Anomalous hydrodynamics and gravity

Dam T. Son (INT, University of Washington)

Summary of the talk

- Hydrodynamics: an old theory, describing finite temperature systems
- The presence of anomaly modifies hydrodynamics
- We first learned about this modification from gauge/ gravity duality.
- We know understand anomalous hydrodynamics more generally

Hydrodynamics as low-energy effective theory

Finite-temperature system: finite mean free path

 $\lambda_{
m mfp}$

Dynamics at large distances $\ell \gg \lambda_{
m mfp}$

is simple: very few degrees of freedom matter

In particular: conserved densities (of energy, momentum, conserved charges)

Relativistic hydrodynamics

Constitutive equations: local thermal equilibrium

 $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$ $j^{\mu} = nu^{\mu}$

Total: 5 equations, 5 unknowns

Relativistic hydrodynamics

Constitutive equations: local thermal equilibrium

 $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}$ $j^{\mu} = nu^{\mu} + \nu^{\mu}$

Total: 5 equations, 5 unknowns

Dissipative terms: ~ first derivatives, involve kinetic coefficients (shear and bulk viscosities, diffusion constants)

Parity-odd terms?

- What happens if the conserved current is axial?
 - example: QCD with massless quarks: axial currents conserved in absence of external EM fields
- Parity invariance does not forbid

$$j^{5\mu} = n^5 u^{\mu} + \xi(T,\mu)\omega^{\mu}$$
$$\omega^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} u_{\nu} \partial_{\alpha} u_{\beta} \qquad \text{vorticity}$$

• The same order in derivatives as dissipative terms (viscosity, diffusion)

New effect: chiral separation

- Rotating piece of quark matter
- Initially only vector charge density $\neq 0$
- Rotation: lead to j⁵: chiral charge density develops
- Can be thought of as chiral separation: left- and right-handed quarks move differently in rotation fluid
- Similar effect in nonrelativistic fluids?

Can chiral separation occur in rigid rotation?

- If a chiral molecule rotates with respect to the liquid, it will moves
- In rigid rotation, molecules rotate with liquid
- \Rightarrow no current in rigid rotation.

Relativistic theories are different

- There can be current ~ vorticity
- It is related to triangle anomalies

$$\partial_{\mu} j^{5\mu} = C\vec{E} \cdot \vec{B} \qquad C = 1/2\pi^2$$

but the effect is there even in the absence of external field

The kinetic coefficient ξ is determined (almost) completely by anomalies and equation of state

Forbidden?

• it is usually thought that the parity odd terms are forbidden because of the 2nd law of thermodynamics

hydrodynamic equations must be consistent with the existence of a non-decreasing entropy

• All textbook treatments do not include the parity odd term

Gauge gravity duality

- A method originating from string theory
- Maps some QFT (e.g., N=4 super-Yang-Mills) at strong coupling to gravity in higher dimensions
- Finite temperature plasma ↔ black hole in anti de-Sitter space

$$ds^{2} = \frac{r^{2}}{R^{2}}(-f(r)dt^{2} + d\vec{x}^{2}) + \frac{R^{2}}{r^{2}f(r)} \qquad f(r) = 1 - \frac{R^{4}}{r^{4}}$$

entropy of plasma \leftrightarrow black hole entropy fluctuations of plasma \leftrightarrow fluctuations of black hole

Hydrodynamics is encoded in black hole dynamics

Holography

The first indication that standard hydrodynamic equations are not complete comes from considering

rotating 3-sphere of N=4 SYM plasma \leftrightarrow rotating BH

If the sphere is large: hydrodynamics should work no shear flow: corrections ~ 1/R^2 Instead: corrections ~ 1/R Bhattacharyya, Lahiri, Loganayagam, Minwalla

Holography (II)

Erdmenger et al., Banerjee et al., 2008

considered N=4 super Yang Mills at strong coupling finite T and μ

should be described by a hydrodynamic theory

discovered that there is a current ~ vorticity

Found the kinetic coefficient $\xi(T,\mu)$

$$\xi = \frac{N^2}{4\sqrt{3}\pi^2}\mu^2 \left(\sqrt{1 + \frac{2}{3}\frac{\mu^2}{\pi^2 T^2}} + 1\right) \left(3\sqrt{1 + \frac{2}{3}\frac{\mu^2}{\pi^2 T^2}} - 1\right)^{-1}$$

Anomalous hydrodynamics

- Closer consideration of the hydrodynamic theory reveals a unique way to modify hydrodynamics to be consistent with anomalies
- The value of ξ can be predicted from 2nd law of thermodynamics

for theory with U(I) charge with $U(I)^3$ anomaly:

$$\xi = C\left(\mu^2 - \frac{2}{3}\frac{n\mu^3}{\epsilon + P}\right)$$

DTS, Surowka 2009

anomaly coefficient $(1/4\pi^2)$

current ~ vorticity similar effect: current ~ magnetic field $j^{\mu} = nu^{\mu} + \xi \omega^{\mu} + \xi_B B^{\mu}$

Current induced by magnetic field

Spectrum of Dirac operator:

 $E^2 = 2nB + p_z^2$

All states LR degenerate except for n=0

 $j_{\rm L} \sim -C\mu B$ $j_{\rm R} \sim C\mu B$

$$j_5 = j_R - j_L \sim C\mu B$$

Current induced by magnetic field

Spectrum of Dirac operator:

 $E^2 = 2nB + p_z^2$

All states LR degenerate except for n=0

 $j_{\rm L} \sim -C\mu B$ $j_{\rm R} \sim C\mu B$

$$j_5 = j_R - j_L \sim C\mu B$$

Multiple charges (II)

Example: theory with one massless Dirac fermion

$$j^{\mu} = \frac{1}{2\pi^2} (2\mu\mu_5\omega^{\mu} + \mu_5B^{\mu} + \mu B_5^{\mu})$$

$$j_5^{\mu} = \frac{1}{2\pi^2} ((\mu^2 + \mu_5^2)\omega^{\mu} + \mu B^{\mu} + \mu_5 B_5^{\mu}) + C' T^2 \omega^{\mu}$$

not fixed by entropy argument seems to be related to gravitation anomaly (Landsteiner, Megias, Pena-Benitez 2011)

Observable effect on heavy-ion collsions?

Chiral charges accumulate at the poles: what happens when they decay?

"Chiral magnetic effect"

- Large axial chemical potential μ_5 for some reason
- Leads to a vector current: charge separation
- π^+ and π^- would have anticorrelation in momenta
- Some experimental signal?
- Attempts to explain the signal by $j \sim \mu_5 B$ Kharzeev et al

STAR result

Abelev et al. PRL 2009 (arxiv:0909.1739)

Conclusions

- Anomalies affect hydrodynamic behavior of relativistic fluids
- First seen in holographic models, but can be found by reconciling anomalies and 2nd law of thermodynamics
- New terms in hydrodynamics (almost) completely fixed
- Indicate subtle effects in kinetic theory