From theory to phenomenology in the CGC

José Guilherme Milhano

CENTRA-IST (Lisbon) & CERN PH-TH

EDS Blois workshop, Qui Nhon, 17 December 2011

initial conditions in hadronic collisions

initial conditions = knowledge of internal structure of colliding objects at all relevant scales [including unmeasured ones]

- - \hookrightarrow ensemble of partons
 - suitably written as parton distribution functions [pdfs]
- —o essential knowledge for
 - \longleftrightarrow computation of physical observables and reliable identification of new physics
 - distinction between initial and final state effects and 'first principle' initialization of hydrodynamical evolution [in heavy ion collisions]
- useful encoding of initial conditions necessarily universal [process independent]
 - \hookrightarrow reliant on some form of factorization

evolution

— partons with x and/or Q^2 far from typical hadronic ones (x₀, Q_0^2) come into being via a perturbative splitting chain

- \longleftrightarrow chain dominated by phase space log-enhanced contributions
- \hookrightarrow resummation of chain = evolution of pdfs from (x₀,Q₀²) to (x,Q²)
- \longleftrightarrow evolution reliably [perturbatively] computable given initial condition
 - initial condition intrinsically non-perturbative [phenomenological 'guess', lattice, global data fit]

linearity

both DGLAP and BFKL are linear approaches

-> evolution independent of ensemble

: underlying assumption :

- ensemble is dilute and remains so throughout evolution
- no collective behaviour in parton splitting

DGLAP

evolution [DGLAP] in Q^2 is intrinsically linear

BFKL

- evolution towards smaller x increases density
 - assumption of perpetual linearity violated
 - evolution in x should account for the ensemble

:: parton overlap, parton recombination, phase space reduction ::

evolution in x becomes naturally non-linear

neither approach is sufficient :: need non-linear generalization of BFKL

gluon dominance

- —• the infrared sensitivity of parton splitting favours the emission of soft [small-x] gluons :: at small-x the ensemble is gluon dominated
- - \hookrightarrow observed at HERA
 - \hookrightarrow if perpetuated leads unitarity violation [Froissart bound]

$$\begin{split} xg(x,Q^2) \sim x^{-12\ln 2\frac{\alpha_s}{\pi}} \sim x^{-0.5} \\ & \mathsf{BFKL} \\ xg(x,Q^2) \sim \exp\left\{\left(\frac{48}{11 - \frac{2}{3}N_f} \ln \frac{\ln Q^2/\Lambda^2}{\ln Q_0^2/\Lambda^2} \ln 1/x\right)^{1/2}\right\} \\ & \mathsf{DLA-DGLAP} \end{split}$$

the growth of partonic density should be tempered by non-linearities when the density becomes large

lore

—o simple physical arguments require the inclusion of non-linearities in the evolution; the C(olour)G(lass)C(ondensate) is the correct framework in which to address small-x physics

 \hookrightarrow how sizeable are the effects ?

- \longleftrightarrow what is the relevant kinematical domain ?
- \longleftrightarrow can observables be computed from 'first principles' ?
- O DGLAP provides extremely accurate description of ALL available experimental data
 - \hookrightarrow can properties of the evolution be disentangled from ingenious choices of initial conditions ?
 - \longleftrightarrow how uncertain are extrapolations into the unmeasured small-x region ?
 - can results from non-linear approaches be accommodated in the description by simply tuning initial conditions?

---- can these questions be answered ?

the CGC and how to test it

—• CGC [in this talk] is a 'first principle' effective theory for the description of the small-x glue

- ←→ well established non-linear evolution equations [B-JIMWLK]
- \hookrightarrow large Nc approximation [BK] for suitable observables
- \hookrightarrow NOT [in this talk] phenomenological models encoding 'saturation physics'
- —o testing strategy
 - \hookrightarrow extract universal unintegrated gluon distribution from cleanest process [DIS]
 - ←→ use to compute observables in pp, pA and AA collisions [cf. talk by Itakura]
 - \longleftrightarrow devise a set-up in which to compare DGLAP and CGC evolutions
 - find non-overlapping failing regions

dipole formulation of QCD

--o at high energy [x << 1] the coherence length of the virtual photon fluctuation

