Deep Inelastic Scattering and dipion electroproduction at HERA

Achim Geiser, DESY Hamburg

EDS Blois workshop Qui Nhon, Vietnam, 2011

Inclusive Deep Inelastic Scattering Jets and Heavy Flavours in DIS Exclusive dipion electroproduction

selection of recent results

inclusive diffraction + diffractive dijets + total cross section -> talk A. Valkarova comparison of diffraction at HERA and Tevatron -> talks C. Royon & K. Giulianos exclusive vector meson production -> talk L. Favart HERA data and pomeron -> talk U. Maor

The HERA ep collider and experiments

16. 12. 11

Deep Inelastic ep Scattering at HERA

Inclusive DIS

H1-ZEUS combinations & PDF fits: full expert treatment of

exp. syst. uncertainties and correlations

HERA data essential input to any PDF fit

The structure of the proton

Combination of HERA data and PDF fit

- inclusion of the HERA II high Q² data improves precision at high Q² and high x
- further new results (not yet included in average): ZEUS-prel 11-003, 11-004

- NLO and NNLO versions of HERAPDF 1.5 available on LHAPDF

A. Geiser, DIS and dipions at HERA, EDS 11 Qui Nhon

16. 12. 11

Example: W production in CMS

probably more examples in LHC talks this afternoon

16. 12. 11

Longitudinal structure function F_L

- perfect description of the F_L data by QCD at $Q^2 \ge 10 \ GeV^2$ - large spread/uncertainty of the QCD predictions at low Q^2

$F_{\rm L}$ data are valuable input to QCD fits

16. 12. 11

Jets and α_{s}

16. 12. 11

Jets in ep interactions (HERA)

single (or no) jets in DIS: no QCD, measure quark densities

16. 12. 11

16. 12. 11

well described by NLO QCD + HERAPDF

12

$$\alpha_s(M_Z) = 0.1190 \pm 0.0021 \text{ (exp.)} \pm 0.0020 \text{ (pdf)} ^{+0.0050}_{-0.0056} \text{ (th.)}$$

Dijet:

$$\alpha_s(M_Z) = 0.1146 \pm 0.0022 \text{ (exp.)} \pm 0.0021 \text{ (pdf)} ^{+0.0044}_{-0.0045} \text{ (th.)}$$

Trijet: most precise ($\sim \alpha_s^2$)

 $\alpha_s(M_Z) = 0.1196 \pm 0.0016 \text{ (exp.)} \pm 0.0010 \text{ (pdf)} ^{+0.0055}_{-0.0039} \text{ (th.)}$

H1 summary of α_s measurements

optimised for minimization of experimental uncertainties

good agreement with previous measurements and world average

uncertainties dominated by NLO theory

16. 12. 11

^{16. 12. 11}

A. Geiser, DIS and dipions at HERA, EDS 11 Qui Nhon

16. 12. 11

16. 12. 11

Why are heavy flavours important?

- charm contribution to HERA data up to 30%! (beauty ~1-3%)
- kinematic effect of mass

competing scales for perturbative expansion

e.g. m, Q^2 , $p_T \rightarrow$ terms log Q^2/m^2

 $\log p_T^2/m^2$ etc.

- => "massless" treatment (ZM-VFNS) allows resummation, but fails near "mass threshold" -> avoid !
- "massive" treatment gets kinematics right, but does not allow resummation (fixed flavour number schemes, FFNS) or induces ambiguities in QCD corrections near flavour threshold (variable flavour number schemes, GM-VFNS)

check different schemes against HERA data

charm contribution to F_2

combined HERA (H1 and ZEUS) charm data:

sensitive to m_c and to differences in Heavy Flavour schemes here: massive VFNS schemes

fit to these data -> u/c flavour separation -> reduced uncertainties on W/Z cross sections at LHC H1-prelim 10-045 ZEUS-prel 10-009

also updated/new results (not yet included) ZEUS-prel 10-005, 11-012 H1, DESY 11-066

16. 12. 11

A. Geiser, DIS and dipions at HERA, EDS 11 Qui Nhon

PDF fit to "all" HERA data

combined inclusive data, F_L, jets, charm:

all data consistent (good fit) -> QCD works

ongoing work, future public release will further reduce model uncertainties (e.g. m_c , gluon/ α_s correlations)

16. 12. 11

A. Geiser, DIS and dipions at HERA, EDS 11 Qui Nhon

beauty contribution to F_2

H,Z

b

(other results on exclusive vector meson production see talk L. Favart)

