

Rencontres du Viet Nam

14th Workshop on Elastic and Diffractive Scattering (EDS Blois Workshop)

Frontiers of QCD: From Puzzles to Discoveries

December 15-21, 2011 Qui Nhon, Vietnam

Spin Structure of the Nucleon Studied at HERMES

Y. Miyachi, Yamagata University

- How to study the "spin" structure of the proton?
- HERMES experiment
- Spin structure of the proton studied at HERMES
 - Semi-inclusive measurements of DIS
 - Quark helicity distributions
 - Transverse momentum dependent PDF
 - Hard-exclusive production and Generalized Parton Distribution
 - Deeply Virtual Compton Scattering
- Summary

In Japan,

we have a game with tops, called "be-goma".

EDS2011

Try to kick the enemy's tops out.

YAMAGATA UNIVERSITY

http://th.physik.uni-frankfurt.de/~jr/gif/phys/bohrpaul.jpg

To probe the elements, let's hit with this top!

Now it becomes possible

2011/12/18

EDS2011

4 / 31

Semi-inclusive measurement of DIS

HERMES experiment

2011/12/18

Parton distribution functions

2011/12/18

EDS2011

Quark helicity distributions

PRD71(2005)012003

Difference asym. & valence quark

 $A_{1p}^{\pi^+ - \pi^-}$ $A_{1d}^{h^{\scriptscriptstyle +}\,\text{-}\,h^{\scriptscriptstyle -}}$ $A_{1p}^{\pi^{+}-\pi^{-}} = \frac{\Delta 4 u_{v} - \Delta d_{v}}{4 u_{v} - d_{v}}$ HERMES PRELIMINARY 0.8 0.8 0.6 0.6 0.4 0.4 $A_{1d}^{\pi^{+}-\pi^{-}} = \frac{\Delta u_{v} - \Delta d_{v}}{u_{v} - d_{v}}$ 0.2 0.2 0 -0.2 -0.2 0.01 0.02 0.1 0.2 0.3 0.01 0.02 0.1 0.2 0.3 х х $A_{1d}^{K^+ - K^-}$ $A_{1d}^{\pi^+ - \pi^-}$ 0.8 0.8 0.6 0.8 0.8⊢ HERMES PRELIMINARY from π and K charge difference asymmetries HERMES PRELIMINARY $x\Delta u_{y}$ $x\Delta d_v$ from π and K charge difference asymmetries from purity method from purity method 0.4 0.6 0.6 x∆u, DNS LO, <Q²>=2.5GeV² $x\Delta d_{\mu}$ DNS LO, $\langle Q^2 \rangle = 2.5 \text{GeV}^2$ 0.2 0.4 0.4 0 0.2 0.2 -0.2 0.02 0.1 0.2 0.3 0.01 0 -0.2 -0.2 -0.4 -0.4 0.02 0.03 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.02 0.03 0.1 Х Х

2011/12/18

YAMAGATA UNIVERSITY

http://th.physik.uni-frankfurt.de/~jr/gif/phys/bohrpaul.jpg

$$\begin{aligned} & \sum_{k} Azimuthal angles in SIDIS \\ & e + N \rightarrow e' + h + X \\ & d \sigma \alpha \\ & \frac{1 + (1 - y)^2}{2} F_{UU} + (2 - y)\sqrt{1 - y}\cos\varphi_h F_{UU}^{\cos\varphi_h} + (1 - y)\cos2\varphi_h F_{UU}^{\cos2\varphi_h} \\ & + S_L [(1 - y)\sin2\varphi_h F_{UL}^{\sin2\varphi_h} + (2 - y)\sqrt{1 - y}\sin\varphi_h F_{UL}^{\sin\varphi_h}] \\ & + S_L P_z^{l} \left[\frac{1 - (1 - y)^2}{2} F_{LL} + y\sqrt{1 - y}\cos\varphi_h F_{LL}^{\cos\varphi_h} \right] \\ & + S_T \left[\frac{1 + (1 - y)^2}{2} \sin(\varphi_h - \varphi_S) F_{UT}^{\sin(\varphi_h - \varphi_h)} \\ & + (1 - y) (\sin(\varphi_h + \varphi_S) F_{UT}^{\sin(\varphi_h + \varphi_s)} + \sin(3\varphi_h - \varphi_S) F_{UT}^{\sin(2\varphi_h - \varphi_s)}) \\ & + S_T P_z^{l} \left[\frac{1 - (1 - y)^2}{2} \cos(\varphi_h - \varphi_S) F_{UT}^{\sin(\varphi_h - \varphi_s)} + y\sqrt{1 - y} (\cos\varphi_S F_{LT}^{\cos\varphi_s} + \cos(2\varphi - \varphi_S) F_{LT}^{\cos(2\varphi - \varphi_s)}) \right] \\ & \sum_{k} \sum_{k} P_z^{l} \left[\frac{1 - (1 - y)^2}{2} \cos(\varphi_h - \varphi_S) F_{LT}^{\cos(\varphi_h - \varphi_s)} + y\sqrt{1 - y} (\cos\varphi_S F_{LT}^{\cos\varphi_s} + \cos(2\varphi - \varphi_S) F_{LT}^{\cos(2\varphi - \varphi_s)}) \right] \\ & \sum_{k} \sum_{k} \sum_{k} \frac{1 - (1 - y)^2}{2} \cos(\varphi_k - \varphi_S) F_{LT}^{\cos(\varphi_h - \varphi_s)} + y\sqrt{1 - y} (\cos\varphi_S F_{LT}^{\cos\varphi_s} + \cos(2\varphi - \varphi_S) F_{LT}^{\cos(2\varphi - \varphi_s)}) \\ & \sum_{k} \sum_{k$$

2011/12/18

Sivers & Collins amplitudes

Boer-Mulders amplitude

2011/12/18

EDS2011

 $g_{1T} \otimes D_1 \sim \cos(\phi - \phi_S)$

Hard Exclusive Production and GPD

2011/12/18

C Deeply Virtual Compton Scattering

2011/12/18

EDS2011

A Measurement of exclusive production at

21

YAMAGATA UNIVERSITY

2011/12/18

C DVCS amplitudes measured at HERMES

2011/12/18

GATA HNIVERSI

Exclusive production with Recoil Detector

ATA IINIVERSIT

C DVCS amplitudes with Recoil Detector at

hermes

HERMES has studied the spin structure of the nucleon.

Exclusive events with Recoil

Exclusivity with Recoil Detector

No requirement for Recoil Charged recoil track in acceptance Kinematic fit probability > 1% Kinematic fit probability < 1%