 $l_c \sim (2m_N x)^{-1} \simeq 0.1/x \,\mathrm{fm} \gg R_N$

---- total virtual photon-proton cross section can be factorized as

$$\sigma_{T,L}(x,Q^2) = 2\sum_f \int_0^1 dz \int d\mathbf{b} \, d\mathbf{r} \, |\Psi_{T,L}^f(e_f, m_f, z, Q^2, \mathbf{r})|^2 \, \mathcal{N}(\mathbf{b}, \mathbf{r}, x)$$

QED calculation

[imaginary part of] dipole-target scattering amplitude :: all QCD information :: all x dependence :: non-perturbative, but x-evolution computable from first principles [rcBK]

$$f_{T,L}(x,Q^{-}) = \int_{0}^{\infty} dz \int d^{-}\mathbf{r} \left[\Psi_{T,L}^{-T}(z,Q,r) \right] \sigma^{\omega p}(x,r)$$

$$\sigma^{dip}(x,r) = 2 \, \int d^2 b \, \mathcal{N}(x,b,r)$$

Balitsky-Kovchegov equation [LO]

[rapidity evolution of scattering probability N(x, y; Y) of $q\bar{q}$ dipole with hadronic target]

homogeneous target with radius much larger than any dipole size

→ neglect impact parameter dependence (2-dim into I-dim) improved treatment very sensitive to gluon mass [Berger and Stasto]

non-linear effect [double scattering]

$$\frac{\partial N(r,Y)}{\partial Y} = \int \frac{d^2z}{2\pi} K(\vec{r},\vec{r_1},\vec{r_2}) \Big[N(r_1,Y) + N(r_2,Y) - N(r,Y) - N(r_1,Y)N(r_2,Y) \Big]$$

$$K(\vec{r},\vec{r_1},\vec{r_2}) = \bar{\alpha}_s \frac{r^2}{r_1^2 r_2^2}, \qquad \bar{\alpha}_s = \frac{\alpha_s N_c}{\pi} \qquad \begin{array}{l} \mathsf{BFKL \ kernel:} \\ \mathsf{probability \ of \ gluon} \\ (\mathsf{two \ dipoles) \ emission} \end{array}$$

NLO-BK

rcBK

- running coupling BK [rcBK]

 - ---- first principle, numerically implementable, incarnation of non-linear QCD

AAMQs

installation [Spring 2009]

AAMQs setup

- LO impact factors [virtual photon-proton cross section]

- proton homogeneous in transverse plane
 - \hookrightarrow effective transverse area is a fit parameter
- different initial conditions
 - \hookrightarrow generalized GBW and MV forms

$$\mathcal{N}^{GBW}(r, x = x_0) = 1 - \exp\left[-\frac{\left(r^2 Q_{s0}^2\right)^{\gamma}}{4}\right]$$
$$\mathcal{N}^{MV}(r, x = x_0) = 1 - \exp\left[-\frac{\left(r^2 Q_{s0}^2\right)^{\gamma}}{4}\ln\left(\frac{1}{r\Lambda} + e\right)\right]$$

:: differ in UV behaviour ::

- initial saturation scale and sharpness of edge fall-off are fit parameters
- ←→ rescaled asymptotic solutions
 - no fit possible in AAMQs
 - Weigert et al. report excellent fits [once energy conservation included]
- -o also fits including heavy quarks [not shown] :: F_{2c} constrained

AAMQs setup

- running coupling in rcBK is 1-loop in coordinate space

$$\alpha_{s,n_f}(r^2) = \frac{4\pi}{\beta_{0,n_f} \ln\left(\frac{4C^2}{r^2 \Lambda_{n_f}}\right)} \qquad \beta_{0,n_f} = 11 - \frac{2}{3}n_f$$

 \hookrightarrow fixed number of flavours [N_f=3] for fits shown [variable for heavy quark case]

