

MPI Results from the LHC

Tomas Hreus

Université Libre de Bruxelles

EDS Blois Workshop

17 December 2011

Multiparton Interactions

Soft QCD measurements \rightarrow see talk by Michael Heinrich

Here focus on **Double Parton Interactions**

- DPS cross-section
- Prospects and measurements on DPS with jets in final state
- Prospects and measurements on DPS with lepton final states
- DPS in PbPb collisions

MPI at High-pT

 multiple parton interactions play an important role in hadron-hadron collisions at high energies and are one of the most common, yet poorly understood phenomenon at the LHC

Assume factorization of A and B:

$$\begin{split} \sigma_{DPS}^{AB} &= \frac{m}{2} \sum_{i,j,k,l} \int \Gamma_{ij}(x_1, x_2; \mathbf{b}_1, \mathbf{b}_2; Q_1^2, Q_2^2) \hat{\sigma}_{ik}^A(x_1, x_1^{'}, Q_1^2) \hat{\sigma}_{jl}^B(x_2, x_2^{'}, Q_2^2) \\ & \times \Gamma_{kl}(x_1^{'}, x_2^{'}; \mathbf{b}_1 - \mathbf{b}, \mathbf{b}_2 - \mathbf{b}; Q_1^2, Q_2^2) \times dx_1 dx_2 dx_1^{'} dx_2^{'} d^2 b_1 d^2 b_2 d^2 b, \end{split}$$

Factorization of longitudinal & transverse components and two parton distributions =>

$$\sigma^{
m AB}_{
m DPS} = rac{m}{2} rac{\sigma^A_{
m SPS} \sigma^B_{
m SPS}}{\sigma_{
m eff}}$$

- σ_{SPS}^{A} = inclusive cross section of single hard scattering
- σ_{eff} = non-perturbative quantity related to transverse size of hadrons

MPI at High-pT

 multiple parton interactions play an important role in hadron-hadron collisions at high energies and are one of the most common, yet poorly understood phenomenon at the LHC

Assume factorization of A and B:

$$\begin{split} \sigma_{DPS}^{AB} &= \frac{m}{2} \sum_{i,j,k,l} \int \Gamma_{ij}(x_1, x_2; \mathbf{b}_1, \mathbf{b}_2; Q_1^2, Q_2^2) \hat{\sigma}_{ik}^A(x_1, x_1^{'}, Q_1^2) \hat{\sigma}_{jl}^B(x_2, x_2^{'}, Q_2^2) \\ & \times \Gamma_{kl}(x_1^{'}, x_2^{'}; \mathbf{b}_1 - \mathbf{b}, \mathbf{b}_2 - \mathbf{b}; Q_1^2, Q_2^2) \times dx_1 dx_2 dx_1^{'} dx_2^{'} d^2 b_1 d^2 b_2 d^2 b, \end{split}$$

Factorization of longitudinal & transverse components and two parton distributions =>

 $\sigma^{
m AB}_{
m DPS} = rac{m}{2} rac{\sigma^A_{
m SPS} \sigma^B_{
m SPS}}{\sigma_{
m eff}}$

- σ_{SPS}^{A} = inclusive cross section of single hard scattering
- σ_{eff} = non-perturbative quantity related to transverse size of hadrons

>correlations btw parton distributions may change this simple relation of σ_{DPS}

DPI and Jets

the presence of multiple parton interactions in high-energy hadronic collisions has been convincingly demonstrated by the AFS, UA2, CDF and D0 Collaborations, using events with the four-jets and gamma + 3-jets final states

No correlation (DPS) vs Strong Correlation (SPS) - discriminating variable: $\Delta \phi$ between $p_{T1} + p_{T2}$ and $p_{T3} + p_{T4}$

DPI and Jets

Differential cross-section shape predictions for $\Delta \phi$

- discrimination power clearly visible (shower scenario vs MI scenario)

DPI and Jets: Wbb at NLO

In DPS: bottom quarks produced back-to-back

In SPS: bottom quarks are not back-to-back S'_{p_T} and $\Delta \phi_{bb,\ell \not \! E_T}$ can differentiate DPS from SPS at excellent significance (>12 σ)

$W \rightarrow lv + 2 jets$

Production of W bosons in association with two jets in pp has been investigated by ATLAS

 $f_{\rm DP}^{\rm R} = \frac{N_{W_0+2j_{\rm DPI}}}{N_{W+2j}}$

- measure fraction of $W_0 + 2j_{DPI}$ in the W+2jet sample (f_{DP}^R)
 - use difference in kinematics (p_τ, ...)

