CDF RESULTS ON DIFFRACTION AND EXCLUSIVE PRODUCTION

Konstantin Goulianos

14th Workshop on Elastic and Diffractive Scattering (EDS Blois Workshop) Frontiers of QCD: From Puzzles to Discoveries December 15-21, 2011, Qui Nhon, Vietnam

CONTENTS

INTRODUCTIONDIFFRACTION

 \checkmark Diffractive W and Z production – published

✓ Diffractive structure function in dijet production – update

✓ Rapidity gaps between jets - update

EXCLUSIVE PRODUCTION

✓ Exclusive $\gamma\gamma$ in *pp* collisions at 1.96 TeV – *new*! □ CONCLUSION

Diffraction at CDF in Run I

Find PRL/PRD references in http://physics.rockefeller.edu/publications.html

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

Highlights of Run I Results

The MBR (Minimum Bias Rockefeller) Monte Carlo was used in the forward physics program - see: http://physics.rockefeller.edu/publications.html

Run I

DD at CDF

CDF Diffraction and Exclusive Production

Run I

SDD at CDF

DPE / CD at CDF

Run I

Hard diffraction

$$\overline{p}p \rightarrow (\not + X) + gap_p or gap_{pbar}$$

Run I

CDF Diffraction and Exclusive Production

Run I Diffrr. Structure Function - DSF

→ breakdown of QCD factorization

 $\bar{p}+p\rightarrow \bar{p}+[JJ+X]$

 suppression factor is 2.5 times larger than in soft diffraction
 one of the main reasons for repeating measurement in Run II with an improved forward detector system

 $\beta \rightarrow$ momentum fraction of parton in "Pomeron"

CDF Diffraction and Exclusive Production

Puzzles from run I

□ gap fractions are suppressed relative to theory predictions, both for soft (Regge) and hard diffraction ...but

factorization holds among processes at the same energy, just like at HERA

□ DSF at √s=1800 GeV suppressed by factor ~ 20 while Regge by factor ~8 → contradicts RENORM prediction, but...see further down in the talk

The CDF II Detector – plan view

The MiniPlugs @ CDF 3.5<|h|<5.1

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

Measurements ^w/the MiniPlugs

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

PHYSICAL REVIEW D 82, 112004 (2010)

Diffractive W and Z production at the Fermilab Tevatron

CDF Diffraction and Exclusive Production

M_W from inclusive W $\rightarrow e/\mu+v$

Method: compare transverse M^W data with MC

Data and event selection

0.6 fb-1 of integrated luminosity data

TABLE I: W and Z events passing successive selection requirements.

	$W \to e \nu$	$W \to \mu \nu$	$W \rightarrow l(e/\mu)\nu$	
RPS-trigger-counters	6663	5657	$12 \ 320$	
RPS-track	5124	4201	9325	\frown
$50 < M_W < 120$	192	160	352	← (W)
	$Z \rightarrow ee$	$Z \to \mu \mu$	$Z \rightarrow ll$	
RPS-trigger-counters	650	341	991	
RPS-track	494	253	747	
$\xi^{\rm cal} < 0.10$	24	12	36	←(Z)
$\xi_{\bar{p}}^{\text{cal}} = \sum_{i=1}^{N_{\text{towers}}} \frac{E_{\text{T}}^{i}}{\sqrt{s}} e^{-s}$	η^i ,			

Diffractive W/Z fractions

$$R_W(R_Z) = \frac{2 \cdot N_{SD}^W(N_{SD}^Z)}{A_{RPS} \cdot \epsilon_{RPStrig} \cdot \epsilon_{RPStrk} \cdot N_{ND}^{1-\text{int}}}$$

$$\sim 80\% \qquad \uparrow \qquad \sim 87\%\% \qquad \uparrow$$

$$68-80\% \qquad \text{f1-int} = (25.6 \pm 1.2)\%$$

$$R_W = [1.00 \pm 0.05(\text{stat}) \pm 0.10(\text{syst})]\%$$
$$R_Z = [0.88 \pm 0.21(\text{stat}) \pm 0.08(\text{syst})]\%$$

Run I: $\mathbb{R}^{w} = 1.15 \pm 0.55$ % for $\xi_{min} < \xi < 0.1$ \rightarrow [0.88±0.21 (stat)% within 0.03 < $\xi < 0.10$ & |t|<1

DSF from Dijets in Run II

x_{Bj}-distribution of SD/ND ratio has no strong Q² dependence
 slope of t-distribution is independent of Q² for |t| < 1 (GeV/c)²
 does the t-distribution have a diffraction minimum beyond |t|=1 GeV/c)²??
 → stay tuned, release coming soon!

Dijet E_T distributions

→ similar for SD and ND over 4 orders of magnitude

Kinematics

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

Q² dependence of DSF in dijets

□ Small Q² dependence in region $100 < Q^2 < 10\ 000\ GeV^2$ where $d\sigma^{SD}/dE_T \& d\sigma^{ND}/dE_T$ vary by a factor of ~ $10^{4!}$

→ The Pomeron evolves as the proton !

