

Results from the ALICE Experiment on Heavy lons and low x QCD physics

Sukalyan Chattopadhyay Saha Institute of Nuclear Physics, Kolkata For ALICE Collaboration

Study of strongly interacting matter under extreme conditions of temperature and energy densities

Study the QCD phase transition from hadronic matter to a deconfined state of quarks and gluons - The Quark-Gluon Plasma.

Study the physics of the Quark-Gluon Plasma

Phases of Strongly Interacting Matter

Heavy Ion Collisions - Evolution of the Fireball

- global observables: multiplicities, rapidity distributions
- geometry of the emitting source: HBT, impact parameter via zero-degree energy flow
- early state collective effects: collective flow
- degrees of freedom as a function of T: hadron ratios and spectra
- deconfinement: charmonium and bottonium spectroscopy
- energy loss of partons in QGP: jet quenching, high p_t spectra, open charm and open beauty

Zero Degree Calorimeters ~ 100m away from the interaction point

Two-source model for particle production according to negative binomial distribution

 $N_{ch} \sim f * N_{part} + (1-f) * N_{coll}$

 $\sigma_{pp}^{inel} = 64 \pm 5 \text{ mb}$

Centrality classes are determined by integrating the measured distribution above the cut.

14th EDS Blois workshop, Qui Nhon, 20.12.11

Charged Particle Multiplicity in most central collisions

Centrality dependence of charged particle multiplicity density

Energy Density

Energy Density at LHC is at least 3 times more than that at RHIC

Heavy Ion Collisions - Evolution of the Fireball

- global observables: multiplicities, rapidity distributions
- geometry of the emitting source: HBT, impact parameter via zero-degree energy flow
- early state collective effects: collective flow
- degrees of freedom as a function of T: hadron ratios and spectra
- deconfinement: charmonium and bottonium spectroscopy
- energy loss of partons in QGP: jet quenching, high p_t spectra, open charm and open beauty

HBT - Correlation

Correlation Function

 R_{long} – along beam direction R_{out} – along "line of sight" R_{side} – \perp "line of sight"

 $q = p_2 - p_1; k_T = |p_{T,1} + p_{T,2}|/2$

$$\begin{split} C(\mathbf{q}) &= N[(1-\lambda) + \lambda^* K(q_{inv})^* (1 + G(\mathbf{q}))] \\ G(\mathbf{q}) &= \exp(-(R^2_{out}q^2_{out} + R^2_{side}q^2_{side} + R^2_{long}q^2_{long})) \\ Cross term between q_{long} and q_{out} is zero for symmetric systems \end{split}$$

Pion HBT radii at 5% central

The radii of are significantly larger compared to RHIC

PLB 696, 328 (2011)

Heavy Ion Collisions - Evolution of the Fireball

- global observables: multiplicities, rapidity distributions
- geometry of the emitting source: HBT, impact parameter via zero-degree energy flow
- early state collective effects: collective flow
- degrees of freedom as a function of T: hadron ratios and spectra
- deconfinement: charmonium and bottonium spectroscopy
- energy loss of partons in QGP: jet quenching, high p_t spectra, open charm and open beauty

Collective expansion - Flow

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t} dp_{t} dy} \left\{ 1 + 2\sum_{n=1}^{+\infty} v_{n}(p_{t}, y) \cos[n(\varphi - \Psi_{R})] \right\},\$$

14th EDS Blois workshop, Qui Nhon, 20.12.11

PRL 107, 032301 (2011)

Heavy Ion Collisions - Evolution of the Fireball

- global observables: multiplicities, rapidity distributions
- geometry of the emitting source: HBT, impact parameter via zero-degree energy flow
- early state collective effects: collective flow
- degrees of freedom as a function of T: hadron ratios and spectra
- deconfinement: charmonium and bottonium spectroscopy
- energy loss of partons in QGP: jet quenching, high p_t spectra, open charm and open beauty

Particle Ratios in PbPb collisions

Range of Thermal model prediction

Agreement at LHC energies better

\overline{p}/π^{-} ratio off by factor > 1.5 from predictions !

similar to RHIC (where pbar/p = 0.8) ?

Particle ratios and Temperature

Consistent with T = 160 MeV and vanishing baryo-chemical potential except for protons

'Baryon anomaly': Λ/K_0

Heavy Ion Collisions - Evolution of the Fireball

- global observables: multiplicities, rapidity distributions
- geometry of the emitting source: HBT, impact parameter via zero-degree energy flow
- early state collective effects: collective flow
- degrees of freedom as a function of T: hadron ratios and spectra
- deconfinement: charmonium and bottonium spectroscopy
- energy loss of partons in QGP: jet quenching, high p_t spectra, open charm and open beauty

J/Ψ – classical case of deconfinement

 J/Ψ not suppressed at all only χ_c

OR

J/Ψ suppression is compensated by coalescence of charm quarks

Quarkonium at LHC

J/Ψ suppression: Results

ALI-PREL-3779

Rather small suppression & centrality dependence

J/Ψ suppression: Comparisons

Less suppression than RHIC!

