Exclusive diffractive production of VM and a real photon at HERA in a Regge-pole model

S. Fazio Brookhaven National Lab (Upton NY, USA)

> L. L. Jenkovszky BITP (Kiev, Ukraine)

R. Fiore, and A. Lavorini *Calabria University and INFN (Cosenza, Italy)*

EDS ("Blois" @ Vietnam) Quy Nhon, December 15 – 20, 2011

Plan:

- Experimantal situation in DVCS and VMP; ep vs hh data; the Pomeron in ep and hh;
- Theory: QCD- and Regge-factorization; from GPD to realistic processes and vv.
- > DVCS & VMP; the "radius" of the real photon?
- Regge model: DVCS and VMP
- > A geometrical approach to the Regge theory
- Summary

The basic object of the theory $A(s, t, Q^2) = m^2$ (on mass shell) $A(s, t, Q^2) = \Im M(s, t = 0, Q^2) \sim F_2$ DIS

Reconstruction of the DVCS amplitude from DIS

$$F_{2} \sim \Im m \mathcal{A}(\gamma^{*} p \rightarrow \gamma^{*} p) \Big|_{t=0} \rightarrow \Im m \mathcal{A}(\gamma^{*} p \rightarrow \gamma p) \Big|_{t=0}$$
$$\rightarrow \mathcal{A}(\gamma^{*} p \rightarrow \gamma p) \Big|_{t=0} \rightarrow \mathcal{A}(\gamma^{*} p \rightarrow \gamma p)$$

$$\Im m\mathcal{A}(\gamma^* p \to \gamma^* p)\Big|_{t=0} \sim F_2(x_B, Q^2) = x_B q(x_B, Q^2)$$

$$q(x_B, Q^2) \to q(\xi, \eta, t, x_B, Q^2) \longrightarrow q(\xi, \eta, t, x_B, Q^2)$$

$$\Rightarrow \xi q(\xi, \eta, t, x_B, Q^2) = GPD(\xi, \eta, t, x_B, Q^2)$$

DVCS kinematics

$$P = p_{1} + p_{2}, q = (q_{1} + q_{2})/2$$

$$\Delta = p_{2} - p_{1}, t = \Delta^{2}$$

$$x_{B} = \frac{-q_{1}^{2}}{2p_{1}q_{1}} = \frac{Q^{2}}{2p_{1}q_{1}}$$

$$\eta = \frac{\Delta \boldsymbol{q}}{\boldsymbol{P}\boldsymbol{q}} = -\boldsymbol{\xi} \left(\mathbf{1} + \frac{\Delta^2}{2\boldsymbol{Q}^2} \right)^{-1}$$

QCD-factorized form of a DVCS scatterigg amplitude

GPDs cannot be measured directly, instead they appear as convolution integrals, difficult to be inverted !

$$A(\xi,\eta,t) \sim \int_{-1}^{1} dx \frac{GPD(x,\eta,t)}{x-\xi+i\varepsilon}$$

We need clues f rom
phenomenological models -
Regge behaviour, t-
f actorization etc.
$$\sigma_{tot} \sim \Im mA, \qquad \frac{d\sigma}{dt} \sim |A|^2$$

Exclusive diffraction

Main kinematic variables

electron-proton centre-of-mass energy: $s = (k + p)^2 \approx 4E_e E_p$

photon virtuality:

$$Q^{2} = -q^{2} = -(k - k')^{2} \approx 4E_{e}E_{e}\sin^{2}\frac{\theta}{2}$$

photon-proton centre-of-mass energy:

$$W^2 = (q + p)^2$$
, where : $m_p < W < \sqrt{s}$
square 4-momentum at the *p* vertex:

$$t = \left(p' - p\right)^2$$

- Vector Mesons production in diffraction
- Deeply Virtual Compton Scattering

Deeply Virtual Compton Scattering

DVCS properties:

- Similar to VM production, but γ instead of VM in the final state
- No VM wave-function involved
- Important to determine Generalized Parton Distributions sensible to the correlations in the proton
- GPD_s are an ingredient for estimating diffractive cross sections at the LHC

 $\alpha(0)$: determines the energy dependence of the diff. Cross section

$$\frac{d\sigma}{dt} \propto \exp(b_0 t) W^{4\alpha(t)-4} = W^{4\alpha(0)-4} \cdot \exp(bt); \qquad b = b_0 + 4\alpha' \ln(W)$$