- ← C [fit parameter] accounts for uncertainty in FT from momentum to coordinate space
- $\hookrightarrow \Lambda$ fixed by reference measured value of α_s [either Z⁰ mass or T mass]
- \hookrightarrow IR regulated by freezing α_s , $r > r_{fr}$, $\alpha_s(r_{fr}^2) \equiv \alpha_{fr} = 0.7$ [or other suitable value]

-• H1-ZEUS combined set + non-HERA data [E665, NMC] with cuts $x \le 10^{-2}, Q^2 \le 50 \,{
m GeV}^2$

—o kinematical redefinition of Bjorken-x

$$\tilde{x} = x \left(1 + \frac{4m_f^2}{Q^2} \right)$$

results

- excellent fit quality [chi2~I]
- fitted initial conditions are numerically 'essentially identical'
- good description of F_L [not fitted]

hadronic collisions

pp, pA and AA [see Itakura's talk]

- - ----- significant recent analytical progress
 - ----- no numerical implementation yet

Fujii-Itakura-Kitadono-Nara

MC-rcBK [building nuclei from nucleons]

$$\phi^{\mathbf{A}}(\mathbf{x}, \mathbf{k}_{\mathbf{t}}, \mathbf{B}) = \phi^{\mathbf{p}}(\mathbf{x}, \mathbf{k}_{\mathbf{t}}, \mathbf{Q}_{\mathbf{sp}}^{\mathbf{2}} \to \mathbf{Q}_{\mathbf{sA}}^{\mathbf{2}}(\mathbf{B}))$$

1. Trivial:
$$ar{\mathbf{Q}}_{\mathbf{s}}^{\mathbf{2},\mathbf{A}} \sim \mathbf{A}^{1/3} \, \mathbf{Q}_{\mathbf{s}}^{\mathbf{2},\mathbf{N}}$$

2. Mean field:
$$\mathbf{Q_s^{2,A}(B)} \sim \mathbf{T_A(B)} \, \mathbf{Q_s^{2,N}}$$

3. Monte Carlo (realistic i.c for heavy ion collisions)

a). Initial conditions for the evolution (x=0.01) $N(\mathbf{R}) = \sum_{i=1}^{A} \Theta\left(\sqrt{\frac{\sigma_0}{\pi}} - |\mathbf{R} - \mathbf{r_i}|\right) \longrightarrow Q_{s0}^2(\mathbf{R}) = N(\mathbf{R}) Q_{s0, \text{nucl}}^2$ b) Solve local rcBK evolution at each transverse point $\varphi(x_0 = 0.01, k_t, \mathbf{R})$ rcBK equation or KLN model $\varphi(x, k_t, \mathbf{R})$

Nucleons can be regarded as disks () or gaussian () or ...

Is using the same functional form for proton and nuclei u.g.d a good idea? Is diffusion in the transverse plane negligible?

MC-rcBK [building nuclei from nucleons]

Albacete-Dumitru-Nara

- kt-factorization + running coupling BK evolution

 $\frac{d\sigma^{A+B\to g}}{dy\,d^2 p_t\,d^2 R} = \kappa \,\frac{2}{C_F} \frac{1}{p_t^2} \int^{p_t} \frac{d^2 k_t}{4} \int d^2 b\,\alpha_s(Q)\,\varphi(\frac{|p_t + k_t|}{2}, x_1; b)\,\varphi(\frac{|p_t - k_t|}{2}, x_2; R - b)$

$$\frac{dN^{A+B\to g}}{dy\,d^2p_t\,d^2R} = \frac{1}{\sigma_s} \frac{d\sigma^{A+B\to g}}{dy\,d^2p_t\,d^2R}$$

Good description of Pb+Pb data

CGC models for multiplicities can also be tested in a p+Pb run

DGLAP comparison

comparison with DGLAP

test the evolution NOT the choice of initial conditions

comparison with DGLAP

predictive power at small-x

limitations and outlook

large kt behaviour unconstrained from DIS data alone
 pp and mostly pA data needed
 impact parameter dependence for nucleus problematic
 very sensitive to treatment of edge [gluon mass]
 NLO kt factorized production badly needed for definite statements

