Study of the anomalous coupling between photon and the W/Z boson and the ATLAS Forward Physics (AFP) project. Diffraction and Elastic scattering Qui Nhon – Vietnam. Monday, December 19 2011. Hervé Grabas - CEA Saclay Irfu.

WW and ZZ photon induced processes

- Study of $pp \rightarrow pWWp$
 - Very clean process: W pair in central detector, intact protons in forward detector.
 - Cross section high and perfectly known (95.6fb QED).
- If W > 1TeV (cross. sec. = 5.9fb), still high, so it is possible to probe new physics.

WW and ZZ quartic anomalous photon induced processes.

$$\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

$$- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

$$\mathcal{W}^{+}$$

- In addition to standard model measurement, study of anomalous photon coupling [Phys. Rev. D81:074003, 2010 E. Chapon, O. Kepka, C. Royon].
- Anomalous quartic $WW\gamma\gamma$ and $ZZ\gamma\gamma$ coupling are not present in the standard model.
 - They are parameterized by 4 variables a_0^W , a_C^W , a_0^Z , a_C^Z .
 - Present limit on couplings from LEP $\sim 2.10^{-2}$.
- Anomalous coupling terms predicted by beyond SM theories: Higgless, extra-dimension. Expected values: few 10⁻⁶.

Forward Physics Monte Carlo (FPMC)

- Monte Carlo that implements all diffractive/photon induced processes.
 - Two photon exchange
 - Single diffraction
 - Double pomeron exchange
 - Central exclusive production
- Manual: see M. Boonekamp, A. Dechambre, O. Kepka, V. Juranek, C. Royon, R. Staszewski, M. Rangel, ArXiv: 1102.2531, code to be public soon.
- For this study the output of FPMC generator interfaced with the fast simulation of ATLAS detector in the standalone ATLFast++ package.
- Only leptonic decays of WW pair are considered (to avoid high jet backgrounds).

 $WW\gamma\gamma$ production

- Signal (red):
 - WW decay in the central detector, protons leave intact at small angles.
- Background (black):

12/19/11

- SM WW pair production via photon exchange. Removed by cut on high mass.
- Non diffractive WW production: large energy flow in the forward region. Removed by requesting tagged protons.
- Dilepton production via photon exchange.
 Back-to-back leptons. Small cross section for high *p_t* leptons.
- Lepton production via double pomeron exchange: activity in the forward region due to pomeron remnants. Removed by missing Et cut and small cross section at high mass.
- WW via double pomeron exchange: removed by cut on high diffractive mass.

$WW\gamma\gamma$ proton missing mass

- Signal appears at high mass
- Anomalous coupling value chosen is 2.10⁻⁶

Signal and background for 30fb⁻¹

Background events for 30 fb⁻¹

cut / process	$\gamma\gamma ightarrow ll$	$\gamma\gamma \to WW$	$DPE \rightarrow ll$	$DPE \to WW$
$p_T^{lep1,2} > 10 \text{ GeV}$	50619	99	18464	8.8
$0.0015 < \xi < 0.15$	21058	89	11712	6.0
$\not\!$	14.9	77	36	4.7
$W > 800 { m ~GeV}$	0.42	3.2	16	2.5
$M_{ll} \notin < 80, 100 >$	0.42	3.2	13	2.5
$\Delta \phi < 3.13$	0.10	3.2	12	2.5
$p_T^{lep1} > 160 \text{ GeV}$	0	0.69	0.20	0.024

Signal events for 30 fb⁻¹

cut / couplings (with f.f.)	$\left a_0^W / \Lambda^2 \right = 5.4 \cdot 10^{-6}$	$\left a_C^W/\Lambda^2 ight =20\cdot 10^{-6}$
$p_T^{lep1,2} > 10 \text{ GeV}$	202	200
$0.0015 < \xi < 0.15$	116	119
$\not\!$	104	107
$W > 800 { m ~GeV}$	24	23
$M_{ll} \notin < 80,100 >$	24	23
$\Delta \phi < 3.13$	24	22
$p_T^{lep1} > 160 \text{ GeV}$	17	16

Reach at LHC

• The anomalous coupling terms can be measured very precisely (up to 10⁻⁶) using forward detectors.

Couplings	OPAL limits	Sensitivity	$\hat{\mathbb{Q}} \ \mathcal{L} = 30 \ (200) \ \mathrm{fb}^{-1}$
	$[GeV^{-2}]$	5σ	95% CL
$=a_0^W/\Lambda^2$	[-0.020, 0.020]	$5.4 \ 10^{-6}$	$2.6 \ 10^{-6}$
		$(2.7 \cdot 10^{-6})$	$(1.4 \ 10^{-6})$
a_C^W/Λ^2	[-0.052, 0.037]	$2.0 \ 10^{-5}$	$9.4 \ 10^{-6}$
_		$(9.6 \ 10^{-6})$	$(5.2 \ 10^{-6})$
a_0^Z/Λ^2	[-0.007, 0.023]	$1.4 \ 10^{-5}$	$6.4 \ 10^{-6}$
		$(5.5 \ 10^{-6})$	$(2.5 \ 10^{-6})$
a_C^Z/Λ^2	[-0.029, 0.029]	$5.2 \ 10^{-5}$	$2.4 10^{-5}$
		$(2.0 \ 10^{-5})$	$(9.2 \ 10^{-6})$