CDF Diffraction and Exclusive Production

Diffractive structure function – Run II t - dependence

Fit d σ /dt to a double exponential: $F=0.9\cdot e^{b_1\cdot t}+0.1\cdot e^{b_2\cdot t}$

- No diffraction dips at |t| < 1 GeV²
- No Q2 dependence in slope from inclusive up to Q²~10⁴ GeV²

σ^{T}_{sD} and dijets

GAPS BETWEEN JETS

Gap Fraction in events with a CCAL gap

The distribution of the gap fraction $R_{gap} = N_{gap}/N_{all}$ vs $\Delta \eta$ for MinBias $(CLC_p \circ CLC_{pbar})$ and MiniPlug jet events $(MP_p \circ MP_{pbar})$ of $E_{T(jet1,2)} > 2$ GeV and $E_{T(jet1,2)} > 4$ GeV. **The distributions are similar in shape within the uncertainties.**

analysis nears completion

Theorem 1 repeat at LHC at 7 TeV with higher E_T forward jets

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

EXCLUSIVE Dijet → **Excl. Higgs** <u>THEORY CALIBRATION</u>

PRD 77, 052004 (2008) PRL 99, 242002 (2007) PRL 242001 (2007)

Exclusive $\gamma\gamma$ production

Phys.Rev.Lett. 99,242002 (2007)

$$\frac{E_{T}^{\gamma} > 5 \text{ GeV}}{|\eta^{\gamma}| < 1.0}$$

□ 3 γγ / $\pi^{\circ}\pi^{\circ}$ evts observed
≥ 2 γγ candidates
≥ 1 $\pi^{0}\pi^{0}$ candidate

V.A.Khoze et al. Eur. Phys. J C38, 475 (2005):

 $\sigma(\text{with CDF cuts}) = 56^{+72}_{-24} \text{ fb} \implies 0.8^{+1.6}_{-0.5} \text{ events}$

□ 2 events → $\sigma \sim 90$ fb, in agreement with theory □ cannot claim discovery as bgd study was made *a posteriori*

$$\mathbf{p} + \mathbf{p} \rightarrow \mathbf{p} + \mu^+ \mu^- + \mathbf{p}$$

many physics processes in this data set:

In agreement with HERA: R = 0.166 ± 0.012 in a similar kinematic region

Exclusive $\chi_c \rightarrow J/\psi(\rightarrow \mu^+ \mu^-) + \gamma$

Exclusive $\gamma\gamma$ production – new!

(submitted to PRL: arXiv:1112.0858)

Observation of Exclusive $\gamma\gamma$ Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

Exclusive $\gamma\gamma$ and e⁺e⁻ events

Integrated luminosity \mathcal{L}_{int}	$1.11 \pm 0.07 \text{ fb}^{-1}$		
Exclusive efficiency	$0.068 \pm 0.004 (\text{syst})$		
Exclusive $\gamma\gamma$			
Events	43		
Photon pair efficiency	$0.40 \pm 0.02 (\text{stat}) \pm 0.03 (\text{syst})$		
Probability of no conversions	$0.57 \pm 0.06 \text{ (syst)}$		
$\pi^0 \pi^0$ b/g (events)	0.0, < 15 (95% C.L.)		
Dissociation b/g (events)	$0.14 \pm 0.14 (\text{syst})$		
Exclusive e^+e^-			
Events	34		
Electron pair efficiency	$0.33 \pm 0.01 (\text{stat}) \pm 0.02 (\text{syst})$		
Probability of no radiation	$0.42 \pm 0.08 (\mathrm{syst})$		
Dissociation b/g (events)	$3.8 \pm 0.4 (\text{stat}) \pm 0.9 (\text{syst})$		

Exclusive yy data vs. MC

Exclusive $\gamma\gamma$ cross section

Exclusive yy event candidate

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

Tevatron Low-s Energy Scan September 8-16 2011

- $\Box~\sqrt{s}$ =300 & 900 GeV (CDF already studied \sqrt{s} =630 , 1800 & 1960 GeV)
 - > MinBias events (charged particle multiplicities, dN/dη, etc...
 - Underlying event for various processes
 - Gap-X-Gap events
- □ Tune MC generators
- □ Plan to have (some) results in summer conferences

√s CDF data	o-bias	Minbias	Gap-X- Gap	Jets	e,μ,ν	Total # events
300	1.89 M	12.1 M	9.2 M	8.3 K	352	23.2 M
900	8.0 M	54.3 M	21.8 M	550 K	16 K	84.7 M

SUMMARY

Diffractive W and Z fractions: final results based on Run II CDF data using a Roman Pot Spectrometer (RPS) to measure the recoil pbar momentum
 The W fraction is in good agreement with the fraction measured in Run I based on a rapidity gap analysis
 The Z fraction is about 10% smaller than the W fraction, just as in non-

diffractive events

□ Diffractive structure function in dijet production:

- ✓ no strong Q2 and/or t dependence over a wide range
- \checkmark is there a diffraction dip in the t-distribution? \rightarrow coming soon

□ Central rapidity gaps in min-bias and very forward dijet events:
 ✓ same dependence on Δη=η_{max}- η_{min}

□ Exclusive production observed/measured for several processes

thank you for your attendance

DIFFRACTIVE AND NON-DIFFRACTIVE INTERACTIONS

Goal: understand the QCD nature of the diffractive exchange

Gap survival probability

Dynamic Alignment of RPS Detectors

<u>Method:</u> iteratively adjust the RPS X and Y offsets from the nominal beam axis until a maximum in the b-slope is obtained @ t=0.

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

$\xi \& \beta dependence of F^{D}_{jj} - Run I$

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

Diffractive dijets @ Tevatron

$$F^{D}(\xi, x, Q^{2}) \propto \frac{1}{\xi^{1+2\varepsilon}} \cdot F(x/\xi, Q^{2})$$

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production

Diffractive DIS @ HERA

J. Collins: factorization holds (but under what conditions?)

Results favor color reorganization

EDS-2011 Vietnam

CDF Diffraction and Exclusive Production