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Introduction

Hard pQCD deals with high transverse momenta partons. These

are short distance interactions calculated perturbatively.

Soft npQCD applies to low transverse momenta partons separated

by large distances. The consequent phenomenological calculations

are based foremost (but not only!) on the Regge pole model, in

which the Pomeron (IP ) is the leading term. It dominates soft

scattering dynamics in the TeV range.

In the following I shall review the development of the Regge IP to

its present multi-layered structure. My main objective is to show

that, regardless of its complexity, the updated IP model provides

a unique option for an overall description of soft scattering.



S-Channel Unitarity

The total and elastic (but NOT diffractive) cross sections in the

ISR-Tevatron range are well reproduced by the DL model

αIP (t) = 1 + ∆IP + α′
IP t, ∆IP = 0.08, α′

IP = 0.25GeV −2.

Given a super critical IP (∆IP > 0), σel grows indefinitely faster

than σtot and will, eventually, get larger! This paradox is

eliminated by imposing an s-channel unitarity bound on ael(s, b).

Enforcing unitarity is model dependent. Start with a scattering

matrix, where initial elastic re-scatterings secure s-unitarity

2Imael(s, b) = | ael(s, b)|
2 + Gin(s, b).

This is no more than a statement that σtot(s, b) = σel(s, b) + σin(s, b).



Its general solution is

ael(s, b) = i
(

1 − e−Ω(s,b)/2
)

and Gin(s, b) = 1 − e−Ω(s,b).

Ω(s, b) is arbitrary, inducing a unitarity bound of | ael(s, b) |≤ 2.

In a Glauber type eikonal approximation the input opacity Ω(s, b)

is real. i.e. ael(s, b) is imaginary and it equals the imaginary part

of the input Born term, a IP exchange diagram in IP models. The

output bound is | ael(s, b) |≤ 1, which is the black disc bound.

The total, elastic and inelastic cross sections are given by

σtot = 2
∫

d2b
(

1 − e−Ω(s,b)/2
)

,

σel =
∫

d2b
(

1 − e−Ω(s,b)/2
)2

,

σinel = σtot − σel =
∫

d2b
(

1 − e−Ω(s,b)
)

.

σel is bounded by σtot/2. At the black disc bound σel = σinel = σtot/2.



The figure shows the effect of eikonal screening securing

that the screened elastic amplitude is s-unitarity bounded.

The figure illustrates, also, the bound on R2
el implied by

analyticity/crossing symmetry.



Saturating these bounds results in Froissart-Martin bound

σtot ≤ Clog2(s/s0), in which C = π/2m2
π.

The coefficient C is far too large to make this bound useful.

One should remember that The Froissart-Martin log2s behavior

relates to the bound, NOT to the total cross section, as long as it

is below the bound. Hence, a log2s model behavior is

compatible with, but NOT induced, by Froissart-Martin bound!

σtot is proportional to dσel/dt(t=0), i.e. a single point in t-space. σtot

in b-space is obtained from a b2 integration of the eikonal elastic

b-amplitude. Consequently, b-unitarity saturation is a differential

property. Indeed, small b saturation at LHC is very probable.



Good-Walker Mechanism

The physics presented in the previous chapter is deficient in two

correlated fundamental elements which were ignored.

• The roll played by the diffractive channels which are also IP

exchange processes.

• t-channel unitarity expressed through multi-IP interactions.

Consider a system of two orthonormal states, a hadron Ψh and

a diffractive state ΨD. The GW mechanism stems from the

observation that these states do not diagonalize the 2x2

interaction matrix T.

Assume that T is diagonalized by Ψ1 and Ψ2.

we get, Ψh = α Ψ1 + β Ψ2, ΨD = −β Ψ1 + α Ψ2, α2 + β2 = 1.



The 4 elastic (i,k) GW amplitudes are

Ai′,k′

i,k = < Ψi Ψk|T|Ψi′ Ψk′ >= Ai,k δi,i′ δk,k′.

For initial p(p̄)− p we have A1,2 = A2,1. The (i, k) s-channel unitarity

equation is analogous to the single channel equation,

Im Ai,k (s, b) = |Ai,k (s, b) |2 +Gin
i,k(s, b).

Gin
i,k is the summed probability for all non GW inelastic processes,

including non GW ”high mass diffraction” induced by multi-IP

interactions. As in the single channel equation, we have

Ai,k(s, b) = i


1 − exp


−
Ωi,k(s,b)

2







 , Gin
i,k(s, b) = 1 − exp (−Ωi,k(s, b)) .