Comparison with models

Nuclear Shadowing models – CSM at LO shadowing calculated with EKS98 and nDSg parameterization for PDF

 $R_{AA} \sim 0.7 \Rightarrow$ medium induced suppression is stronger

Recombination models

SHM – deconfinement + thermal equilibration of cc pairs

TM – rate of production & suppression with and without shadowing

shadowing + Cronin effect – can be tuned further

On of Recombination ?

Thermalization - J/Ψ elliptic flow Knowledge of shadowing – p+Pb data.

J/Ψ suppression: Comparisons

Larger suppression observed at ATLAS

BUT

Different p_T and y

Heavy Ion Collisions - Evolution of the Fireball

- global observables: multiplicities, rapidity distributions
- geometry of the emitting source: HBT, impact parameter via zero-degree energy flow
- early state collective effects: collective flow
- degrees of freedom as a function of T: hadron ratios and spectra
- deconfinement: charmonium and bottonium spectroscopy
- energy loss of partons in QGP: jet quenching, high p_t spectra, open charm and open beauty

Nuclear Modification Factor

- Production cross section of hard probes in Pb-Pb collisions is expected to scale with the number of binary nucleus-nucleus collisions (Pb-Pb is superposition of pp)
- Medium affects initially produced (colored) probes
- Departure from binary scaling expectation quantifies medium effects
- Study in-medium energy loss by measuring inclusive particle spectrum (dN_{ch}/dp_T)

Compare Pb-Pb and pp collisions scaled with number of binary collisions (from Glauber calculation)

$$R_{AA} = \frac{\frac{d^2 N^{AA} / dp_T d\eta}{\langle N_{coll} \rangle d^2 N^{pp} / dp_T d\eta} \rightarrow \text{Particle production in Pb-Pb}}{\langle N_{coll} \rangle = \langle T_{AA} \rangle \cdot \sigma_{pp}^{INEL}}$$

Nuclear overlap function $\langle T_{AA} \rangle$ from Glauber (corresponding to the number of binary collisions)

Charged Particle R_{AA}

No p_T dependence for peripheral

Stronger parton energy loss in central collisions compared to RHIC Clear increase for $p_T > 7$ GeV/C !

Not observed in RHIC

PLB 696, 30 (2011)

Centrality dependence

Universal R_{CP} for $p_T > 7$ GeV/C

Charm R_{AA}: D-Mesons

- $R_{AA} \underline{prompt}$ charm $\approx R_{AA} \underline{pions}$ for $p_T > 5-6$ GeV
- R_{AA} charm > R_{AA} pion for p_T < 5 GeV ? – better error estimation
- Qualitative expectation:
 R_{AA} Charm > R_{AA} Mesons
 - ΔE gluon > ΔE quark (Casimir factor)
 - ΔE massless parton > ΔE massive quark ('dead cone')

Very low X-range accessible to ALICE for heavy-flavour production

Suppression of Charm production > Beauty production Separate the R_{AA}'s – In Central barrel

Status in p-p data

Charm contribution from D2h data compared with total HF electon yield

- **D**⁰ seems more suppressed than HF electrons (inclusive-cocktail)
- Similar results for HF muons (inclusive $-\pi + \kappa$)
- More energy loss for charm than for beauty? Very large systematic errors Better knowledge of gluon shadowing – pA collisions

FUTURE

14th EDS Blois workshop, Qui Nhon, 20.12.11

~20 times more data!

Upsilon

Y peak (not resolved) observed in p-p at forward rapidity – experimentally difficult

Y physics

Summary

- First Pb-Pb data of 2010– 3 weeks of low luminosity run ~ 30 M MB!
- ALICE & RHIC results are consistent in the regions of overlap e.g V₂, fluctuations, baryon/meson enhancement.
- The bigger&hotter&longer-lived fireball is expected to lead to better quantitative results e.g η /s.
- Already some surprises!
 - Larger mass spltting for V₂
 - Strong radial flow
 - Necessity of V₃
 - Increase of charged particle R_{AA} at high p_T
 - Small and centrality independent R_{AA} for J/ Ψ at high p_T
 - Universal R_{CP} at high p_T
 - R_{AA} Charm ~ R_{AA} mesons at high p_T
- Newer ideas with 2011 data.

