Models of Elastic Diffractive Scattering to Falsify at the LHC

Anton Godizov

Institute for High Energy Physics, Protvino

The 14th EDS Blois Workshop December 15-21, 2011, Qui Nhon, Vietnam

Models of Elastic Diffractive Scattering

P. Desgrolard, M. Giffon, and E. Martynov, Eur. Phys. J. C 18 (2000) 359 V.A. Petrov and A.V. Prokudin, Eur. Phys. J. C 23 (2002) 135 C. Bourrely, J. Soffer, and T.T. Wu, Eur. Phys. J. C 28 (2003) 97 R.F. Avila, S.D. Campos, M.J. Menon, and J. Montanha, Eur. Phys. J. C 47 (2006) 171 M.M. Islam, R.J. Luddy, and A.V. Prokudin, Int. J. Mod. Phys. A 21 (2006) 1 E. Martynov, Phys. Rev. D 76 (2007) 074030 R.F. Avila, P. Gauron, and B. Nicolescu, Eur. Phys. J. C 49 (2007) 581 E. Martynov and B. Nicolescu, Eur. Phys. J. C 56 (2008) 57 C. Flensburg, G. Gustafson, and L. Lönnblad, Eur. Phys. J. C 60 (2009) 233 P. Brogueira and J. Dias de Deus, J. Phys. J 37 (2010) 075006 M.M. Block and F. Halzen, Phys. Rev. D 83 (2011) 077901 L.L. Jenkovszky, A.I. Lengyel, and D.I. Lontkovskyi, Int. J. Mod. Phys. A 26 (2011) 4755 E. Gotsman, E. Levin, and U. Maor, Eur. Phys. J. C 71 (2011) 1553 M.G. Ryskin, A.D. Martin, and V.A. Khoze, Eur. Phys. J. C 71 (2011) 1617 S. Ostapchenko, Phys. Rev. D 83 (2011) 014018 D.A. Fagundes, E.G.S. Luna, M.J. Menon, and A.A. Natale, arXiv: 1108.1206 [hep-ph] A. Godizov, Phys. Lett. B 703 (2011) 331

A. Donnachie and P.V. Landshoff, arXiv: 1112.2485 [hep-ph]

Models vs. TOTEM. The pp Differential Cross-Section

The TOTEM Collaboration, Europhys.Lett. 95 (2011) 41001

Scattering Amplitude, Born Term ("Eikonal") and Regge Trajectories

$$T_{12\to 12}(s,t) = 4\pi s \int_0^\infty db^2 J_0(b\sqrt{-t}) \frac{e^{2i\delta_{12\to 12}(s,b)}-1}{2i},$$

$$\begin{split} \delta_{12\to12}(s,b) &= \frac{1}{16\pi s} \int_0^\infty d(-t) J_0(b\sqrt{-t}) \delta_{12\to12}(s,t) = \\ &= \frac{1}{16\pi s} \int_0^\infty d(-t) J_0(b\sqrt{-t}) \times \\ &\times \left\{ \sum_n \left(i + \operatorname{tg} \frac{\pi(\alpha_n^+(t) - 1)}{2} \right) \Gamma_n^{(1)+}(t) \Gamma_n^{(2)+}(t) s^{\alpha_n^+(t)} \mp \right. \\ &\mp \sum_n \left(i - \operatorname{ctg} \frac{\pi(\alpha_n^-(t) - 1)}{2} \right) \Gamma_n^{(1)-}(t) \Gamma_n^{(2)-}(t) s^{\alpha_n^-(t)} \right\}. \end{split}$$

Regge Trajectories and QCD. The BFKL Approach

J. Kwiecinski, Phys. Rev. D 26 (1982) 3293:

$$\alpha_{\bar{q}q}(t) = \sqrt{\frac{8}{3\pi}\alpha_s(\sqrt{-t})} + o(\alpha_s^{1/2}(\sqrt{-t}))$$

R. Kirschner and L.N. Lipatov, Z. Phys. C 45 (1990) 477:

$$\alpha_{gg}(t) = 1 + \frac{12 \ln 2}{\pi} \alpha_s(\sqrt{-t}) + o(\alpha_s(\sqrt{-t}))$$