The opacities, Ωi,k(s, b), are real, determined by the Born input.

The resulting elastic, SD and DD amplitudes are:



ael(s, b) = i{α4A1,1 +2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1+ (α2 − β2)A1,2 + β2A2,2},

add = iα2β2{A1,1 − 2A1,2 + A2,2}.

Updated eikonal models are two channeled in which:

Ωi,k(s, b) = νi,k(s) Γi,k(s, b). In Regge type models, νi,k(s) = gigk(
s
s0

)∆IP .

Γi,k(s, b) is parametrized so as to reproduce the elastic and

diffractive channels dσ
dt in the forward cone.

The eikonal re-scatterings of the incoming projectiles

are summed over the GW eigen states.



Multi-Pomeron Interactions

Mueller(1971) applied 3 body unitarity to equate the cross section

a + b → M + b to the triple Regge diagram a +b + b̄ → a + b + b̄.

The core of this representation is a triple vertex with a leading

3IP term. The equation is valid for ”high mass diffraction”

mp

M2 << 1 and M2

s << 1.



a) b)

Muller’s 3IP approximation for ”high mass” single diffraction is

the lowest order of a very large family of multi-IP interactions

which are not included in the GW mechanism. This dynamical

feature is compatible with t-channel unitarity. The figure shows

the low order IP Green’s function.

a) Enhanced diagrams which renormalize the IP propagator.

b) Semi-enhanced diagrams which renormalize the p-IP -p vertexes.



In as much as the concept of ”low” and ”high mass” diffraction

is 40 years old, we are still confronted with ambiguities in both

its theoretical calculations and experimental definitions.

• The complexity of the multi-IP diagrams results in model

dependent summing.

• Commonly, ”high mass diffraction” lower bound is Y = 3,

corresponding to M 2 = 20GeV 2. Its upper bound is M 2 = 0.05s.

• Kaidalov(1986) ”low mass diffraction” upper bound is Y = 3,

with no overlap between ”low” and ”high mass diffraction.”

This is assumed also by KMR and Ostapchenko.



• The approach of GLM is radically different. Both GW and non

GW diffraction have the same upper bound. Consequently,

GLM diffraction has a large GW component, while Kaidalov,

KMR and Ostapchenko are richer in non GW diffraction.

• In the ISR- Tevatron range the difference between the two

definitions is relatively small. At LHC energies the difference

becomes more significant.

• Regardless of the above, the updated IP model is the only

option in the market that offers a procedure which is

compatible with t-channel unitarity.



Exceedingly High Energy Behavior

The definitions of GW and non GW diffraction have profound

implication on the exceedingly high energy approach toward the

black disc bound.

Single channel models neglect the GW mixing of the elastic and

”low mass” diffractive wave functions. Consequently, their

diffraction is ”high mass” by default.

In a single channel non GW model, σel ≤
1
2σtot. Equality is reached

at the saturated black disc bound, where σel = σinel = 1
2σtot.

In GW multi-channel models we distinguish between GW and non

GW diffraction. Accordingly, we obtain the Pumplin bound

(σel +σGW
diff) ≤

1
2σtot. Equality is attained at the black disc saturation.



The implication is that in a multi-channel GW model,

σel ≤
1
2σtot − σGW

diff , σinel ≤
1
2σtot + σGW

diff .

In a recent publication, Block and Halzen analyzed an AUGER

event for which they obtain: σinel
σtot

= 0.509 ± 0.011 at W = 57 ± 6TeV.

They conclude that the elastic and inelastic amplitudes are equal

and saturated at this energy.

As I have just shown, such a conclusion is valid only in single

channel models, where the bounds on σel and σinel are equal. This is

not the case in multi-channel GW models, where the two bounds

are different. Be reminded that in updated IP models, such as

GLM and KMR, σGW
diff is estimated at 50-60 TeV to be 15-20% of

the inelastic cross section.



b in fm

ael

add

asd

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

The basic GW amplitudes are AS
1,1, AS

1,2 and AS
2,2. These are the

building blocks with which we construct ael, asd and add. The AS
i,k

amplitudes are bounded by the unitarity black disc bound of unity.

ael(s, b) reaches this bound at a given (s, b) when, and only when,

AS
1,1(s, b) = AS

1,2(s, b) = AS
2,2(s, b) = 1, independent of the value of β.

Consequently, when ael(s, b) = 1, asd(s, b) = add(s, b) = 0.



