescope array site

40 MeV electron beam pulse as seen by TA telescope

FD energy scale

Fluorescence yield

- New AIRFLY measurements $\sigma_{_{SYS}}$ ~ 4 %
- Experiments should decide on world average

Experiments should cross-calibrate using common light source