Diffractive and inelastic cross-sections in proton-proton collisions at $\sqrt{s} = 0.9$ TeV, 2.76 TeV and 7 TeV with ALICE at the LHC.

Martin Poghosyan CERN ALICE Collaboration

14th EDS Blois Workshop December 15-21, 2011 Qui Nhon, Vietnam

- Silicon Pixel Detector (SPD) corresponds to the two innermost layers of the ALICE Inner Tracking System and covers pseudorapidity range $|\eta| < 2$.
- V0 scintillator hodoscopes are placed on both sides of the interaction point covering the pseudorapidity ranges $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$.
- Forward Multiplicity Detector (FMD) is made of silicon strip sensors placed on either side of the interaction point covering the pseudo-rapidity range -3.4 $< \eta < -1.7$ and $1.7 < \eta < 5.1$.

MC generators: PYTHIA(-perugia0 tune) and PHOJET EDS11 M.Poghosyan

- Silicon Pixel Detector (SPD) corresponds to the two innermost layers of the ALICE Inner Tracking System and covers pseudorapidity range $|\eta| < 2$.
- V0 scintillator hodoscopes are placed on both sides of the interaction point covering the pseudorapidity ranges $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$.
- Forward Multiplicity Detector (FMD) is made of silicon strip sensors placed on either side of the interaction point covering the pseudo-rapidity range -3.4 $< \eta < -1.7$ and $1.7 < \eta < 5.1$.

- Silicon Pixel Detector (SPD) corresponds to the two innermost layers of the ALICE Inner Tracking System and covers pseudorapidity range $|\eta| < 2$.
- V0 scintillator hodoscopes are placed on both sides of the interaction point covering the pseudorapidity ranges $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$.
- Forward Multiplicity Detector (FMD) is made of silicon strip sensors placed on either side of the interaction point covering the pseudo-rapidity range -3.4 $< \eta < -1.7$ and $1.7 < \eta < 5.1$.

- Silicon Pixel Detector (SPD) corresponds to the two innermost layers of the ALICE Inner Tracking System and covers pseudorapidity range $|\eta| < 2$.
- V0 scintillator hodoscopes are placed on both sides of the interaction point covering the pseudorapidity ranges $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$.
- Forward Multiplicity Detector (FMD) is made of silicon strip sensors placed on either side of the interaction point covering the pseudo-rapidity range -3.4 $< \eta < -1.7$ and $1.7 < \eta < 5.1$.

Uncorrected data vs Simulation (900 GeV)

Uncorrected data vs Simulation (7 TeV)

Uncorrected data vs Simulation (2.76 TeV)

$\overline{SPD}+V0$

Varying the fraction of single- and doublediffractions in MC generator

Fixing the fraction of DD in Monte Carlo

Use the measured width distribution from two-arm triggers to constrain the contribution of double-diffraction.

For 2.76 TeV the FMD is not used and the fraction of DD is not changed.

EDS11

Pileup correction

Higher luminosity

- ➔ higher pileup
 - → smaller rate of one-arm triggers
 - → underestimation of σ_{SD} and σ_{Inel}

$$A(\mu) = \frac{\exp\{A_0\mu\} - 1}{\exp\{\mu\} - 1}$$

 μ - fraction of interactions per bunch crossing A_0 - trigger rate in case of single interactions

M.Poghosyan

Efficiency/Inefficiency vs mass for SD (900 GeV)

EDS11

12

Efficiency/Inefficiency vs mass for SD (2.76 TeV)

Efficiency/Inefficiency vs mass for SD (7 TeV)

Performance of the model used to parameterise SD

A.Kaidalov et al. [arxiv:0909.5156, EPJ. C67]