Lets re-check the diffractive channels at exceedingly high energies.

The elastic amplitude which is essentially black, has a high b tail

where ael(s, b) < 1.

In this domain diffraction can survive.

The Figure shows the elastic, SD and DD amplitudes at the Planck

scale.



Updated Pomeron Model

The simple DL IP model has evolved into a multi-layered model.

• A bare non screened Pomeron exchange amplitude.

• The incoming projectiles eikonal re-scatterings initiate the

screenings of the GW elastic and ”low mass” diffraction

amplitudes.

• t-channel unitarity is coupled to multi-IP interactions, leading

to ”high mass” diffraction and renormalization of the Pomeron

which screens the GW and non GW amplitudes.

• Survival probability has GW and non GW components which

initiate further suppression of non GW diffraction.



• Current IP models obtain a large ∆IP and a diminishing α′
IP . In

the clasic Regge model ∆IP controls the energy dependence of

the scattering amplitudes, whereas α′
IP controls the shrinkage of

the forward cones. These features are initiated in the updated

IP model through s and t screenings.



The Partonic Pomeron

The microscopic sub structure of the Pomeron is provided in

Gribov partonic interpretation of Regge theory, in which the

slope of the Pomeron trajectory is related to the mean transverse

momentum of the partonic dipoles constructing the Pomeron, and

consequently, the running QCD coupling constant.

α′
IP ∝ 1/ < pt >2, αS ∝ π/ln

(

< p2
t > /Λ2

QCD

)

<< 1.

These observations intuitively suggest some connections between

the soft and hard Pomerons. which is utilized in IP models.

• GLM utilize the pQCD MPSI procedure, where nIP → mIP

reduces to a sequence of G3IP vertexes (Fan diagrams).

i.e. 2IP → IP and IP → 2IP .



• KMR couplings are gn
m = 1

2 gN nm λn+m−2 = 1
2 nm G3IP λn+m−3.

λ is a free parameter, n + m > 2, G3IP = λgN .

Kaidalov and Ostapchenko have a different normalization.

Following I shall discuss 4 IP models. The models are conceptually

similar, but differ in their IP features.

• GLM (Tel AVIV): has a single soft IP , ∆IP = 0.20 − 0.30, α′
IP ' 0.

• KMR (Durham): ∆IP = 0.3, α′
IP ∝ 1/p2

t .

• Ostapchenko (Bergen): has 2 Pomerons,

soft: ∆IP = 0.17, α′
IP = 0.11, hard: ∆IP = 0.31, α′

IP = 0.085.

• Kaidalov-Poghosyan (Moscow): is a single channel IP model

with

secondary Regge poles, ∆IP = 0.12, α′
IP = 0.22.



How Many Pomerons

The Pomeron is void of electrical and color charges, is described

as a 2 gluon color singlet. This is a Born term description.

In high order the 2 gluons are replaced by gluonic ladders.

The experimental study of e-p DIS provides a ”laboratory” in

which we can investigate the Pomeron properties as a function

of its kinematic variables. Indeed, HERA e-p DIS data is a rich

source of information on IP features.

pQCD study of e-p DIS, in the limit of high Q2 and exceedingly

small x, led to the introduction of the hard BFKL Pomeron,

corresponding to a hard gluon ladder.



• The soft IP is a simple moving pole in the J-plane,

while, the BFKL IP is a branch cut.

• The BFKL IP is commonly parametrized as a simple

J-pole with α′
IP = 0, which is a signature of the hard IP .

• Recall that in pQCD the BFKL Pomeron slope

α′
IP ∝ 1/Q2

s → 0 as s → ∞. Q2
s is the saturation scale.

The figure presents σ(γ∗ + p→ p + X) ∝ sλ. λ = ∆IP .

It shows the transition from the soft (non perturbative) Pomeron

to the hard (perturbative) Pomeron.

As seen, at very small Q2, ∆IP ' 0.1, compatible with the hadronic

soft data. At higher Q2, up to ' 100 GeV 2, ∆IP grows smoothly

toward ∆IP ' 0.30 − 0.35.



The basic input parameters of the soft and hard IP are similar.

• Even though the soft IP parameters are model dependent, we

can identify a common pattern,

α′
IP is small and ∆IP is large.



Given the strong screening induced by these parameters, the

effective values of these parameters in the ISR-Tevatron range

are compatible with DL.

• The parameters of the hard BFKL Pomeron are: α′
IP = 0,

reflecting the high pt of the hard IP partons. ∆IP is large,

determined by the pQCD calculations.

