Universal Rise of Total Hadronic Cross Sections and Predictions at LHC

Keiji IGI RIKEN, Nishina Ctr., Japan 14th Workshop on Elastic and Diffractive Scattering Dec.15-21, 2011 Qui Nhon, Vietnam

Ishida, Igi: PLB(2009)395, PRD79(2009)096003 Halzen, Igi, Ishida, Kim, arXiv; 1110. 1479

Contents of the talk

- We show that data on $p(p)p, \pi^{\mp}p, K^{\mp}p$ forward scatt. support related expect. that asympt. beh. of all cross sec. is flavor ind.i.e. $B_{pp} \simeq B_{\pi p} \simeq B_{Kp}$.
- Using most recent data from ATLAS, CMS, Auger, we predict $\sigma_{tot}^{pp} (\sqrt{s} = 7 TeV) = 96.1 \pm 1.1 mb$ (consist. with TOTEM within exp. errors).
- We also use our results on flavor ind. to predict $\sigma_{tot}^{\pi\pi}$ a function of \sqrt{s} .

First Topic: Universal Rise of σ_{tot} ?

• In addition to Froissart bound, COMPETE collab.(PDG) further assumed

$$\sigma_{tot} \simeq B \left(\log s / s_0 \right)^2 + Z$$

to reduce the number of adjustable parameter.

• Universality of B (flavor ind.) was theoretically anticipated.

Jenkovszky et al. Where is "asymptopia"? (1987) C.-I. Tang et al. (1989)

- It was also inferred from Color Grass condensate of QCD. Itakura et al. (2002)
- However, no rigorous proof yet based only on QCD→Test of Universality of B is Necessary even empirically.

forward hadronic amplitudes. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS group, IHEP, Protvino, August 20

B (Coeff. of $(\log s/s_0)^2$) Assumed to be universal

Test of univ. of B:necessary even empirically.

Kinematics

- Consider the crossing-even f.s.a. $F^{(+)}(v) = \frac{f^{\overline{p}p}(v) + f^{pp}(v)}{2}$ with $\operatorname{Im} F^{(+)}(v) = \frac{k\sigma_{tot}^{(+)}(v)}{4\pi}$
- We assume $\operatorname{Im} F^{(+)}(v) = \operatorname{Im} R(v) + \operatorname{Im} F_{P'}(v)$

$$= \frac{v}{M^2} \left(c_0 + c_1 \log \frac{v}{M} + c_2 \log^2 \frac{v}{M} \right) + \frac{\beta_{P'}}{M} \left(\frac{v}{M} \right)^{\alpha_{P'}}$$

at high energies. This correspond to the same expression as the PDG. M : proton mass

v, k: incident proton energy, momentum in the laboratory system

How to predict σ and ρ for pp at LHC based on duality? (as an example)

- We searched for simultaneous best fit of σ and ρ up to some energy(e.g.,ISR) in terms of high-energy parameters constrained by FESR.
- We then predicted $\sigma_{tot}^{(+)}$ and $\rho^{(+)}$ in the LHC regions.

- Both $\sigma_{tot}^{(+)}$ and Re $F^{(+)}$ data are fitted through two formulas simultaneously with FESR as a constraint.
- FESR is used as constraint of $\beta_{p'} = \beta_{p'}(c_0, c_1, c_2)$ and the fitting is done by three parameters:

$$c_{2}, c_{1}, and c_{0}$$

giving the least χ^2 . $(-\infty < c_i < \infty)$

• Therefore, we can determine all the parameters $c_2, c_1, c_0, \beta_{P'}, F^{(+)}(0)$

These predict σ , ρ at higher energies including LHC energies $\sqrt{s} = 7 T eV$

- We attempt to obtain *B* values for $pp(pp), \pi p, Kp$ scatterings through search for simultaneous best fit to experimental σ_{tot} and ρ ratios.
- The value of B universal ?

New Attempt for πp

- In near future, σ_{tot}^{pp} will be measured at high energy. So, B_{pp} will be determined with good accuracy. $pp:\sqrt{s} \le 1.8 TeV$
- On the other hand, $\sigma_{tot}^{\pi p}$ have been measured only up to k=370 GeV. So, one might doubt to obtain *B* for πp , with reasonable accuracy. $\pi p: \sqrt{s} < 26.4 \text{GeV}$
- We attack this problem in a new light.