 α ': determines the energy dependence of the transverse extention system

Regge-type DVCS amplitude

M. Capua, S. F., R. Fiore, L. L. Jenkovszky, and F Paccanoni Published in: Physics Letters B645 (Feb. 2007) 161-166

the *t* dependence at the vertex *pIPp* is introduced by: $\alpha(t) = \alpha(0) - \alpha_1 \ln(1 - \alpha_2 t)$ the vertex $\gamma^* IP\gamma$ is introduced by the trajectory: $\beta(z) = \beta(0) - \beta_1 \ln(1 - \beta_2 z)$

indicating with: $L = \ln (-is/s_0)$ the DVCS amplitude can be written as:

$$A(s,t,Q^{2})_{\gamma^{*}p \to \gamma p} = -A_{0}e^{b\alpha(t)}e^{b\beta(z)}(-is/s_{0})^{\alpha(t)} = -A_{0}e^{(b+L)\alpha(t)+b\beta(z)}$$

 $Magic f ormula < r^2 >= b \bullet \hbar c$

 $r_{glue} = 0.56 \mbox{ fm}$ $r_{proton} = 0.8 \mbox{ fm}$

Regge-type Aplitude: extension to VMP

G. Ciappetta, S. F., R. Fiore, L. L. Jenkovszky, and A. Lavorini

 $Q^{2} \rightarrow \tilde{Q}^{2} = Q^{2} + M_{V}^{2}$ The model is general: it can be easily extended to VMP $\frac{d\sigma(s,t,\tilde{Q}^{2})}{dt} = \frac{\pi}{s^{2}} |A(s,t,\tilde{Q}^{2})|^{2} \qquad |A(s,t,\tilde{Q}^{2})_{\gamma^{*}p \rightarrow V(\gamma)p}| = \left| -A_{0}e^{b_{1}\alpha(t)}e^{b_{2}\beta(z)}(-is/s_{0})^{\alpha(t)} \right| = -A_{0}e^{(b_{1}+L)\alpha(t)+b_{2}\beta(z)}$ Real and Imaginary part explicitly contained $B(s,t,\tilde{Q}^{2}) = \frac{d}{dt} \ln \left[\frac{d\sigma(s,t,\tilde{Q}^{2})}{dt} \right] \qquad \alpha(t) = \alpha(0) - \alpha_{1}\ln(1-\alpha_{2}t)$ $\beta(z) = \beta(0) - \beta_{1}\ln(1-\beta_{2}z) \qquad z = t - Q^{2}$ $\sigma(s,t,\tilde{Q}^{2}) = \int_{t_{min}}^{t_{min}} \frac{d\sigma(s,t,\tilde{Q}^{2})}{dt} dt \approx \sigma_{el}(s,\tilde{Q}^{2}) = \left[\frac{1}{B(s,t,\tilde{Q}^{2})} \cdot \frac{d\sigma(s,t,\tilde{Q}^{2})}{dt} \right]_{t=0}$

We refined the parameters... the most of them being constrained by plausible assumptions:

soft D-L Pomeron trajectory parameters:

- intercept: $\alpha(0) = \beta(0) = 1.09$
- slope: $\alpha' = \alpha_1 \alpha_2 = \beta' = 0.25$

- b₁= 2.0 (known from h-h scattering)
- s₀= 1.0 (approx. the square proton mass)
- $\alpha_1 = \beta_1 = 2.0$ (quark counting rule, range:[1-3])

•
$$\alpha_2 = \alpha' / \alpha_1 = 0.25 / \alpha_1 = \beta_2 = 0.125$$

The free parameters remaining are the normalization, A₀ and b₂

Fit to HERA: xsec vs $Q^2 - DVCS$

The uncertainty green band is calculated according to the uncertainty on the A₀ and b₂ parameters

$$\sigma(s,t,\tilde{Q}^2)^{t_{\min}\approx 0} \sigma_{el}(s,\tilde{Q}^2) = \left[\frac{1}{B(s,t,\tilde{Q}^2)} \cdot \frac{d\sigma(s,t,\tilde{Q}^2)}{dt}\right]_{t=0}$$