Resulting mean efficiencies

			trigger		
		output input	R-side 1-arm trig.	L-side 1-arm trig.	2-arm trig.
	SS	R-side SD	$\boldsymbol{0.465 \pm 0.031}$	$\boldsymbol{0.002 \pm 0.001}$	$\boldsymbol{0.198 \pm 0.054}$
900 GeV		L-side SD	$\boldsymbol{0.004 \pm 0.003}$	$\boldsymbol{0.352 \pm 0.014}$	$\boldsymbol{0.201 \pm 0.050}$
	pr	NSD	$\boldsymbol{0.025 \pm 0.007}$	$\boldsymbol{0.012\pm0.004}$	$\boldsymbol{0.956 \pm 0.014}$
		trigger			
		output input	R-side 1-arm trig.	L-side 1-arm trig.	2-arm trig.
2.76 TeV	ocess	R-side SD	$\boldsymbol{0.395 \pm 0.011}$	$\boldsymbol{0.002 \pm 0.001}$	$\boldsymbol{0.087 \pm 0.036}$
		L-side SD	$\boldsymbol{0.002 \pm 0.001}$	$\boldsymbol{0.301 \pm 0.021}$	$\boldsymbol{0.073 \pm 0.027}$
	pr	NSD	$\boldsymbol{0.026 \pm 0.007}$	$\boldsymbol{0.017 \pm 0.009}$	$\boldsymbol{0.946 \pm 0.028}$
			trigger		
		input Output	R-side 1-arm trig.	L-side 1-arm trig.	2-arm trig.
	SS	R-arm SD	$\boldsymbol{0.333 \pm 0.027}$	0.0002 ± 0.0002	$\boldsymbol{0.038 \pm 0.019}$
7 TeV	proce	L-arm SD	0.0007 ± 0.0006	$\boldsymbol{0.243 \pm 0.029}$	$\boldsymbol{0.041 \pm 0.017}$
		NSD	0.022 ± 0.006	$\boldsymbol{0.013 \pm 0.003}$	$\boldsymbol{0.952 \pm 0.014}$
				syst. error • adjustm • Changin • SD kine	comes from: ent of DD in Pythia a g d σ /d M by ±50% at matic in P <u>YTHIA an</u>
EDS11				M.Poghosyan	

Measurement of $\sigma_{SD}/\sigma_{Inel}$

Raw trigger ratios

$900 { m GeV}$

L-side/2-arm= 0.0578 \pm 0.0001(syst.) R-side/2-arm= 0.0912 \pm 0.0001(syst.)

$2.76~{ m TeV}$

L-side/2-arm= 0.0518 ± 00.001(syst.) R-side/2-arm= 0.0763 ± 0.0001(syst.)

7 TeVL-side/2-arm= $0.0458 \pm 0.0001(\text{syst.})$ R-side/2-arm= $0.0680 \pm 0.0001(\text{syst.})$

$$\frac{\sigma_{SD}}{\sigma_{Inel}} = 0.187 \pm 0.055(syst.)$$

$$\frac{\sigma_{SD}^{left}}{\sigma_{Inel}} = 0.097 \pm 0.026(syst.)$$

$$\frac{\sigma_{SD}^{right}}{\sigma_{Inel}} = 0.090 \pm 0.028(syst.)$$

$$\frac{\sigma_{SD}}{\sigma_{Inel}} = 0.207 \pm 0.04(syst.)$$

$$\frac{\sigma_{SD}^{left}}{\sigma_{Inel}} = 0.104 \pm 0.019(syst.)$$

$$\frac{\sigma_{SD}^{right}}{\sigma_{Inel}} = 0.103 \pm 0.020(syst.)$$

Despite different acceptances of the two ALICE sides, the results are symmetrical as expected from the symmetry of the physics process