Practical Approach for search of B

Tot. cross sec. = Non-Reggeon comp. + Reggeon(P') comp.

$$\sigma_{\text{tot}}^{(+)} \simeq \frac{4\pi}{m^2} \left[\left(c_2 \log^2 \frac{\nu}{m} + c_1 \log \frac{\nu}{m} + c_0 \right) + \beta_{P'} \left(\frac{\nu}{m} \right)^{\alpha_{P'} - 1} \right]$$

- Non-Reg. comp. shows shape of parabola as a fn. of logv with a min.
- Inf. of low-energy res. gives inf. on P' term. Subtracting this P' term from $\sigma_{tot}^{(+)}$, we can obtain the dash-dotted line(parabola).

• The πp has many res. at low energies, however.

So, inf. on LHS of parabola obtained by subtracting P' term from $\sigma_{tot}^{(+)}$ is very helpful to obtain accurate value of B(πp).

(resonances with k < 10GeV turn out to be very helpful to determine shape of parabola).

•(Kp : similar to πp) .

Test of Universality of B

- Highest energy of Experimetnal data:
 - **pp** : Ecm = 0.9TeV SPS; 1.8TeV Tevatron
 - π -p : Ecm < 26.4GeV

Kp : Ecm < 24.1GeV No data in TeV \rightarrow B : large errors. B_{pp} = 0.273(19) mb B_{πp} = 0.411(73) mb $A = B_{pp} = P_{mp} = P_{m$

 $B_{Kp} = 0.535(190) \text{ mb}$ No definite conclusion

- It is impossible to test of Universality of B only by using data in high-energy regions.
- We attack this problem from shape of parabola of Non-Regge component. 13

Kinematics

Crossing-even amplitudes : $F^{(+)}(-v)=F^{(+)}(v)^*$ $F^{(+)}(v) = (f^{ap}(v) + f^{ap}(v))/2$ average of π^-p , π^+p ; K⁻p, K⁺p; pp, pp $\alpha_{P'}(0)$ Im $F^{(+)}_{asymp}(v) = \beta_{P'}/m (v/m)^{\alpha_{(0)}}$ $+(v/m^2)[c_0+c_1\log v/m+c_2(\log v/m)^2]$ $\beta_{P'}$ term : P'trajecctory ($f_2(1275)$): $\alpha_{P'}(0) \sim 0.5$: Regge Theory c_0, c_1, c_2 terms : corresponds to $Z + B (\log s/s_0)^2$ c_2 is directly related with B. (s~2M v) • Crossing-odd amplitudes : $F^{(-)}(-v) = -F^{(-)}(v)^*$ $F^{(-)}(v) = \left(f^{-ap}(v) - f^{-ap}(v)\right)/2$

Im $F^{(-)}_{asymp}(v) = \beta_V / m (v/m)^{\alpha} v^{(0)}$ ρ -trajecctory: $\alpha_V(0) \sim 0.5$

 $B = (4\pi/m^2) c_2^{P^*}$, β_V is Negligible to $\sigma_{tot} (= 4\pi/k \text{ Im } F(v))$ in high energies.¹⁴

FESR Duality

How to obtain the $\operatorname{Im} F_{asymp}^{(+)}(v) f$ rom low- energy res?

• Remind that the P' sum rule . (the first FESR, 1961,K.I.)

$$\frac{1}{2\pi^2} \int_0^N dk \sigma^{(+)}(k) - \frac{2}{\pi} \int_0^N dv \operatorname{Im} F_{asymp}^{(+)}(v) \frac{v}{k^2} = const.$$

- Take two N's(FESR1) $N = N_1, N = N_2(N_2 > N_1)$
- Taking their difference, we obtain $\sum_{n=1}^{N_2} \sum_{n=1}^{N_2} \sum_{n=$

$$\frac{1}{2\pi^2} \int_{N_1}^{N_2} dk \,\sigma_{tot}^{(+)}(k) = \frac{2}{\pi} \int_{N_1}^{N_2} dv \,\mathrm{Im} \,F_{asymp}(v)$$

LHS is estimated from Low-energy exp.data. RHS is calculable from The low-energy ext. of Im Fasymp.

pp has open(meson) ch. below pp, and div. above th.

• If we choose $\overline{N_1}$ to be fairly larger than *m* we have no difficulty. (K^-p : similar) No such effects in πp .

Choice of N_1 for πp Scattering

- Many resonances

 in π⁻p & π⁺p
 100
- The smaller N₁ is taken, the more accurate
 - c_2 (and $B_{\pi p}$) obtained.
- We take various N₁
 corresponding to peak and dip positions of resonances.