 \hookrightarrow great analytical progress, numerical work to be done

-- less inclusive observables require evolution for higher order correlators [beyond BK]

←→ great analytical progress, numerical work to be done

- insufficient eA data for direct constraint on nuclear case [eRHIC, LHeC]

← pA data can help

—o identification of kinematical 'discovery' regions for the CGC now possible via detailed comparision with DGLAP

AAMQ_s 1.0

Dipole-proton cross section

The imaginary part of the dipole-proton scattering amplitude is available as a FORTRAN routine for public use. This quantity has been fitted to lepton-proton data using the Balitsky-Kovchegov evolution equations with running coupling. More details can be found at

J. L. Albacete, N. Armesto, J. G. Milhano, P. Quiroga Arias and C. A. Salgado, arXiv:1012.4408

Please refer to this publication when using the routine.

In order to compute the dipole cross section, simply multiply the output from the routine by the corresponding values in Table 1 of <u>arXiv:1012.4408</u> (the actual values depend on the chosen set of parameters). These values are

For the fits with only light flavors (subroutine aamqs10l):

sigma0=32.357 mb for GBW initial conditions, set a sigma0=32.895 mb for MV initial conditions, set e

For the fits with light+heavy flavors (subroutine aamqs10h):

sigma0=35.465 mb for GBW initial conditions, light, set b sigma0=18.430 mb for GBW initial conditions, heavy, set b sigma0=35.449 mb for MV initial conditions, light, set f sigma0=19.066 mb for MV initial conditions, heavy, set f

Full instructions and explanations can also be found at the headers of the routines.

To download the code, please follow this link

The main novelties on these parametrizations with respect to <u>our older one</u> <u>arXiv:0902.1112</u> are the use of the new (H1 and ZEUS combined) HERA data with much smaller error bars as well as the inclusion of heavy flavors in the fits.

If you find any problem, please, let us know

<u>HTTP://WWW-FP.USC.ES/PHENOM/AAMQS/AAMQS.HTML</u>

backups

\bigcirc proton vs. nuclear pdfs

- proton case

 - ---- wealth of data (DIS, DY, jets)
 - \hookrightarrow very reliable pdfs in 'data covered' kinematical range
 - large number of parameters in i.c.
 - \hookrightarrow very 'accommodating'
 - \hookrightarrow large uncertainty where data not available [small-x for moderate Q^2]
- but [see later] small x effects beyond collinear approach

\bigcirc proton vs. nuclear pdfs

- nuclear case
 - ---- collinear factorizability is a working assumption
 - \hookrightarrow encoding of all nuclear effects in npdfs is a huge leap of faith
 - \hookrightarrow could be reliably tested in pA LHC collisions [will discuss later]
 - relatively scarce data
 - —o standardly encoded as nuclear modification of proton pdfs [inherits proton pdf uncertainties]

\circlearrowright why does partonic density grow ?

• hadronic wave function [ensemble] can be described by a colour charge density ρ^a

:: associated non-dynamical longitudinal Coulomb field

when boosted, longitudinal field becomes transverse

:: equivalent [Weizsacker-Williams] gluons

$$E^{i}(r) = \frac{g}{4\pi} \frac{r^{i}}{|r|^{3}} \longrightarrow E^{i} = \frac{g}{2\pi} \frac{X_{\perp}^{i}}{X_{\perp}^{2}} \delta(X^{-})$$

○ AAMQ_s setup

DIS reduced cross section

$$\sigma_r(x, y, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} \left(\sigma_T + \frac{2(1-y)}{1+(1-y)^2} \sigma_L \right)$$

$$\sigma_{T,L}(x,Q^2) = 2\sum_f \int_0^1 dz \int d\mathbf{b} \, d\mathbf{r} \, |\Psi_{T,L}^f(e_f,m_f,z,Q^2,\mathbf{r})|^2 \, \mathcal{N}(\mathbf{b},\mathbf{r},x)$$