- Improvement over previous LEP measurement by 4 orders of magnitude with 30/200 fb⁻¹ at LHC. And 2 orders of mag. better than standard studies at the LHC (methods by studying $pp \rightarrow l^{\pm} \nu \gamma \gamma$ [P. J. Bell, ArXiV:0907.5299]).
- Reaching the values in Higgsless and extra dimension models.
 If 12/19/11 Rencontres du Vietnam H. Grabas

Additional physics using AFP

- Possible improvement of sensitivity including $WW \rightarrow l + jet$.
- Anomalous $\gamma \gamma \rightarrow \gamma \gamma$ coupling study.
- W charge asymmetry. To probe the mechanism of diffraction (pomeron or soft color exchange) [arXiv:1110.1825. K. Golec-Biernat, C. Royon, L. Schoeffel, R, Staszewski in press in Phys. Rev. D.]

- Exclusive diffractive jet cross section meas. and comparison with the Khoze Martin Ryskin model, allows to further constrain the model [A. Dechambre, O. Kepka, C. Royon, R. Staszewski Phys. Rev. D83(2011) 054013]
- Diffractive Higgs measurement [V.A. Khoze, A.D. Martin, M.G. Ryskin Eur. Phys. J C23 (2002) 311-327] [R. Maciula, R. Pasechnik, A Szczurek Phys. Rev. D83 (2011) 114034], etc...
- Etc...

AFP installation project at LHC

• Project under evaluation by ATLAS.

12/19/11

- Phase 0. 2014, installation of the 206 214m station. Timing and position detectors.
- Phase 1. If motivated by physics (discovery of H boson) adding 2 stations at 420m. Sensitive to lower mass.

Tagging intact protons in ATLAS

- Tagging done at 210m,
 420m or both.
- High ξ proton cut by LHC magnets.
- 210m detector provides high mass acceptance necessary for anomalous coupling.

Missing mass
$$M = \sqrt{\xi_1 \xi_2 s}$$

210m AFP detector

- 2 movable beam pipes at 206 & 214m from ATLAS interaction point.
 - Detector far from the beam during proton injection.
 - Don't have to work against vacuum.
 - Big pocket size for detector installation (70 cm for timing0
- Beam pipes pockets contains both timing and position detectors.

AFP position detector (Si detector)

- Proton position required to be measured with a precision of ~15µm.
- Consist of 6 layers of silicon 3D detector (edgeless).
- Plan on using of IBL (ATLAS Insertable B Layer upgrade)
 - Pixel size $50*250\mu m$.

2/19/11

- IBL sensor covers perfectly AFP acceptance 19*20mm.
- Design benefiting from all IBL institutes involved.

AFP timing requirements

- 23 pile-up events at LHC in 2014 and 46 in 2017.
- Pile-up background suppression done by matching protons back to the primary vertex.
- Protons: use of timing detector, ie.10ps gives 2.1mm resolution.

12/19/11

• Background rejection by pin a factor 30.

AFP timing detector

- Intact protons create Cerenkov light cone detected in the very fast photo-multiplier detector.
- Timing resolution objectives:
 - 20ps by 2013
 - 10ps or better by 2017

Timing detector picosecond resol. R&D

$$\Delta t = \frac{\Delta u}{U} \cdot \frac{1}{\sqrt{3f_s \cdot f_{3dB}}}$$

Strong R&D research project started in Chicago and continued in CEA Saclay to built picosecond timing electronics for timing detector readout.

<i>U</i> (dynamic)	$\Delta \textit{\textit{U}}$ (noise)	$f_{\mathcal{S}}$ (sampling freq)	$f_{\it 3db}$ (cutoff frequency)	Δt (timing resolution)
100 mV	1 mV	2 GSPS	300 MHz	~10 ps
1 V	1 mV	2 GSPS	300 MHz	1 ps
100 mV	1 mV	20 GSPS	3 GHz	0.7 ps
1V	1 mV	10 GSPS	1 GHz	0.5 ps

Rencontres du Vietnam - H. Grabas

16

Collaborator list Spokesperson : C. Royon (management structure in progress).

AFP Collaborators:

- University of Alberta
- Charles University, Prague
- Institute of Physics of ASCR, Prague
- IRFU, CEA Saclay
- Justus-Liebig Universität, Giessen
- PAN & AGH, Cracow
- Glasgow University

12/19/11

• University of Texas at Arlington

- Milano
- Lisbon
- Barcelona
- Bologna
- Manchester
- SLAC
- Stony Brook
- University of New Mexico
- Oklahoma State University
- University of Oklahoma
- University of Wuppertal

Conclusion

- Gain 4 orders of magnitude in quartic anomalous coupling, reaching values predicted by Higgsless, extradimension models.
- Analysis redone in ATLAS using full simulation of signal, background and pileup (Diboson, single top, ttbar, W +jet, etc). Sensitivity found to be similar to ATLFast studies shown in this talk.
- Movable beam pipes needed at 206 and 214m at LHC (phase 0).
- Two types of detector: timing and position (Silicium)
- Many other technical applications: edgeless Si tracking detector for space applications, PET TOF, ...)