(except for k=
$$\bar{N}_1$$
=0.475GeV)

 \rightarrow For each N₁,

Various values of N₁

FESR is derived. Fitting is performed. The results checked. 16

Test of the Universal Rise								
• $\sigma_{tot} = B (\log s/s_0)^2 + Z$								
	B (mb)		B(mb)		B(mb)			
πρ	0.304±0.034	+	0.304±0.034	-	0.411±0.073			
Kp	0.328±0.045		0.354±0.099		0.535±0.190			
рр	0.280±0.015		0.280±0.015		0.273±0.019			
BKp improved by BargerIshida2011			FESR Duality used	Only high-energy data				

 $B_{\pi p} = B_{pp} = B_{Kp}$ within 1σ \rightarrow Universality suggested

 $B_{\pi p} \neq ? B_{pp} = ? B_{Kp}$ No definite conclusion in this case.

Concluding Remarks

- In order to test the universal rise of σ_{tot} , we have analyzed $\pi_{\pm}p; K^{\pm}p; pp$ independently.
- Rich information of low-energy scattering data constrain, through FESR Duality, the high-energy parameters B to fit experimental σ_{tot} and ρ ratios.
- The values of B are estimated individually for three processes.

- We obtain $B_{\pi p} = B_{pp} = B_{Kp}$. Universality of B suggested. Use of FESR is essential to lead to this conclusion.
- Universality of B suggests gluon scatt. gives dominant cont. at very high energies(flav. ind.).
- It is also interesting to note that Z for $\pi p, Kp, pp(pp)$ approx. satisfy ratio 2:2:3 predicted by quark model.

• Our results $B_{pp}=0.280(15)mb$ predicts $\sigma_{pp}^{LHC} = 96.0(1.4)mb$ at 7TeV 102.0(1.7)mb at 10TeV108.0(1.9)mb at 14TeV

Second Topic: Updated Analysis including LHC and Very High Energy Cosmic-Ray Data

Halzen, Igi, Ishida, Kim

- In the First Topic, we showed that universality relation $B_{pp} = B_{\pi p} = B_{Kp} \equiv B$: valid within one standard deviation.
- Now, we assume this universality from the beginning.
- Other powerful constraints: FESR Duality

- To determine the value of B more precisely, let us now include three recent measurements:
- ATLAS
- CMS
- Auger covering very high-energy region.
 Total inelastic cross sections for the above:σinel.
 have been employed.
- We use the ratio σ tot/ σ inel of Eikonal model by Block-Halzen to obtain σ tot.

- ATLAS reported σ_{inel}^{pp} at 7 TeV of 69.4 ± 2.4(exp.)±6.9(extr.) Using $\sigma_{tot} / \sigma_{inel}$ at 7TeV of 1.38 (from eikonal model) $\sigma_{tot}^{pp} (7 TeV) = 96.0 \pm 3.3 \pm 9.5 \ mb.$
- CMS rep. $\sigma_{inel} = 68.0 \pm 2.0 (syst.) \pm 2.4 (lum.) \pm (extr.) mb.$

:.
$$\sigma_{tot}^{pp}(7 TeV) = 94.0 \pm 2.8 \pm 3.3 \pm 5.5 mb$$

• Auger measured σ_{inel}^{pp} at 57 TeV to be $90 \pm 7(stat.)_{-11}^{+8}(syst.) \pm 1.5(Glauber)$ Using $\sigma_{tot}/\sigma_{inel} = 1.45$ at 57 TeV, $\sigma_{tot}^{pp}(57 \ TeV) = 131 \pm 10_{-16}^{+12} \pm 2 \ mb$

- Exptl data of $\sigma_{tot}^{\bar{a}p,ap} (a = p, \pi, K)$ at $k \ge 20 \text{GeV}$ and $\rho^{\bar{a}p,ap} \ge 5 \text{GeV}$ for $\overline{p}(p)p, \pi^{\mp}p, K^{\mp}p$ are fit simult. imposing on param. $c_{2,1,0}^{ap}, \beta_{T,V}^{ap}, F_{ap}^{(+)}(0)$ the constraints on B and from FESR Duality
- Highest energy data for σ_{tot} data reach 26.4(25.3)GeV for $\pi^- p(\pi^+ p)$ 24.1GeV for $K^{\mp} p$ 1.8TeV for $\overline{p}p$ (Tevatron) 57TeV for pp (Cosmic-Ray)

Result of the fit to pp and pp

Best-fit parameters

ab	B(mb)	√S ₀ ab (GeV)	Zab(mb)	eta_T^{ab}	$oldsymbol{eta}_V^{ab}$	Fab(0) ⁽⁺⁾
pp	0.280(11)	4.65(42)	35.32(29)	6.71(20)	3.68(4)	10.6(6)
πр	0.280(11)	5.28(32)	21.18(14)	0.155(6)	0.040(1)	0.12(62)
Кр	0.280(11)	5.04(30)	17.85(16)	0.446(58)	0.56(1)	2.4(1.0)

$$\sigma_{tot}^{\bar{a}b,ab} = B \log^2 s / s_0^{ab} + Z_{ab} + (4\pi/m^2) \beta_T^{ab} (\nu/m)^{-0.5} \pm (4\pi/m^2) \beta_V^{ab} (\nu/m)^{-0.5}$$

