

14th EDS Blois Workshop

Underlying Event Measurements at the LHC

Michael Heinrich for the ATLAS and CMS collaborations

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (EKP) · PHYSICS FACULTY

Outline

Introduction

- Transverse Region Method
 - Track-Based Measurements
 - Calorimetric Measurements

Other Methods

The Underlying Event

- Everything in hadron collisions apart from the hard parton interaction is called the Underlying Event (UE)
- Monte-Carlo generators have to deal with both hard and soft interactions

Implications on all measurements using jets or isolation cones Best possible description in MC is crucial

UE in Monte Carlo Event Generation

- At scales of low momentum transfers, perturbative QCD breaks down
- Particle level MC generators employ semiphenomenological models to account for soft contributions
- Depending on the generator of choice, a large number of parameters are tunable

As some of the parameters are energy-dependent, improved tunes are derived at every newly accessed energy

The analyses to be presented contain pre-LHC and dedicated LHC tunes

The Detectors: ATLAS and CMS

Two incredible machines...

...perfect to study all aspects of proton collisions

Challenges in UE measurements: Hermetic coverage and lowest possible particle momenta

Underlying Event Measurements

- Measurements of the Underlying Event were early priorities in the LHC physics program
- Only small data samples are required for most analyses
- Pile-up would severely disturb measurements
 - \rightarrow only low luminosity running periods are suitable
- Most analyses use minimum bias data, some extend into harder territory
- However, isolating UE contributions in proton collisions is not trivial
- Origin of a given particle in the detector is inaccessible

Consistent separation of hard (ME) and soft (UE) contributions has to be applied to study the UE

Transverse Region Method

- Consistent separation of UE and ME contributions by geometrically slicing the event
- Transverse region approach:
 - Select suitable event topologies
 (e.g. di-jet events, Drell-Yan muons)
 - Identify leading object in event
 - Leading object defines event scale
 - Examine transverse region
 - Typical observables include
 p_{T, sum} and n_{Tracks}/n_{clusters}
 in transverse region
 - Very well suited for MC tuning
- Vastly successful method

Applied at Tevatron, RHIC and LHC

Measurement of underlying event characteristics using charged particles in pp collisions at \sqrt{s} = 900 GeV and 7 TeV with the ATLAS detector

- Track-based ATLAS analysis
 - \rightarrow investigating charged particle production
- Comparison of corrected detector data and several MC generators
- Two center-of-mass energies, minimum bias event selection

Unique feature: Two different minimum p_T cuts providing very good phase-space coverage

All available tunes tend to underestimate the Underlying Event activity

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2010-04/

Measurement of the Underlying Event Activity at the LHC with $\sqrt{s} = 7$ TeV and Comparison with $\sqrt{s} = 0.9$ TeV (CMS)

- Track-based CMS analysis → investigating charged particle production
- Corrected data and three tunes of Pythia MC
- Two center-of-mass energies, minimum bias as well as jet stream data

Unique feature: Extending event scale far into plateau region

Dedicated tunes Z1 and 4C perform very well for both 0.9 and 7 TeV

J. High Energy Phys. 09 (2011) 109

Measurement of the Underlying Event Activity in the Drell-Yan process in proton-proton collisions at $\sqrt{s} = 7$ TeV (CMS)

- Track-based CMS analysis on DY muon data
- Event scale defined by transverse momentum of the di-moun system
- Due to lower cross-section only at 7TeV
- Corrected data and three different Pythia tunes

Unique feature:

No hadronic activity from hard interaction, no interplay of production mechanisms expected

Plateau region less pronounced than in QCD events, performance of MC is comparable

http://cdsweb.cern.ch/record/1369227/

Measurements of underlying-event properties using neutral and charged particles in pp collisions at \sqrt{s} = 900 GeV and \sqrt{s} = 7 TeV with the ATLAS detector at the LHC

- Calorimeter-based ATLAS measurement
- Includes both neutral and charged particles without discrimination
- Minimum bias data at both center-of-mass energies
- Corrected data and several tunes/generators

Unique feature: Not limited to the charged component

Results are consistent with track-based analysis, extend them to neutral component

Eur. Phys. J. C (2011) 71:1636

Other Approaches

- Several additional measurements are closely connected to the Underlying Event
- Range goes from jet substructure to forward activity
- A number of these analyses has dealt with comparing MC predictions to data

Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy $s\sqrt{=7}$ TeV with the ATLAS detector

- Measurement of track-jet properties allows look into fragmentation also inside hard jets
- Different resolution parameters of the anti-k_T jet algorithm and lots of tunes/generators
- Minimum bias and jet stream data at 7TeV

Unique feature: Transition from soft to hard event scales, new observables

10¹⁴

10¹²

= 0.4R

ATLAS

Provides new observables that none of the available tunes is able to describe correctly

251

145.40

0.5

0.

24 - 40 GeV

R = 0.4

2

0.3

0.4

0.35

2.5

PHY SICAL REVIEW D 84, 054001 (2011)

Measurement of the Underlying Event Activity with the Jet Area/Median Approach at 7 TeV and comparison to 0.9 TeV

- Track-jet based analysis of new observable
 - $\rho' = \operatorname{median}_{j \in physical jets} \left[\left\{ \frac{p_{T, j}}{A_j} \right\} \right] * C$ $C = \frac{\sum_j A_j}{A_{tot}}$
- Makes use of active area clustering in k_T algorithm
- Corrected minimum bias data at both center-ofmass energies and multiple tunes of Pythia

Unique feature:

Event based observable, taking into account event geometry to quantify soft charged activity

Results are consistent with other analyses in CMS Important study in the light of area based pile-up subtraction

Forward energy flow in the CMS detector

- Energy measurement with forward hadronic calorimeter
- Minimum bias and di-jet events at both center of mass energies
- Corrected data and lots of tunes

Unique feature: Investigates geometrical space inaccessible to tracking based analyses

Demonstrates and quantifies scale dependence on forward energy flow

CMS-PAS-FWD-10-011

Summary and Conclusion

- A number of ATLAS and CMS studies investigating the Underlying Event have been presented
- Different approaches, physical objects and detector components have been used to produce a complete picture of UE contributions at the LHC
- New tunes have been produced by both experiments based on these analyses (AMBT and Z1,Z2) that are already widely in use
- The transition from extrapolations to LHC tunes has been made
- Further tuning will be necessary as not all observables are perfectly described yet

Thank you for your attention!

Backup

Underlying Event MC Tuning

- Tuning Monte Carlo generators in an art form
- Dedicated tools such as PROFESSOR and RIVET help with the brute force minimization problems and tests of new tune
- Important parameters include
 - Choice of parton distribution function (PDF)
 - Multi-parton interaction (MPI) model and proton matter distribution
 - Regularization scale for MPI and extrapolation
 - Fragmentation function

. . . .

A plethora of tunes is available for the different MC generators