Forward hadron production at collider energies and its possible application to cosmic ray physics

K. Itakura Theory Center, IPNS, KEK EDS2011@Qui Nhon, Vietnam

Plan

• Motivation

high-energy hadron-hadron collisions

vs first impact of cosmic ray air shower

Necessary ingredients for the calculation

1. Evolution eq.: rcBK - a new working paradigm

- 2. ``Initial Cond." : AAMQS DIS global fit (see talk by J.G.Milhano)
- 3. Formula: DHJ -forward hadron production
- 4. MC treatment of nuclei
- MC-DHJ/rcBK: state-of-the-art calculation work done with Fujii, Kitadono and Nara
- Future prospect towards application to CRs
- Summary

Motivation

• The first impact of cosmic ray air showers is an **extremely high energy scattering** of (probably) a proton off a nucleus in the air.

$$E_{\text{lab}} = 10^{20} \text{eV}, \quad \sqrt{s_{pp}} = 433 \text{ TeV} \implies \sqrt{s_{pp}} = 14 \text{ TeV} \text{ (LHC)}$$

- <u>Hadronic interaction in the MC code</u> is crucial for determination of composition and correct energy estimation of the primary cosmic rays. (see talk by T. Pierog)
- We, theorists (working on high-energy scatt.), must provide up-to-date information on <u>forward hadronic cross section</u> based on the modern picture of theory.

Aim of this talk

• To present (one of) the continuous efforts towards precise understanding of forward hadronic cross sections at high energies. (hadron production in hadron-hadron scattering)

• In particular, based on hard QCD picture. (could be irrelevant at very large rapidities, but not clear beyond which rapidity soft physics becomes dominant)

What is necessary?

What is necessary?

What is necessary?

What we really need at forward rapidity is

- 1. Evolution equation to go to higher energy (smaller x, instead of DGLAP)
- 2. Parton distribution in the target (instead of ordinary pdf's)
- 3. Formula useful at forward rapidity (instead of the collinear fact. formula)
- 4. A particular method of treating nuclei (instead of a homogeneous nucleus)

 $\begin{array}{l} x_2 \text{ becomes very small} \\ pp @ LHC (7TeV) \\ x_1, x_2 \sim 3 \times 10^{-4} \, (\eta = 0, p_t = 2 \text{GeV}) \, , \\ x_2 \sim 7 \times 10^{-7} \, (\eta = 6, p_t = 2 \text{GeV}) \\ pp @ cosmic ray (400TeV) \\ x_1, x_2 \sim 5 \times 10^{-6} \, (\eta = 0, p_t = 2 \text{GeV}) \, , \\ x_2 \sim 1 \times 10^{-8} \, (\eta = 6, p_t = 2 \text{GeV}) \end{array}$

CGC appears at small x

See talks by Milhano and Blaizot

 $Q_{s}(x,A)$: saturation momentum boundary btw saturated and NONsaturated regimes

$$Q_{\rm s} \sim 1 {\rm GeV}$$
 at $x = 10^{-4}$ for a proton

Going up higher energies: evolution eqs.

Evolution wrt x (or rapidity $y = \ln 1/x$) for unintegrated gluon distribution

• **BFKL** (LO :
$$(\alpha_s \ln 1/x)^n$$
, NLO: $\alpha_s (\alpha_s \ln 1/x)^n$)

$$\frac{\partial \phi(\mathbf{x}, \mathbf{k_t})}{\partial \ln(\mathbf{x_0}/\mathbf{x})} \approx \mathcal{K} \otimes \phi(\mathbf{x}, \mathbf{k_t})$$

$$K : \text{gluon splitting } \mathbf{g} \rightarrow \text{gg}$$

$$\phi: \text{ unintegrated gluon distr.}$$

$$\frac{\partial \phi(\mathbf{x}, \mathbf{k_t})}{\partial \ln(\mathbf{x_0}/\mathbf{x})} \approx \mathcal{K} \otimes \phi(\mathbf{x}, \mathbf{k_t}) - \phi(\mathbf{x}, \mathbf{k_t})^2$$

Known up to full NLO accuracy. [Balitsky, Chirilli 2008] But for practical purposes, we use BK with running coupling \rightarrow "rcBK" [Balitsky, Chirilli 2008]

