Exclusive electroproduction of vector mesons

 $\mathcal{L}.$ Favart

I.I.H.E. Université Libre de Bruxelles

EDS 2011

Vietnam - 15-20 Dec. 2011

EDA 2011 Dec. 11 - L.Favart - p. 1/2

Exclusive Vector Meson production

only unpolarised lepton beam and unpolirised target (p beam)presence of a hard scale: $Q^2 >> 1 \text{ GeV}^2$ or heavy meson only elastic, i.e. no p-diss final state

Two theoretical approaches

- "exact" QCD calculation possible
- $\int GPD(x,\xi,Q^2) dx$
- ${\rm J}/{\Psi}$ wave function

- $\text{GPDs}(x, \xi, t; \mu)$ build from the PDFs with a skewing effect and a t dependence

Colour Dipole

In the proton rest frame: - γ^* fluctuates in $q\bar{q} + q\bar{q}g + \dots$

$$\sigma = \int dr^2 \psi^{in}(r, z, Q^2) \ \sigma_d^2 \ \psi^{out}(r, z, Q^2)$$

- ψ^{in} calculable
- $\sigma_{\rm d}$ is modelised (e.g. two gluons)
- integrated over trans. $q\bar{q}$ separation r

EDA 2011 Dec. 11 - L.Favart - p. 3/2

VM production in Colour Dipole approach

- at large energy, for \mathcal{A}_L (large Q^2 or heavy quarks):

- 1. γ fluctuates in $q\bar{q}$ dipole: QED γ wave function Ψ_{γ}
- 2. dipole-proton interaction: universal $\sigma_{dip}(r, z, b)$
- 3. $q\bar{q}$ recombination into VM

- The scaning radius r is expected to decreases with increasing Q^2 or M_V \Rightarrow universal scale: $\mu^2 = z(1-z)(Q^2 + M_V^2)$

- for \mathcal{A}_L (large Q^2) or heavy quarks: $z \simeq 1/2 \Rightarrow \mu^2 \simeq (Q^2 + M_V^2)/4$

- for light quarks, \mathcal{A}_T : contrib. from end points $z = 0, 1 \Rightarrow \mu^2$ can be small even for large $Q^2 \Rightarrow$ soft contributions. Some models introduce k_L for quarks to avoid the singularities.

High W: W dependences

High W: W expected dependence

 $\sigma \sim W^{\delta} \sim |x \ g(x, \mu^2)| \Rightarrow \text{hard } W \text{ dependence: signature of a hard scale}$ $\Rightarrow \delta = 4(\alpha(0) + \alpha't - 1) \text{ larger than soft} (+ \text{ skewing effects})$

 \Rightarrow Hard scale: $\delta, \alpha(0)$: universal with $\frac{Q^2 + M_X^2}{4}$

DVCSislikeDIS,thephoton(atLO)interactsdi-rectlywitharesolvedquark.

Low W: W dependences

- GPD based predictions of S.Goloskokov and P.Kroll (GK) describe well the Φ exclusive production down to the lowest W
- \bullet But cannot describe the ρ production for $W < 5~{\rm GeV}$

• Described in GPD based model: M.Vanderhaeghen, P.Guichon and M.Guidal (VGG) with an ad hoc D term.

t dependences

Low W: b slopes for different VM

- first increase at low W then flat
- decreases with Q^2 as at high W (photon size effect ?)
- how do we interpret such low b values ? (smaller than the p)

EDA 2011 Dec. 11 - L.Favart - p. 9/2

Q^2 dependence

- Steep falling of the cross section observed both at high and low energy.
- No numerical comparison

Q^2 dependence

- $\sigma(Q^2)$: $\sigma_L \propto Q^{-6}$; $\sigma_T \propto Q^{-8}$ but modified by gluon pdf Q^2 depend., quark Fermi motion and virtuality, $\alpha_s(Q^2)$, higher order.