- b-dependence governed by long-distance non-perturbative physics [extra model input]
- AAMQs resorts to translational invariance approximation

\bigcirc AAMQ_s setup :: including heavy quarks

• allow for independent light and heavy i.c.

should follow from 'better' treatment of b-dependence

• additional fit parameters ...

$$\begin{split} \sigma_{T,L}(x,Q^2) &= \sigma_0 \sum_{f=u,d,s} \int_0^1 dz \, d\mathbf{r} \, |\Psi_{T,L}^f(e_f,m_f,z,Q^2,\mathbf{r})|^2 \, \mathcal{N}^{light}(\mathbf{r},x) \\ &+ \sigma_0^{heavy} \sum_{f=c,b} \int_0^1 dz \, d\mathbf{r} \, |\Psi_{T,L}^f(e_f,m_f,z,Q^2,\mathbf{r})|^2 \, \mathcal{N}^{heavy}(\mathbf{r},x) \end{split}$$

results

- fully consistent with results obtained with 'old' HERA data [AAMS]

 - tension with high Q² data [and this is good] :: not shown
- fitted initial conditions are numerically 'essentially identical'
 - physically meaningful

	fit	$\frac{\chi^2}{d.o.f}$	$Q_{S,0}^2$	σ_0	γ	C	m_l^2
	GBW						
a	$\alpha_f = 0.7$	1.226	0.241	32.357	0.971	2.46	fixed
a'	$\alpha_f = 0.7 \ (\Lambda_{m_\tau})$	1.235	0.240	32.569	0.959	2.507	fixed
b	$\alpha_f = 0.7$	1.264	0.2633	30.325	0.968	2.246	1.74E-2
с	$\alpha_f = 1$	1.279	0.254	31.906	0.981	2.378	fixed
c'	$\alpha_f = 1 \ (\Lambda_{m_\tau})$	1.244	0.2329	33.608	0.9612	2.451	fixed
d	$\alpha_f = 1$	1.248	0.239	33.761	0.980	2.656	2.212E-2
	MV						
e	$\alpha_f = 0.7$	1.171	0.165	32.895	1.135	2.52	fixed
f	$\alpha_f = 0.7$	1.161	0.164	32.324	1.123	2.48	1.823E-2
g	$\alpha_f = 1$	1.140	0.1557	33.696	1.113	2.56	fixed
h	$\alpha_f = 1$	1.117	0.1597	33.105	1.118	2.47	1.845E-2
h'	$\alpha_f = 1 \ (\Lambda_{m_\tau})$	1.104	0.168	30.265	1.119	1.715	1.463E-2

fits to 'old' HERA data

Ι	nitial condition	$\sigma_0 \ ({\rm mb})$	$Q_{s0}^2 \; ({\rm GeV^2})$	C^2	γ	χ^2 /d.o.f.
	GBW	31.59	0.24	5.3	1 (fixed)	916.3/844=1.086
	MV	32.77	0.15	6.5	1.13	906.0/843 = 1.075

○ results [light + heavy]

• excellent global σ_{red} / F₂ + F₂^c description $\chi^2/\#$ dof ~ 1.3

○ results [light + heavy]

	fit	$\frac{\chi^2}{d.o.f}$	$Q_{S,0}^2$	σ_0	γ	$Q^{2}_{S,0,c}$	$\sigma_{0,c}$	γ_c	C	m_l^2
	GBW									
a	$\alpha_f = 0.7$	1.269	0.2294	36.953	1.259	0.2289	18.962	0.881	4.363	fixed
a'	$\alpha_f = 0.7 \ (\Lambda_{m_\tau})$	1.302	0.2341	36.362	1.241	0.2249	20.380	0.919	7.858	fixed
b	$\alpha_f = 0.7$	1.231	0.2386	35.465	1.263	0.2329	18.430	0.883	3.902	1.458E-2
С	$\alpha_f = 1$	1.356	0.2373	35.861	1.270	0.2360	13.717	0.789	2.442	fixed
d	$\alpha_f = 1$	1.221	0.2295	35.037	1.195	0.2274	20.262	0.924	3.725	1.351E-2
	MV									
e	$\alpha_f = 0.7$	1.395	0.1673	36.032	1.355	0.1650	18.740	1.099	3.813	fixed
f	$\alpha_f = 0.7$	1.244	0.1687	35.449	1.369	0.1417	19.066	1.035	4.079	1.445E-2
g	$\alpha_f = 1$	1.325	0.1481	40.216	1.362	0.1378	13.577	0.914	4.850	fixed
h	$\alpha_f = 1$	1.298	0.156	37.003	1.319	0.147	19.774	1.074	4.355	1.692E-2