[Balitsky, Gardi et al., Kovchegov-Weigert]

$$K^{\rm run}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \left[\frac{r^2}{r_1^2 \, r_2^2} + \frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

Fit to HERA data: AAMQS₂₀₁₁

Initial Conditions : modified GBW/MV models $x_0 = 0.00893$ or 0.008 $\mathcal{N}^{\text{GBW}}(r, x = x_0) = 1 - \exp\left[-\frac{(r^2 Q_{s0}^2)^{\gamma}}{4}\right],$ $(\gamma = 1 : \text{ordinary GBW})$ $\mathcal{N}^{\text{MV}}(r, x = x_0) = 1 - \exp\left[-\frac{(r^2 Q_{s0}^2)^{\gamma}}{4} \ln\left(\frac{1}{rA} + e\right)\right]$ $(\gamma = 1 : \text{ordinary MV})$ IR regularization for 1-loop running coupling $\alpha_{s,n_f}(r^2) = \frac{4\pi}{\beta_{0,n_f} \ln\left(\frac{4C^2}{r^2 A^2}\right)}$ freeze the coupling at $\alpha_{\rm s}^{\rm fr}=0.7$ Fit with only light quarks Fit including heavy quarks Q²=0.85 GeV² Q²=0.85 GeV² Data Data Q²=2.0 GeV² $Q^2 = 2.0 \text{ GeV}^2$ ← Modified GBW σ_r Q²=8.5 GeV² $Q^2=4.5 \text{ GeV}^2$ $Q^2 = 4.5 \text{ GeV}$ Q²=8.5 GeV² (Left) γ=0.971 σ_{r_0} σ_{r_0} $Qs_0^2 = 0.241$ Q²=12.0 GeV Q²=12.0 GeV Q2=10.0 GeV2 Q²=10.0 GeV² $\sigma_{\rm r_{0.5}}$ $\sigma_{\rm r_{0.5}}$ (Right) γ =0.959 O²=28.0 GeV Q²=15.0 Ge\ Q²=28.0 GeV Q²=15.0 GeV $Qs_0^2 = 0.240$ σ_{r_0} σ_{r_0}

Q²=35 GeV²

10⁻⁴

 $\sigma_{r_{0,r}}$

10-

Q²=45 GeV²

10⁻⁴

 $m_{\rm c}$ =1.27GeV, $m_{\rm b}$ =4.2GeV

x 10⁻²

10⁻³

Q²=35 GeV²

 10^{-4}

10⁻³

10-

m_{uds}=140MeV

 $\sigma_{r_{0,r}}$

10

Q²=45 GeV²

10⁻⁴

10⁻³

x 10⁻²

There are two more parameters (C, σ_0)

Hadron collisions (pp/pA): two formulae

*k*_t factorization

$$\frac{d\sigma^{A+B\to g}}{dyd^2p_Td^2X} \sim K \frac{\alpha_s}{p_T^2} \phi_{\mathsf{A}}(k_1, x_1, b) \otimes \phi_{\mathsf{B}}(k_2, x_2, X - b)$$

- proved for pp, pA at LO
- good when both A and B are saturated (mid rapidity at very high energy)
- used in various calculations e.g. multiplicity distribution, etc

DHJ formalism [Dumitru-Hayashigaki-Jalilian--Marian 2006]

$$\frac{dN}{dy_h d^2 p_T} = \frac{K}{(2\pi)^2} \sum_{ijk} \int_{x_F}^1 \frac{dz}{z^2} x_1 f_{i/p}(x_1, p_T^2) \,\widetilde{\mathcal{N}}_j(\frac{p_T}{z}, x_2) \, D_{h/k}(z, p_T^2)$$

- "Large-x / small-x" reactions: valid at forward rapidity
 x₁~1, x₂ <<1
- $-f_{i/p}(x)$: pdf for valence (large x) partons in the projectile
- $D_{h/k}(z)$: frag. func. for outgoing hadron h from a parton k
- N : un-integrated gluon distribution in the target