V.S. Fadin and L.N. Lipatov, Phys. Lett. B 429 (1998) 127,
M. Ciafaloni and G. Camici, Phys. Lett. B 430 (1998) 349:

$$\alpha_{gg}(0) = 1 + \frac{12 \ln 2}{\pi} \alpha_s(\mu) \left(1 - \frac{20}{\pi} \alpha_s(\mu)\right) + o(\alpha_s^2(\mu))$$

Regge Trajectories and QCD. The Lovelace Approach

C. Lovelace, Nucl. Phys. B 95 (1975) 12:

$$(\alpha_{\phi\phi}^{(k)}(0)+1)(\alpha_{\phi\phi}^{(k)}(0)+2)(\alpha_{\phi\phi}^{(k)}(0)+3) = \frac{16}{3(2k+1)}$$

D. Heckathorn, Phys. Rev. D 18 (1978) 1286:

$$\alpha_{gg}^{(k)}(0)(\alpha_{gg}^{(k)}(0)+1)(\alpha_{gg}^{(k)}(0)+2) = \frac{24N_c}{(2k+1)(11N_c-2n_f)}$$

A. Godizov, Phys. Rev. D 81 (2010) 065009:

$$\alpha_{\bar{q}q}^{(k)}(0) = \frac{9(N_c^2 - 1)}{(2k+1)N_c(11N_c - 2n_f)} - 1$$

Single-reggeon exchanges + eikonalization:

C. Bourrely, J. Soffer, and T.T. Wu, Eur. Phys. J. C 28 (2003) 97

V.A. Petrov and A.V. Prokudin, Eur. Phys. J. C 23 (2002) 135 A. Godizov, Phys. Lett. B 703 (2011) 331

Models without eikonalization:

A. Donnachie and P.V. Landshoff, arXiv: 1112.2485 [hep-ph]

P. Desgrolard, M. Giffon, and E. Martynov, Eur. Phys. J. C 18 (2000) 359
E. Martynov, Phys. Rev. D 76 (2007) 074030
L.L. Jenkovszky, A.I. Lengyel, and D.I. Lontkovskyi, Int. J. Mod. Phys. A 26 (2011) 4755

R.F. Avila, P. Gauron, and B. Nicolescu, Eur. Phys. J. C 49 (2007) 581E. Martynov and B. Nicolescu, Eur. Phys. J. C 56 (2008) 57

Models Using Reggeon Field Theory

E. Gotsman, E. Levin, U. Maor, Eur. Phys. J. C 71 (2011) 1553
M.G. Ryskin, A.D. Martin, V.A. Khoze, Eur. Phys. J. C 71 (2011) 1617
S. Ostapchenko, Phys. Rev. D 83 (2011) 014018

(a) Elastic amplitude

$$\mathrm{Im}A_{\mathrm{el}} = \boxed{} = 1 - e^{-\Omega/2} = \sum_{n=1}^{\infty} \boxed{} \frac{\Omega}{2}$$

(b) Inclusion of low-mass dissociation

$$\mathrm{Im}A_{ik} = \underbrace{\prod}_{k}^{i} = 1 - e^{-\Omega_{ik}/2} = \sum \underbrace{\prod}_{k} \cdots \underbrace{\Omega_{ik}/2}_{ik}$$

(c) Inclusion of high-mass dissociation

$$\Omega_{ik} = \prod_{k}^{i} + \prod_{k}^{i} M + \prod_{k}^{i} + \dots + \dots$$

Non-Reggeon Models

Models not appealing to QCD:

R.F. Avila, S.D. Campos, M.J. Menon, and J. Montanha, Eur. Phys. J. C 47 (2006) 171

P. Brogueira and J. Dias de Deus, J. Phys. J 37 (2010) 075006

"QCD-inspired" models:

- M.M. Islam, R.J. Luddy, and A.V. Prokudin, Int. J. Mod. Phys. A 21 (2006) 1
- C. Flensburg, G. Gustafson, and L. Lönnblad, Eur. Phys. J. C 60 (2009) 233

M.M. Block and F. Halzen, Phys. Rev. D 83 (2011) 077901D.A. Fagundes, E.G.S. Luna, M.J. Menon, and A.A. Natale, arXiv: 1108.1206 [hep-ph]