EDS11

 $\sigma_{_{DD}}/\sigma_{_{Inel}}$

$$\frac{\sigma_{DD}}{\sigma_{Inel}} = 0.124 \pm 0.035$$

 $\frac{\sigma_{DD}}{\sigma_{DD}} = 0.125 \pm 0.052$

 $\sigma_{_{Inel}}$

 $\frac{\sigma_{\scriptscriptstyle DD}}{=} = 0.108 \pm 0.028$

 $\sigma_{_{Inel}}$

Van der Meer scans

A part of Inelastic cross-section is measured by requiring coincidence of V0-Left and V0-Right

vdM scan	$\sqrt{s} \text{ TeV}$	Colliding bunches	Crossing angle (rad)	β*(m)	Max µ	$h_x/2\sqrt{\pi}$ (μ m)	h _y /2√π (μm)	$\sigma^{ m visible}$	
a	7	1	280	2	0.086	43.8	46.7	54.21 ± 2.9	
b	7	1	500	3.5	0.74	57.3	65.1	54.34 ± 1.9	—
С	2.76	48	710	10	0.12	164	166	47.67 ± 1.5	(

EDS11

Triggering efficiencies

From the MC tuned with our SD and DD measurements, we can calculate the ALICE triggering efficiencies:

 $\begin{array}{l} MB_{OR} \ = V0\text{-Left or SPD or V0-Right} \\ MB_{AND} \ = V0\text{-Left and V0-Right} \end{array}$

 $900~{\rm GeV}$

$$\begin{split} \text{MB}_{\text{AND}} &= (76.3 \pm 1.0)\% \\ \text{MB}_{\text{OR}} &= (91.0 \pm 1.3)\% \\ \text{MB}_{\text{AND}}/\text{MB}_{\text{OR}} &= 0.838 \pm 0.005 \end{split}$$

 $2.76 {
m TeV}$

$$\begin{split} MB_{AND} &= (76.7 \pm 2)\% \\ MB_{OR} &= (88.6 \pm 3)\% \\ MB_{AND} / MB_{OR} &= 0.866 \pm 0.007 \end{split}$$

$$\begin{split} \text{MB}_{\text{AND}} &= (74.2 \pm 1.1)\% \\ \text{MB}_{\text{OR}} &= (85.1 \pm 2.2)\% \\ \text{MB}_{\text{AND}}/\text{MB}_{\text{OR}} &= 0.872 \pm 0.012 \end{split}$$

 $\begin{array}{c} 0.9 \\ 0.88 \\ 0.86 \\ 0.84 \\ 0.82 \\ 0.82 \\ 0.82 \\ 0.82 \\ 0.81 \\ 0.82 \\ 0.81 \\ 0.82 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.81 \\ 0.91 \\ 0.92 \\ 0.03 \\ 0.94 \\ 0.95 \\ 0.95 \\ 0.96 \\ 0.9$

 $\sigma_{\text{Inel}} (\sqrt{\text{s}} = 2.76 \text{ TeV}) = 62.2 \pm 1.7 \text{(model)} \pm 2.0 \text{(lumi)} \text{ mb}$ $\sigma_{\text{Inel}} (\sqrt{\text{s}} = 7 \text{ TeV}) = 73.2 \pm 1.1 \text{(model)} \pm 2.6 \text{(lumi)} \text{ mb}$

Comparison with other experiments and models

Summary

Ratios of single-diffraction dissociation (M < 200 GeV/c²) to inelastic cross-sections were measured at $\sqrt{s} = 0.9$, 2.76 and 7 TeV. Within our accuracy, we do not observe variations of these ratios with energy ($\sigma_{\rm SD}/\sigma_{\rm Inel} \approx 0.2$).

From a determination of the inelastic cross-section (van der Meer scan) single-diffraction and double-diffraction cross-sections were obtained at $\sqrt{s} = 2.76$ and 7 TeV.

\sqrt{s} (TeV)	σ _{Inel} (mb)	$\sigma_{\rm SD}(M < 200 { m ~GeV})/\sigma_{\rm Inel}$	$\sigma_{\rm DD}(\Delta\eta>3)/\sigma_{\rm Inel}$
0.9		0.215 ± 0.030	0.108 ± 0.028
2.76	$62.2 \pm 1.7 \pm 2.0$	0.187 ± 0.055	0.125 ± 0.052
7	$73.2 \pm 1.1 \pm 2.6$	0.207 ± 0.040	0.124 ± 0.035