 $\sigma_{e\!f\!f}$

W selection Single lepton trigger 1 lepton (e, μ) $p_T > 20$ GeV, η < 2.5 MET > 25 GeV, $m_T > 40$ GeV 2 jets, $p_T > 20$ GeV, |y| < 2.8

Jet selection Minimum bias trigger 2 jets, $p_T > 20$ GeV, |y| < 2.8

$W \rightarrow lv + 2 jets : Topology$

- $-\Delta^{n}_{jets}$ selected to perform the fit over (more stable wrt jet energy)
- Alpgen+Herwig+Jimmy (default DPI settings) describe data well, Sherpa not so good

$W \rightarrow lv + 2 jets : DPI Rate$

- Extraction of f^R_{DP} using fit to data with two templates
- Template A (nonDPI sample): both jets originate from the primary scatter
- Template B (a DPI sample) : both jets originate from the DPI scatter

$$(1 - f_{DP}^{R}) \cdot \mathbf{A} + f_{DP}^{R} \cdot \mathbf{B}$$

T. Hreus, EDS Blois Workshop, Vietnam, 15-

21 Dec 2011

$W \rightarrow lv + 2 jets : \sigma_{eff}$

- σ_{eff} consistent with Tevatron results
- s-dependence not excluded

- extracted component of DPI at the reco level (f^R_{DP}) is a good estimator of the value of f^P_{DP} at parton level
- both predicted and extracted DPI rate
 decrease as p_T cut is raised

DPS Prospects: Leptonic FS (4µ)

- DPS expected to peak at low p_T and low Q^2 phase space region \rightarrow challenge for jet physics
- ⇒ purely leptonic signatures offer a clean probe for underlying scattering mechanisms
- DPS signal could be dominated by double
 Drell-Yan production or a quarkonium pair
 which decay into four leptons
 - DDY → single DY theoretically well understood (standard candle for DPS?)

 sensitivity to different initial state partons: double J/ψ produced predominantly by four gluons, DDY by 2 qqbar pairs (at LO)
 => correlations being probed are different; complementary input to double parton distributions C.H. Kom, A. Kulesza , W.J. Stirling [arXiv:1109.0309]

$$d\sigma_{\rm SPS}^{\rm DY} = \sum_{a,b} f_a(x_a, \mu_F) f_b(x_b, \mu_F) \, d\hat{\sigma}_{\rm SPS}^{\rm DY} \, dx_a dx_b$$

Using assumption:

- longitudinal and transverse components of GPDFs can be factorised
- No longitudinal momentum correlations btw partons in the same hadron

DPS Prospects: Double Drell-Yan

Simulation:

 $pp \rightarrow \gamma^* \gamma^* \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

DPS (Herwig++): two hard events generated using the built-in multi-parton scattering model SPS (Madgraph+Herwig++): single+double resonance diagrams ISR included, intrinsic p_T smearing of incoming partons applied (DPS+SPS)

- acceptance:

1.9 < η < 4.9 p_T > 1 GeV

LHCb-optimized

- good muon identification in the low mass region
- excellent low p_T acceptance, down to 1 GeV

	DPS	SPS
7 TeV	0.08 fb	0.43 fb
14 TeV	0.16 fb	0.68 fb

T. Hreus, EDS Blois Workshop, Vietnam, 15-

21 Dec 2011

DPS Prospects: Double Drell-Yan

Simulation:

 $pp \rightarrow \gamma^* \gamma^* \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

DPS (Herwig++): two hard events generated using the built-in multi-parton scattering model SPS (Madgraph+Herwig++): single+double resonance diagrams ISR included, intrinsic p_T smearing of incoming partons applied (DPS+SPS)

- acceptance:

1.9 < η < 4.9 p_T > 1 GeV

LHCb-optimized

- good muon identification in the low mass region
- excellent low p_T acceptance, down to 1 GeV

Observing DPS via DDY scattering seems a challenging task!

- low production rate, no striking kinematical differences observed allowing for efficient DPS selection
- more effective to use template method (rather than hard cuts)

Double J/\psi Production

• contributions from double parton scattering may be significant:

	DPS	SPS	
7 TeV	3.16 pb	1.70 pb	\leftarrow theoretical prediction
14 TeV	7.69 pb	2.62 pb	

First measurement of charmonia pairs at LHC by LHCb Collaboration

 p_T^{μ} > 650 MeV (μ + μ - channel)

 $3.0 < m_{\mu+\mu-} < 3.2 \text{ GeV}$

 $2 < y^{J/\psi} < 4.5$

 $p_T^{J/\psi} < 10 \text{ GeV}$

T. Hreus, EDS Blois Workshop, Vietnam, 15-

21 Dec 2011

Double J/ ψ Production

Fit: double-sided Crystal Ball function

- prediction of $\sigma^{J/\psi J/\psi}$ includes direct production and freeddown from ψ (2S), but no DPS
- measured cross-section (6 σ excess):

$\sigma^{J/\psi J/\psi}$ = 5.1 +- 1.0 (stat) +- 1.1 (syst) nb

- reasonable agreement between data and theory (within uncertainties)
- \rightarrow contribution from DPS?