EDA 2011 Dec. 11 - L.Favart - p. 12/2

High W: ρ Polarisation - SDMEs vs. Q^2

• r_{00}^{04} increases with Q^2 \leftrightarrow similar effects for r_{1-1}^1 , Im r_{1-1}^2 , Re r_{10}^5 and Im r_{10}^6 (in SCHC) \leftrightarrow Fair description by Goloskokov-Kroll (GPD) model • r_{00}^5 violates SCHC (flip)

• Other SDME $\simeq 0$

• similar obs. for Φ

EDA 2011 Dec. 11 - L.Favart - p. 13/2

Low W: ρ and Φ Polarisation - SDMEs vs. Q^2

• Strong invariant mass dependence in ρ case

M_{ππ} (GeV)

 $\Rightarrow |T_{00}| > |T_{11}| > |T_{01}| > |T_{10}|, |T_{-11}| \leftrightarrow \text{hierarchy observed}$

- $|T_{11}|/|T_{00}|$ decreases with |t|
- $|T_{01}|/|T_{00}|$ increases with $|t| \leftrightarrow$ SCHC violation increases with |t|
- $\bullet ~|T_{10}|/|T_{00}|$ and $|T_{-11}|/|T_{00}|$ are small but some |t| dependence
- $|T_{11}|/|T_{00}|$ decrease partially acompensated by $|T_{01}|/|T_{00}|$ increase $\Rightarrow \sigma_L/\sigma_T$ is the result of partial compensations

- H1: R depends on t for large $Q^2 \Rightarrow b_L < b_T \parallel \mid (\sigma_L \text{ more pert. than } \sigma_T)$
- Not seen by ZEUS
- due to different ρ' background treatement

Low W: ρ and Φ Polarisation - SDMEs vs. t

- Ο:ρ :Φ
- $\rightarrow \rho$: stronger spin flip dependence with twhy ?

not observed at high W (gluon dominated)

Effect of t_{\min} ?

J/ψ Polarisation

- J/ψ SDME compatible with SCHC: non-relativistic WF
- Common behaviour of R for all VM vs. $Q^2 M_{\rho}^2 / M_{VM}^2$
- J/ψ mostly transverse

Amplitude phase

 $\tan \delta = \frac{Im(T_{11}/T_{00})}{Re(T_{11}/T_{00})} \sim \text{Re} \ r_{10}^5 - \text{Im} \ r_{10}^6$

- Increase with Q^2 (HERMES data)
- Expected to be fully imaginary at high energy.
- Not well described by GPD based model of GK $(3.1^{\circ} \text{ at HERMES energy})$.

EDA 2011 Dec. 11 - L.Favart - p. 21/2

(Un)Natural Parity Exchange

Natural-parity exchange: interaction mediated by a particle of 'natural' parity: scalar $(J^P = 0^+ \text{ like } I\!\!P)$ or vector $(1^- \text{ like } \rho, \omega, a_2)$. Unnatural-parity exchange: pseudoscalar $(0^- \text{ like } \pi, \eta)$ or axial meson (1^+) .

 $U1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{1-1}^{1} - 2r_{11}^{1} \quad U2 = r_{1-1}^{5} + r_{11}^{5} \quad U3 = r_{1-1}^{8} + r_{11}^{8}.$

- Only observed for ρ (not for Φ). no Q^2 dependence (naively $\sim 1/Q^2$).
- Important at low W (valence quark exchange).
- More pronouced at low t ? (pion pole ?).
- Possible CLAS measurement ?

GPD: Generalised D term: VGG model

• Using a "generalised" D term, the GPD based model VGG can reproduce the (t, x) correlation a priori not in the D term.

• It recover a classic D term for $t \to 0$ and respect the Form Factors boundary conditions.

Conclusions

The vector meson exclusive production is an important tool to understand the transition between low-energy hadronic and high energy partonic domains of QCD

Large variety of measurements at low as at high energies:

- $\rho, \phi, J/\psi, \Upsilon, \gamma, \dots$
- large kinematic domain in Q^2, W, t
- σ complemented by helicity ampl. give a unique insight to the dynamics.

Rich field for QCD understanding:

- global understanding of the gluon and sea contributions over more than 2 orders of magnitude in energy
- precision in the soft to hard transition: W dep., t dep.
- reasonable description of L/T separation and spin flip
- The strong rise of ρ cross sec. towards low W has still to be understood.
- Is the hand-bag model still valid or should the GPDs be adapted like e.g. in VGG model ?