• $\sigma_0^{charm} < \sigma_0^{light}$

- also charm has a gentler fall-off in i.c [$\gamma^{charm} < \gamma^{light}$]

• F₂^c constrained

\bigcirc efele

HI and ZEUS direct measurements

— not included in the fit [independent test]

Ovs. DGLAP

• AAMS 1.0 F_2 and F_L cannot be fitted by NLO-DGLAP [Rojo, LHeC working group]

- i.e., pseudo-data (for LHeC) generated from AAMS is inconsistent with NLO-DGLAP
- differences cannot be absorbed into initial condition [in which there are ~200 parameters]

O Balitsky-Kovchegov (BK) equation

$$\frac{\partial N(r,Y)}{\partial Y} = \int \frac{d^2 z}{2\pi} K(\vec{r},\vec{r_1},\vec{r_2}) \Big[N(r_1,Y) + N(r_2,Y) - N(r,Y) - N(r_1,Y)N(r_2,Y) \Big]$$

- closed evolution for scattering probability
- is unitary [scattering probability cannot grow above I]
- large Nc limit (mean field) of infinite hierarchy [equivalent to target evolution]

$$N(x,y) = \langle n(x,y) \rangle_{\text{target}} = 1/N_c \langle 1 - V(x)V^{\dagger}(y) \rangle_{\text{target}}$$

$$\frac{\partial}{\partial Y} \langle n(x,y) \rangle = \cdots \langle n(x,y)n(y,z) \rangle$$

$$\frac{\partial}{\partial Y} \langle n(x,y)n(y,z) \rangle = \cdots$$

$$\cdots$$

$$\ln x = \frac{\langle n(x,y)n(y,z) \rangle}{\langle n(x,y)n(y,z) \rangle} = \frac{\langle n(x,y)n(y,z)n(y,z) \rangle}{\langle n(x,y)n(y,z) \rangle} = \frac{\langle n(x,y)n(y,z)n(y,z)n(y,z)}{\langle n(x,$$

- $\langle n(x,y)n(y,z)\rangle = \langle n(x,y)\rangle\langle n(y,z)\rangle + o(1/N_c^2) = N(x,y)N(y,z) + o(1/N_c^2)$
- no other consistent truncation possible
- --- numerical results for full hierarchy deviate 10% (0.1%) at most from full B-JIMWLK

O on why B is B'

$$\frac{\partial \mathcal{N}(r, Y)}{\partial Y} = \mathcal{R}[\mathcal{N}] - \mathcal{S}[\mathcal{N}]$$

1

10

 F_1^{10} F₂ and F_L extrapolated to LHeC and UHECR kinematical conditions solid: GBW

--- near independence 🖓 👯 🛃 editions

---- first principle approach allows for credible extrapolation

 \hookrightarrow 'all' relevant physics included 10^{3} 10^{-1}

1

10⁻² 10⁻⁸ 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ **X** 10⁻²

ODGLAP i.c. independent statements (ii)

- olvable by BFKL resummation in DGLAP kernel [interim fix...]
- predictive power rapidly degrades with I/x

\bigcirc DGLAP dev

\bigcirc AAMQ_S collaboration

installation [Spring 2009]

- 4 institutes
- 5 scientists
- ~200 cpu cores
- installation and commissioning in 2009
- online from early 2010

http://www-fp.usc.es/phenom/aamqs/aamqs.html