Backup slides

14th EDS Blois workshop, Qui Nhon, 20.12.11

Quark Scaling

For Central collisions: Quark scaling appears to work for π and K at low pT Quark scaling does NOT work for protons at low pT

Quark scaling may work (large errors) for π , K, p at high pT for peripheral collisions

J/Ψ suppression: Comparisons

Statistical model (successful at RHIC and SPS) would suggest less suppression at LHC, but large uncertainties •Needs a precise charm cross-section •Needs better knowledge of gluon shadowing (pA collisions)

J/Ψ (B) ≈ 10% (LHCb) => R_{AA}(prompt) lower by ≈ 0.05 shadowing(LHC) > shadowing(RHIC) ? => R_{AA} goes up ! cold nuclear matter suppression ?

Net charge: $\delta Q = N^+ - N^-$

Hadron Gas: $q = \pm 1$; $q^2 = 1$ QGP: $q = \pm \frac{1}{3}, \pm \frac{2}{3}; q^2 = \frac{1}{9}, \frac{4}{9}$

=> Fluctuation of net charge is sensitive to charge state: hadron gas or QGP

$$D = 4 rac{\langle \delta Q^2
angle}{N_{
m ch}}$$
 $pprox 1$ for QGP and 3 for hadron gas

Measure of Dynamical Net Charge fluctuations:

$$\boldsymbol{v}_{(dyn)} = \boldsymbol{v}_{(+-)} - \boldsymbol{v}_{(stat)}$$

Charge Fluctuations

p_T Fluctuations

Fluctuation dependence on centrality – same as RHIC

Azimuthal Anisotropy – Elliptical Flow

Final momentum anisotropy

Reaction plane defined by "soft" (low p_T) particles $\Delta \varphi = \varphi - \varphi^{Reaction\ Plane}$

Elliptical flow
$${dN\over d\Delta arphi} \propto 1+2\upsilon_2\cos(2\Delta arphi)$$

Elliptic Flow

PRL 105, 252302 (2010)

The system produced at the LHC behaves as a very low viscosity fluid (departure from a perfect fluid behaviour as compared to RHIC observation - $\eta/s = 1/4\pi = 0.08$).

V₂ for identified particles

Significant departure for protons in Central collisions

Reasonable agreement with Hydro for peripheral collisions.

V₂ for identified particles – LHC & RHIC

Larger mass splitting at LHC than RHIC

Identified particle yields

Blast wave model fits to the observed yields and $< p_T >$

Multi-strange Baryon Production

Multi-strange baryon production increases in Pb-Pb collisions at $\sqrt{S_{NN}}$ = 2.76 TeV with respect to p-p

Heavy Flavour Muons

Muon R_{CP} at forward rapidity > Charm R_{AA} at central rapidity

Directed Flow

J/ψ vs multiplicity pp, 7 TeV

J/ψ cross-section pp, 7 TeV

Inclusive J/ ψ cross sections at 7 TeV

- $-\sigma_{J/\psi} \left(|y| < 0.9 \right) = 10.7 \pm 1.00 \text{ (stat)} \pm 1.70 \text{ (syst)} + 1.60 \text{ (}\lambda\text{HE}\text{=+1)} \text{ -2.30 (}\lambda\text{HE}\text{=-1)} \text{ }\mu\text{b}$
- $-\sigma_{J/\psi}$ (2.5<y<4) = 6.31 ± 0.25 (stat) ± 0.76 (syst) + 0.95 (λ CS=+1) -1.96 (λ CS=-1) µb
- Inclusive J/ ψ cross sections at 2.76 TeV
 - σ_{J/ψ} (|y|<0.9) = 6.44 ± 1.42 (stat) ± 0.88 (syst) ± 0.52 (lumi) + 0.64 (λHE=+1) -1.42 (λHE=-1) μb
 - $-\sigma_{J/\psi}$ (2.5<y<4) = 3.46 ± 0.13 (stat) ± 0.32 (syst) ± 0.28 (lumi) + 0.55 (λ CS=+1) -1.11 (λ CS=-1) µb

J/ψ polarization pp, 7 TeV

14¹⁶ EDB Blots Workshop, Out Milden, 20: 92.11 62

The Perfect Fluid

String Theory (AdS/CFT) predicted η/s Bound

< 0.8

. T

Di-leptons - general

80 MeV/c²

counts per 80 MeV/c²

Data Samples of 2010

Beam	Energy	# of Events	
рр	900 GeV	300 k MB	2009, analysis finished
рр	900 GeV	~ 8 M MB	2010, partially analyzed
рр	2.36 TeV	~ 40 k MB	2009, only ITS, dN _{ch} /dη
рр	7 TeV	~ 800 M MB	2010
		~ 50 M muons	
		~ 20 M high N _{ch}	
PbPb	2.76 TeV/N	~ 30 M MB	2010