Models vs. TOTEM. The Total pp Cross-Section

The TOTEM Collaboration, Europhys.Lett. 96 (2011) 21002:

$$\sigma_{tot}^{pp}(7 \ TeV) = (98.3 \pm 0.2^{stat} \pm 2.8^{syst}) \ mb$$

The Model	σ_{tot}^{pp} (7 TeV), mb
P. Desgrolard, M. Giffon, E. Martynov, Eur. Phys. J. C 18 (2000) 359	95
V.A. Petrov, A.V. Prokudin, Eur. Phys. J. C 23 (2002) 135	97 ± 4
C. Bourrely, J. Soffer, T.T. Wu, Eur. Phys. J. C 28 (2003) 97	93
R.F. Avila, S.D. Campos, M.J. Menon, J. Montanha,	94
Eur. Phys. J. C 47 (2006) 171	
M.M. Islam, R.J. Luddy, A.V. Prokudin,	97.5
Int. J. Mod. Phys. A 21 (2006) 1	
E. Martynov, Phys. Rev. D 76 (2007) 074030	91
R.F. Avila, P. Gauron, B. Nicolescu, Eur. Phys. J. C 49 (2007) 581	108
E. Martynov, B. Nicolescu, Eur. Phys. J. C 56 (2008) 57	95
C. Flensburg, G. Gustafson, L. Lönnblad,	98 ± 9
Eur. Phys. J. C 60 (2009) 233	

Models vs. TOTEM. The Total pp Cross-Section

The TOTEM Collaboration, Europhys.Lett. 96 (2011) 21002:

$$\sigma_{tot}^{pp}$$
(7 TeV) = (98.3 ± 0.2^{stat} ± 2.8^{syst}) mb

The Model	σ_{tot}^{pp} (7 TeV), mb
P. Brogueira, J. Dias de Deus, J. Phys. J 37 (2010) 075006	110
M.M. Block, F. Halzen, Phys. Rev. D 83 (2011) 077901	95.5 ± 1
L.L. Jenkovszky, A.I. Lengyel, D.I. Lontkovskyi,	98 ± 1
Int. J. Mod. Phys. A 26 (2011) 4755	
E. Gotsman, E. Levin, U. Maor, Eur. Phys. J. C 71 (2011) 1553	91
M.G. Ryskin, A.D. Martin, V.A. Khoze,	89
Eur. Phys. J. C 71 (2011) 1617	
S. Ostapchenko, Phys. Rev. D 83 (2011) 014018	93
D.A. Fagundes, E.G.S. Luna, M.J. Menon, A.A. Natale,	97
arXiv: 1108.1206 [hep-ph]	
A. Godizov, Phys. Lett. B 703 (2011) 331	110
A. Donnachie, P.V. Landshoff, arXiv: 1112.2485 [hep-ph]	91

Models vs. TOTEM. The pp Differential Cross-Section

The TOTEM Collaboration, Europhys.Lett. 95 (2011) 41001

We need deeper interrelation of phenomenological models with QCD. This requires developing powerful non-perturbative QCD techniques which should allow to deal with diffractive (large distance) domain of strong interaction.

Thank You for Attention!

Extraction of the Pomeron Intercept from the DIS Data

At 50 GeV < W < 300 GeV and 25 GeV² $< Q^2 \ll W^2$ the $\gamma^* p$ total cross-sections can be well-described by simple formula

 $\sigma_{tot}^{\gamma^* p}(W^2, Q^2) \approx \beta(Q^2) W^{2\delta}$

 O^2 , GeV^2 σ_{tot} , mb $\chi^* + p \rightarrow X$ $\sigma_{\rm tot}$, mb 0^2 . GeV² 0.01 0.01 35 45 120 0.001 0.001 300 650 0.0001 0.0001 2000 0.00001 W. GeV W, GeV 100 150 200 250 250 100 150 200 300

with $\delta \approx 0.31$

Anton Godizov

Models of EDS to Falsify at the LHC

Extraction of the Pomeron Intercept from the DIS Data

This universal parameter can be associated with the intercept of the pomeron trajectory:

 $\alpha_{\rm P}(0) - 1 = \delta \approx 0.31$

Anton Godizov Models of EDS to Falsify at the LHC