Satisfactory description of σ_{DVCS}(Q²) (Q²>5 GeV²)

Fit to HERA: xsec vs Q²

- $\checkmark \rho^0$ is well reproduced at moderate Q^2
- \checkmark For ρ^0 , a parameter b₂ varying with Q² seems to be favored

Fit to HERA: xsec vs W

W [GeV]

J/Ψ

N.B.: J/Psi photoproduction is a "golden plate" reaction to test diffraction. What is low-energy diffraction? =Background! See:

R. Fiore et al. *Exclusive J/Psi* electroproduction in a dual model , Phys.Rev.D80:116001, 2009, arXiv:0911.2094

40 60 80 100 120 140 160 W [GeV]

 $\sigma_{(\gamma^* \ p \ -> \ \gamma \ p)}(Q^2)$

Coll.	Years	W [GeV]	$ A_0 [\text{nb}]^{1/2}$	b_2	$ ilde{\chi}^2$
H1	04-07	82	0.164127 ± 0.01187	0.641492 ± 0.05536	1.13815
H1	96-00	82	0.161587 ± 0.01114	0.655892 ± 0.06876	0.684361
ZEUS $(e^- p)$	96-00	89	0.177467 ± 0.01255	0.703354 ± 0.09093	0.569761
ZEUS $(e^+ p)$	96-00	89	0.170452 ± 0.004545	0.595772 ± 0.02587	0.36618
ZEUS	99-00	104	0.208865 ± 0.009548	0.769323 ± 0.07719	3.33664

 $< b_2 >$ $0.6895877975 \pm 0.0207579082$

Discussion

Considerations:

We presented a simple model with

- > One a single Pomeron trajectory, as mesured in h-h interactions ("universal Pomeron")
- \succ Only two free parameters, the normalization and b_2

Parameters of the fit:		
DVCS	J/Ψ	ρ ⁰
<b<sub>2>= 0.55 ± 0.02</b<sub>	<b<sub>2>= 0.90 ± 0.03</b<sub>	<b2>= 1.09 ± 0.02(varies vs Q²)</b2>
A ₀ ~0.17	A ₀ ~0.9	A ₀ ~0.9

Results:

- $\checkmark\,$ The model fairly well reproduces d\sigma/dt and total xsec vs Q^2
- Describing σ(W) in a large Q² range is always challanging for Regge-type models, expecially for light particles (soft -> hard transition)

High Q² shold include QCD evolution and/or unitarit (see: N. Armesto, A. B. Kaidalov,

C. A. Salgado, and K. Tywoniuk, "A unitarized model of inclusive and diffractive DIS with Q2-evolution", arXiv:1001.3021;

✓ the two (or multiple) Pomeron components approach (Donnachie-Landshoff, hep-ph/0803.0686); N. Armestro et al. arXiv:1001.3021);

✓ the "geometrical" approach

Two Pomeron components approach

Concept of the two Pomeron components first introduced in: A. Donnachie and P. V. Landshoff, arXiv:0803.0686v1 [hep-ph]

We may consider the Pomeron as an "effective" one containing the contribution from two (i.g. multiple) components, each one with a Q²-independent trajectory

$$A_{tot} = A_s + h \cdot A_h$$

$$A_i \left(s, t, Q^2\right)_{\gamma^* p \to \gamma p} = -A_0 e^{b\alpha(t)} e^{b\beta(z)} \left(-is/s_0\right)^{\alpha(t)} = -A_0 e^{(b+L)\alpha(t)+b\beta(z)}$$

$$\alpha_i(t) = \alpha(0) - \alpha_1 \ln(1 - \alpha_2 t)$$

$$\beta_i(z) = \beta(0) - \beta_1 \ln(1 - \beta_2 z)$$
i = soft; hard

Soft Pomeron:

 $\alpha_{soft}(t) = 1.09 + 0.25t$ **Hard Pomeron:** $\alpha_{hard}(t) = 1.30 + 0.02t$

Now we have two components of the Pomeron

Two Pomeron components – $\sigma(W)$

- Successful description of the total xsec. in energy
- Contributions from other reggeons found to be negligible at HERA energies

For a complete review of results see:

- L. Jenkovszky, S. Fazio, R. Fiore, A. Lavorini, ISMD09 Proceedings
- Trento workshop on diffraction for LHC 2010: http://diff2010-lhc.physi.uni-heidelberg.de/

"Reggeometry"

For not too large |t| - the exponential slope is linked to the interaction radius which is a function of the inverse mass virtuality

More precisely: $b=b_1 + b_2 = R_1^2 + R_2^2$ R_1^2 and R_2^2 being the two radii corresponding to the upper and lower vertex of the diagram

In the case of a Regge model:

In a first approach – to be fine-tuned

$$\beta(t, \tilde{Q}^2) = \exp\left[4\left(\frac{1}{Q^2 + M_V^2} + \frac{1}{2m_p^2}\right)t\right]$$

 $b_1 = c/\tilde{Q}^2$ $b_2 = d/2m_p^2$ m_p is the proton mass *c* and *d* being free parameters

The slope can be calculated as: $B(s) = 2(b_1 + b_2 + \alpha' L)$ A complete test of this "geometric" Regge picture vs HERA data is our next task

Summary and outlook

- 1 A Regge-type model using a logarithmic trajectory and a few free parameters describes HERA data on DVCS and VMP
- 2. The real and imaginary parts of the DVCS (and VM) amplitude, essential ingredients for the GPDs, are explicitly contained in the model;
- 3. There is only one Pomeron in nature (both at the LHC and HERA), but it may have more components, their weithts changing with the virtuality. The trajectory is non-linear;
- 4. Is the dip-bump structure in the differential cross section a universal (pp, ep, DD,...) feature of highenrgy diffraction?
- 5. The quality of the hadronic data (e.g. LHC) is superior to those of DVCS or VMD, however ep is more informative concentring the nucleon structure (GPD); dip in J/Psi electroproduction,...?
- 6. GPD can be an input (to calculate DVCS etc) or output (deconvolution);
- 7. Matching(?) Regge behaviour with DGLAP evolution; L. Csernai *et al.:* From Regge Behavior to DGLAP Evolution, Eur.Phys.J. C24 (2002) 205-211, hep-ph/0112265;
- 8. The spin structure of DVCS and VMP is poorly known, more, both theoretical and experimental studies needed.

 $R(\Upsilon \rightarrow \rho)$

VMP and DVCS @ HERA

Fit: $\sigma \sim W^{\delta}$ ZEUS ¹⁴ p(GeV⁻²) ¹² 14 $\frac{d\sigma}{d\sigma} \propto e^{-b/t/t}$ 0 ο ρ ZEUS 96-00 2 • ρ ZEUS 96-00 (120 pb⁻¹) * $J/\psi H1$ Fit : Δ ρ ZEUS 94 DVCS H1 96-00 ρ ZEUS 94 1.8 🔻 ρ ZEUS 95 **DVCS H1 HERAII** p ZEUS LPS 94 dt Y ZEUS **ο ZEUS 95** 1.6 ★ J/ψ ZEUS Δ ρ H1 95-96 DVCS ZEUS 96-00 1.4 10 • 6 ZEUS 98-00 DVCS ZEUS LPS • 6 ZEUS 94 1.2 * J/w ZEUS 98-00 8 ★ J/ψ ZEUS 96-97 1 * J/v H1 96-00 0.8 6 0.6 ł δ 0.4 4 0.2 10 15 20 25 30 35 // 90 95 100 DVCS ZEUS LPS (31 pb⁻¹) 0 ٠ 2 0 5 **DVCS H1 HERA I** $Q^2 + M^2 (GeV^2)$ DVCS H1 HERA II e p 0 10 20 30 40 50 $Q^2 + M^2 (GeV^2)$ Size of the gluons: $\langle r^2 \rangle = 2 \cdot b \cdot (hc)^2 \implies r_{glue} = 0.56 \text{ fm}$

Summary of the W,t-dependence for all VMs + DVCS measured at HERA

F₂ structure function

Comparison between HERA data and the model prediction for $F_2(s,Q^2)$ DIS structure function

$$F_2(s,Q^2) \approx \frac{(1-x)Q^2}{\pi\alpha_e} \Im A(s,Q^2)/s$$

Function is plotted with all parameters fixed

Really good agreement!

The model reproduces experimental data at small x and moderate Q²

Cam on!