Double J/ ψ and DPS

Using σ^{eff} formulation, we can obtain estimation of the contribution from the double parton scattering (single J/ ψ production cross-section was measured by LHCb):

$$\sigma_{\text{DPS}}^{J/\psi J/\psi} = \frac{1}{2} \frac{\sigma_{\text{SPS}}^{J/\psi} \sigma_{\text{SPS}}^{J/\psi}}{\sigma_{\text{eff}}} \simeq 2.0 \text{ nb}$$

S.P. Baranov, A.M. Snigirev, N.P. Zotov [Phys. Lett. B 705 (2011) 116–119]

Cross-section through the standard $gg \rightarrow 2J/\psi$ mechanism gives:

$$\sigma_{\text{SPS}}^{J/\psi J/\psi} = 4.15 \text{ nb}$$
A.V. Berezhnoy, A.K. Likhoded,
A.V. Luchnsky, A.A. Novoselov, [arXiv:1101.5881]

Theoretical prediction from both modes :

$$\sigma_{\text{SPS}}^{J/\psi J/\psi} + \sigma_{\text{DPS}}^{J/\psi J/\psi} = 6.15 \text{ nb}$$

- close to the $\sigma^{J/\psi J/\psi}$ cross-section measured by LHCb ($\sigma^{J/\psi J/\psi}$ = 5.1 +- 1.0 +- 1.1 nb)

Double J/ ψ and DPS

Using σ^{eff} formulation, we can obtain estimation of the contribution from the double parton scattering (single J/ ψ production cross-section was measured by LHCb):

$$\sigma_{\text{DPS}}^{J/\psi J/\psi} = \frac{1}{2} \frac{\sigma_{\text{SPS}}^{J/\psi} \sigma_{\text{SPS}}^{J/\psi}}{\sigma_{\text{eff}}} \simeq 2.0 \text{ nb}$$

S.P. Baranov, A.M. Snigirev, N.P. Zotov [Phys. Lett. B 705 (2011) 116–119]

Cross-section through the standard $gg \rightarrow 2J/\psi$ mechanism gives:

$$\sigma_{\text{SPS}}^{J/\psi J/\psi} = 4.15 \text{ nb}$$
A.V. Berezhnoy, A.K. Likhoded,
A.V. Luchnsky, A.A. Novoselov, [arXiv:1101.5881]

Theoretical prediction from both modes :

$$\sigma_{\text{SPS}}^{J/\psi J/\psi} + \sigma_{\text{DPS}}^{J/\psi J/\psi} = 6.15 \text{ nb}$$

- close to the $\sigma^{J/\psi J/\psi}$ cross-section measured by LHCb ($\sigma^{J/\psi J/\psi}$ = 5.1 +- 1.0 +- 1.1 nb)

A hint of the evidence to the double parton scattering in the double J/ψ production!

- large th. uncertainties (α_s scale, J/ ψ wave function, gluon distr.,...) give factor 2-3

Jet Quenching in PbPb Collisions

[arXiv:1102.1957]

Dijets, calorimeters only Leading $p_T > 120 \text{ GeV/c}$ Sub-leading $p_T > 50 \text{ GeV/c}$

 p_{T} imbalance increasing with centrality

Back-to-back $\Delta \phi^{\sim} \pi$ for all centralities

T. Hreus, EDS Blois Workshop, Vietnam, 15-21 Dec 2011

Conclusions

- □ huge progress, several recent papers, many other channels not mentioned here being explored (Z+jets, $\gamma\gamma$, ...)
- QCD/MPI MC models very successful: unavoidable tools to describe a wide set of observables at hadron colliders
- qualitatively & quantitatively consistent picture from the LHC:
 The LHC is a Multiple Parton Interaction collider
- □ ATLAS results on σ_{eff} from $W \rightarrow lv + 2$ jets consistent with results obtained in different channels at the Tevatron
- \Box First double J/ ψ cross-section results from LHCb
- DPS observed in PbPb collisions through jet quenching

more results to come!

Backup

Wbb at NLO

Basic acceptance cuts:

 $\begin{array}{l} p_{Tb} > 20 \; GeV, \; |\eta_b| < 2.5 \\ 20 \; GeV < p_{T\mu} < 50 \; GeV, \; |\eta_\mu| < 2.1 \\ E_t^{\ miss} > 20 \; GeV \\ \Delta R_{bb} > 0.4, \; \Delta R_{b\mu} > 0.4 \\ \ Focus \; on \; W \; decays \; to \; muons \\ \ Computations \; done \; for \; 7 \; TeV \; c.o.m \; energy \end{array}$