$\pi\pi$ mass distribution, fit of F_{π}

ZEUS

Santamaria parametrization:

A. Geiser, DIS and dipions at HERA, EDS 11 Qui Nhon

 $\pi\pi$ mass distribution, fit of F_{π}

Parameter	ZEUS	PDG
$M_{\rho} (MeV)$	$771 \pm 2^{+2}_{-1}$	$775.49 {\pm} 0.34$
$\Gamma_{\rho} (MeV)$	$155\pm5\pm2$	$149.1 {\pm} 0.8$
β	$-0.27 \pm 0.02 \pm 0.02$	
$M_{\rho'}$ (MeV)	$1350 \pm 20^{+20}_{-30}$	1465 ± 25
$\Gamma_{\rho'}$ (MeV)	$460\pm 30^{+40}_{-45}$	400 ± 60
γ	$0.10 \pm 0.02^{+0.02}_{-0.01}$	
$M_{\rho''}$ (MeV)	$1780 \pm 20^{+15}_{-20}$	1720 ± 20
$\Gamma_{\rho^{\prime\prime}}$ (MeV)	$310\pm30^{+25}_{-35}$	$250{\pm}100$
В	$0.41 \pm 0.03 \pm 0.07$	
n	$1.30\pm0.06^{+0.18}_{-0.13}$	

masses and widths consistent with expectations (but ρ' mass lower than PDG)

Interference important !

relative amplitudes measured, found to be real

Santamaria parametrization:

$$F_{\pi}(M_{\pi\pi}) = \frac{BW_{\rho}(M_{\pi\pi}) + \beta BW_{\rho'}(M_{\pi\pi}) + \gamma BW_{\rho''}(M_{\pi\pi})}{1 + \beta + \gamma}$$

with Breit-Wigner
$$BW_{V}(M_{\pi\pi}) = \frac{M_{V}^{2}}{M_{V}^{2} - M_{\pi\pi}^{2} - iM_{V}\Gamma_{V}(M_{\pi\pi})},$$

16. 12. 11 A. Geiser, DIS and dipions at HERA, EDS 11 Qui Nhon

$\pi\pi$ mass distribution, F_{π} fit vs Q^2

similar results, but some Q^2 dependence

$Q^2(\text{GeV}^2)$	2-5	5-10	10-80
β	$-0.249 \pm 0.008^{+0.005}_{-0.003}$	$-0.282\pm0.008^{+0.005}_{-0.008}$	$-0.35 \pm 0.02 \pm 0.01$
γ	$0.100 \pm 0.009 \pm 0.003$	$0.098 \pm 0.012^{+0.005}_{-0.003}$	$0.118 \pm 0.022^{+0.008}_{-0.006}$

10

2.5

16. 12. 11

10 00

comparison to e⁺e⁻

16. 12. 11

16. 12. 11

Summary and conclusions

- DIS measurements at HERA successfully test QCD and provide unique input to determination of parton densities HERAPDF 1.5 NLO/NNLO available on LHAPDF
- HERA jet and heavy flavour measurements successfully test and constrain QCD parameters, improve PDFs
 - -> potential to yield competitive measurements of α_s (need NNLO calculations ! partially in progress).
 - -> further improve cross section predictions for LHC

- combination of H1/ZEUS results ongoing
- -> towards full 1 fb⁻¹ results (H1+ZEUS, HERA1+2).
- -> expect significant further improvements over next few years

- -> relative production amplitudes are real and similar to e+e-
- -> ρ'/ρ ratio rising with Q^2 as expected

Backup

16. 12. 11

DESY-10-170, Eur. Phys. J. C70 (2010) 965

16. 12. 11

$\pi\pi$ control distributions

Figure 2: Comparison between the data and the ZEUSVM MC distributions for Q^2 , W, |t|, $\cos \theta_h$, Φ_h and ϕ_h for events within mass range $1.1 < M_{\pi\pi} < 1.6$ GeV. The MC distributions are normalized to the data.

Figure 3: Comparison between the data and the ZEUSVM MC distributions for Q^2 , W, |t|, $\cos \theta_h$, Φ_h and ϕ_h for events within mass range $1.6 < M_{\pi\pi} < 2.1$ GeV. The MC distributions are normalized to the data.

16. 12. 11

A. Geiser, DIS and dipions at HERA, EDS 11 Qui Nhon