Back-up Slides

EDA 2011 Dec. 11 - L.Favart – p. 25/2

VM theory: Dipole approach and k_T factorisation

Dipole approach - Saturation : Shown here: C.Marquet, R.Peschanski, G.Soyez [hep-ph/0702171]

- $\sigma_{q\bar{q}-p}$ extracted from fits to inclusive data (F_2) with geometric scaling.
- Fits may include VM data as well (see later) and QCD evolution at high Q^2 .

```
k_T factorisation - BFKL pomeron:
```

Shown here: I.Ivanov, N.Nikolaev, A.Savin [hep-ph/0501034]

- Conjugate approach to dipole one in " k_T space".
- $\sigma_{q\bar{q}-p}$ computed from k_T -unintegrated gluon pdf $\mathcal{F}(x,\vec{\kappa})$:

$$\sigma_{q\bar{q}-p} = 4\pi/3 \int d^2\vec{\kappa}/\kappa^4 \ \mathcal{F}(x,\vec{\kappa}) \ \alpha_s(\mu^2) \ [1 - \exp(i\vec{\kappa}\vec{r})]$$

N.B: for small dipole, 2/2 (2) (2) (2)

$$\sigma_{q\bar{q}-p} \simeq \pi^2/3 \ r^2 \ \alpha_s(\mu^2) \ G(x,\mu^2) \quad \text{with } \mu^2 = A/(z(1-z)Q^2 + m_q^2) \ ; A = 9 - 10$$

$$\longrightarrow \sigma_T \propto (Q^2 + M_V^2)^{-4} \ [\alpha_s(\mu^2) \ G(x,\mu^2)]^2$$

$$\longrightarrow \sigma_L \propto Q^2/M_V^2 \ (Q^2 + M_V^2)^{-4} \ [\alpha_s(\mu^2) \ G(x,\mu^2)]^2$$

VM theory: Collinear factorisation

QCD factorisation theorem valid for leading power of Q in DIS: Collins, Frankfurt and Strikman [hep-ph/9611433]

EDA 2011 Dec. 11 - L.Favart - p. 27/2

Polarisation - Retrieving Amplitude ratios

Assume purely imaginary amplitudes \longrightarrow phase = ± 1 !

 $\longrightarrow \text{Extract } |T_{11}|/|T_{00}|, |T_{01}|/|T_{00}|, |T_{10}|/|T_{00}| \text{ and } |T_{-11}|/|T_{00}|$ from fit to the 15 SDMEs:

$$\begin{split} r_{00}^{04} &= B \left(\varepsilon + \beta^2 \right) \\ \operatorname{Re} r_{10}^{04} &= B/2 \left(2\varepsilon\delta + \beta\alpha - \beta\eta \right) \\ r_{1-1}^{04} &= B \left(\alpha\eta - \varepsilon\delta^2 \right) \\ r_{00}^{1} &= -B \beta^2 \\ r_{11}^{1} &= B \alpha\eta \\ \operatorname{Re} r_{10}^{1} &= B/2 \beta(\eta - \alpha) \\ r_{1-1}^{1} &= B/2 \left(\alpha^2 + \eta^2 \right) \\ \operatorname{Im} r_{10}^{2} &= B/2 \beta(\alpha + \eta) \\ \operatorname{Im} r_{1-1}^{2} &= B/2 \left(\eta^2 - \alpha^2 \right) \\ r_{00}^{5} &= \sqrt{2}B \beta \\ r_{11}^{5} &= B/\sqrt{2} \delta(\alpha - \eta) \\ \operatorname{Re} r_{10}^{5} &= B/(2\sqrt{2}) \left(2\beta\delta + \alpha - \eta \right) \\ r_{1-1}^{5} &= B/\sqrt{2} \delta(\eta - \alpha) \\ \operatorname{Im} r_{10}^{6} &= -B/(2\sqrt{2}) \left(\alpha + \eta \right) \\ \operatorname{Im} r_{1-1}^{6} &= B/\sqrt{2} \delta(\alpha + \eta) \end{split}$$

$$\alpha = |T_{11}| / |T_{00}|$$

$$\beta = |T_{01}| / |T_{00}|$$

$$\delta = |T_{10}| / |T_{00}|$$

$$\eta = |T_{-11}|/|T_{00}|$$

$$egin{aligned} B &= rac{1}{N_T + arepsilon N_L} = rac{R}{1 + arepsilon R} \ N_T &= lpha^2 + eta^2 + \eta^2 \ N_L &= 1 + 2\delta^2 \end{aligned}$$

Shrinkage : $\alpha'_{I\!\!P}$ measurements

 $\frac{\mathrm{d}\sigma}{\mathrm{d}t}(W) \propto e^{b_0 t} W^{4(\alpha_{I\!\!P}(t)-1)}$

- 1. Study W depend. in bins of t: \rightarrow Fit: $W^{\delta} \rightarrow \alpha_{\mathbb{P}}(t) = 1 + \delta/4$
- 2. Study $\alpha_{I\!\!P}(t)$ trajectories:

$$\rightarrow$$
 Fit: $\alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha'_{I\!\!P}t$

Rho mass