In NLO: ∆BFKL
IP ' 0.20− 0.35, depending on the renormalization

scheme used.

• the triple IP vertex plays an important roll in multi Pomeron

interactions. Its value is determined by the data analysis.

• Even though, the 3 multi channel models differ in their IP model

details, their output is consistent with the HERA figure.



LHC Cross Section Data

1) Inclusive Pseudorapidity Distributions:

NSD data on charged multiplicity density distribution

dNch/dη = 1/σNSDdσ/dη

has been published by ALICE, CMS and ATLAS at central

pseudorapidity −2.5 ≤ η ≤ 2.5.

This data provides an additional perspective on the IP model.

In the framework of Gribov’s IP calculus, single inclusive cross

sections can be calculated using Mueller diagrams. To this end

we have utilized the fitted parameters of the GLM IP model.
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We add 3 phenomenological parameters:

aIPIP and aIPR = aRIP , which account for hadron emission from the

exchanged IP or Reggeon. Q is the average transverse momentum

of the produced mini-jets.
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The data base for this fit is obtained from experiments spread

over many years with different approaches to their analysis. We

have fitted first the 546, 900, 1800, 2369, 7000 GeV data.



The second fit was confined to the very recent CMS data at 900,

2360, 7000 GeV.

The two sets of fitted parameters are close but not identical.

Our results are significant, in as much, as we offer a consistent

reproduction of the SppS-Tevatron-LHC inclusive data.



ATLAS ALICE CMS TOTEM

69.4 ± 2.4 ± 6.9 72.7 ± 1.1 ± 5.1 71.8 ± 1.1 ± 2.0 ± 7.9 73.5 ± 0.6 + 1.8 − 1.3

TABLE I: LHC σinel at 7 TeV

Achilli et al. Block-Halzen GLM Kaidalov-Poghosyan KMR

60-75 69.0 68.3 70.0 62.6-67.1

TABLE II: σinel model predictions at 7 TeV

2) Inelastic Cross Sections:

Cross sections contributing to σtot are σtot = σel + σsd + σdd + σnd.

The first measurements of the inelastic cross section derive from

the minimum bias data samples. σinel can be directly determined

by σinel = σtot − σel, provided both σtot and σel are measured.

The 2 tables above compare the 7 TeV σinel data and model pre-

dictions.



TOTEM ATLAS CMS

σtotmb 98.3±0.2±2.7+0.8-0.2 96.0±3.3±9.5 94.0±2.8±5.5

σel mb 24.8±0.2±2.8 26.6 22.2

TABLE III: LHC σtot and σel.

Achilli et al. Block-Halzen Halzen-Igi et al. GLM KP KMR

σtotmb 91.6 95.4 96.1 91.3 96.4 89.0

σel mb 26.4 23.0 24.8 21.9

TABLE IV: σtot and σel theoretical predictions.

3) Total And Elastic Cross Sections

The tables compare σtot and σel at 7 TeV with theoretical model

predictions.



Discussion

In this talk I have related to two theoretical options to describe

soft scattering at very high energies.

• updated IP models: GLM, KMR and Ostapchenko. These are

2 channel GW models.

• Kaidalov-Poghosyan follows a similar concept in a non GW

single channel model.

• Block-Halzen-Igi-Pancheri et al. have presented similar

mini-jets non Pomeronic single channel models which refrain

from dealing with diffraction.



Updated IP models cross section predictions at 7 TeV are

moderately lower than the LHC data, which is well reproduced

by the sibgle channel models of Block-Halzen-Igi et al.

and Kaidalov-Poghosyan.

Note that, all σtot values obtained by the LHC groups are larger

than the DL prediction of 90.7mb.

The problem with the IP models can be traced to the fact that

their complexity requires a large number of free parameters, in no

proportion to their small data base.

GLM confronted this problem by enlarging their data base with

ISR data. As such, the low energy ISR data ”controls” the fit.



The same problem was confronted differently by KMR and

Ostapchenko, who tuned, rather than fitted their data base.

In my opinion, all 3 groups should be more innovative in their

statistical methods and better tune their output! Clearly the

strength of these models is that they confront the issue of s and t

unitarity.

The issue with the non GW single channel models is fundamental.

As it stands, a non GW diffraction is ”high mass”, even though,

the diffractive data obviously has also a ”low mass” component.

Recall that, Block-Halzen-Igi-Pancheri ignore the issue of

diffraction all together.