Hadron collisions (pp/pA): two formulae

*k*_t factorization

$$\frac{d\sigma^{A+B\to g}}{dyd^2p_Td^2X} \sim K \frac{\alpha_s}{p_T^2} \phi_{\mathsf{A}}(k_1, x_1, b) \otimes \phi_{\mathsf{B}}(k_2, x_2, X - b)$$

- proved for pp, pA at LO
- good when both A and B are saturated (mid rapidity at very high energy)

- used in various calculations e.g. multiplicity distribution, etc

DHJ formalism [Dumitru-Hayashigaki-Jalilian--Marian 2006]

$$\frac{dN}{dy_h d^2 p_T} = \frac{K}{(2\pi)^2} \sum_{ijk} \int_{x_F}^1 \frac{dz}{z^2} x_1 f_{i/p}(x_1, p_T^2) \,\widetilde{\mathcal{N}}_j(\frac{p_T}{z}, x_2) \, D_{h/k}(z, p_T^2)$$

- "Large-x / small-x" reactions: valid at forward rapidity
 x₁~1, x₂ <<1
- $-f_{i/p}(x)$: pdf for valence (large x) partons in the projectile
- $D_{h/k}(z)$: frag. func. for outgoing hadron h from a parton k
- N : un-integrated gluon distribution in the target

How to treat nuclei?

MC modeling for a nucleus:

• The simplest will be a homogeneous disk no impact parameter dependence an additional parameter Q_{s0A}^2 needed

may use a simple parametrization by KLN, or numerical solution to rcBK

 Random nucleons w/ Woods-Saxon dist. fluctuating density ⇒ <u>b-dependence</u> Q²_{s0A} = Q²_{s0p} × N w/o additional parameter Drescher-Nara

Apply quantum evolution locally at different transverse bins

MC-DHJ/rcBK

[Fujii,KI,Kitadono,Nara, arXiv:1107.1333, more to come soon]

To reduce ambiguity

- construct a nucleus by randomly placing nucleons
- use AAMQS parameters for proton IC optimized for DIS at small-x
- quantum evolution is performed "locally" in b space with rcBK

(to avoid IR div. in b-dep BK)

MC-DHJ/rcBK : results

modified MV model ($\gamma = 1.118$)

"running coupling" version of MV

model [Iancu-KI-Triantafylopoulos] : to be consistent with rcBK evolution

- reproduce the data nicely
- \bullet AAMQS set h and rcMV for $\mathcal{N}(r,y)$
- Q_{s0A}^2 fixed by MC; no additional parameter

MC-DHJ/rcBK : results

dN/dŋd²p_T [GeV⁻²

MC-DHJ/rcBK extrapolated to LHC

• Hadron productions $(\pi^0, K^0 \text{ and } n)$ at $\eta = 8.5$ at 7 TeV (LHCf) is being studied in this framework

Very forward region could be dominated by soft interaction, but still necessary to understand how much hard contribution exists.

Future prospect towards application to CRs

- Separation between soft and hard is not clear (model dependent)
- In several hadron interaction models (e.g. SIBYLL), IR cutoff for the hard contribution is energy dependent (very similar to Qs(s))

SIBYLL2.0 $p_{\perp}^{cutoff} = p_{\perp}^{0} + \Lambda \exp\left\{c\sqrt{\ln(s/\text{GeV}^{2})}\right\}$ with $p_{\perp}^{0} = 1 \text{ GeV}, \Lambda = 0.065 \text{ GeV}$ and c = 0.9

 \rightarrow miss particle production in the semi-hard region!!

• CGC provides particle production in semi-hard region $\Lambda_{\rm QCD} < k_t < Q_{\rm s}$ that expands with increasing energy

 \rightarrow filling the gap btw soft and hard

Calculations with CGC could help to "recover" the semi-hard contributions.

Summary

- Theoretical description of high-energy hadron scattering based on CGC is now (almost) established up to leading log accuracy with running coupling corrections. → rcBK paradigm
- In particular, phenomenological analysis with rcBK has been making a progress enough to be compared with experimental data. → HERA DIS at small-x, RHIC dAu at forward rapidity
- This approach can be, in principle, applied to higher energy collision, thus hopefully to the first impact of Cosmic Rays in the air.