 $\chi_{tot}^2 / N_{DF} = 431.48 / (517 - 13)$ 13 = 18 p aram - 5 constr with $\chi^2 (pp) / N_D = 216.17 / 244$ (5 = B - universality2 + 3 FESR) $\chi^2 (\pi p) / N_D = 150.97 / 162$ $\chi^2 (Kp) / N_D = 64.34 / 111$

Universal value:
$$B = 0.280(11)mb$$

Our prev.result $0.280(15)mb$

Predictions

√s(TeV)	$\sigma_{\scriptscriptstyle tot}^{\scriptscriptstyle pp}$ (Igi– Ishida)	$\sigma_{\scriptscriptstyle tot}^{\scriptscriptstyle pp}({\it HIIK})$	$\sigma_{tot}^{pp}(\exp)(mb)$
7	96.0(1.4)	96.1(1.1)	96.0±3.3±9.5 (ATLAS)
			94.0±2.8±3.3±5.5 (CMS)
			98.3±0.2±2.8 (TOTEM)
14	108.0(1.9)	108.1(1.4)	
57	135.5(3.1)	135.7(2.2)	94.0±2.8±3.3±5.5 (Auger)

TOTEM measures the pp total cross section at 7TeV: $98.3 \pm 0.2_{stat} \pm 2.8_{syst}$ mb.

It is somewhat large value but consistent with our prediction 96.1 ± 1.1 mb within the errors.

Third Topic(Appendix):Theoretical Prediction of Total Pion-Pion Scatterings. ник

• Based on Universality of B(first & second Topic), we can predict $\sigma_{tot}^{\pi^{\mp}\pi^{+}}(s)$ at high energy as,

$$\sigma_{tot}^{\pi^{\mp}\pi^{+}}(s) = B \log^{2} \frac{s}{s_{0}} + Z_{\pi\pi} + \widetilde{\beta_{T}^{\pi\pi}} \left(\frac{s}{s_{1}}\right)^{\alpha_{T}(0)-1} \pm \widetilde{\beta_{V}^{\pi\pi}} \left(\frac{s}{s_{1}}\right)^{\alpha_{V}(0)-1}$$

- We expect $\widetilde{\beta_{T,V}^{ab}}$ take forms in terms of Reggeonaa(bb) couplings $\gamma_{Raa,Rbb}$ with $\widetilde{\beta_T^{ab}} = \gamma_{Taa}\gamma_{Tbb}$, $\widetilde{\beta_V^{ab}} = \gamma_{Vaa}\gamma_{Vbb}$
- The γ -couplings are expected to satisfy SU(2) symmetry.

 $\beta_T^{\pi\pi} = \beta_T^{\pi p 2} / (\beta_T^{p p/2}) = 16.0(\pm 3.9) \text{mb}$ $\beta_V^{\pi\pi} = \beta_V^{\pi p 2} / (\beta_V^{p p/2}) = 1.9(\pm 1.9 - 1.0) \text{mb} \leftarrow \text{Small}^{28}$ • Natural to assume that Universality of B and S_0 extend to $\pi\pi$ scattering.

$$\sqrt{s_0^{\pi\pi}} (= \sqrt{s_0^{\pi p}}) = 5.28 \pm 0.63 \text{GeV}$$

- $Z_{\pi p} \approx 2/3 Z_{pp} \rightarrow$ $Z_{\pi \pi} = (Z_{\pi p}/Z_{pp}) Z_{\pi p} = 12.7 \pm 1.4 \text{mb}$
- S_1 is introduced as a typical scale for strong interactions which is taken to be $s_1 = 1 \ GeV^2$
- In such a way, we can predict $\pi\pi$ total cross sections.

High-Energy $\pi\pi$ Experiment Possible?

- Although challenging, data on $\pi^{+}\pi^{+}$ collisions could be extended to higher energies exploiting high intensity proton beam accelerator beams planned worldwide, such as Project X of FNAL.
- At a later stage these may develop into muon colliders. As an example, Project X, a high intensity proton source proposed at Fermilab, would deliver proton beams at energies ranging from 2.5 to 120 GeV and second pion beams with $E(\pi) \approx 2-15 \ GeV$

• Private communication with Steven.Geer A muon collider with Project-X-intensity pion beams would represent $\pi^+\pi^-$ collider with $\sqrt{s} = 1$ TeV and a lum. of $10^{22} cm^{-2}/sec$, not quite sufficient, even for measuring large cross sec. discussed here.

• Some manipulation of the secondary beams would be required.